

Abstract—Based on the electromagnetism-like algorithm

(EM), we propose a novel hybrid learning algorithms which is
the improved EM algorithm with genetic algorithm technique
(IEMGA) for recurrent fuzzy neural system design. IEMGA are
composed of initialization, local search, total force calculation,
movement, and evaluation. They are hybridization of EM and
GA. EM algorithm is a population-based meta-heuristic
algorithm originated from the electromagnetism theory. For
recurrent fuzzy neural system design, IEMGA simulates the
“attraction” and “repulsion” of charged particles by
considering each neural system parameters as an electrical
charge. The modification from EM algorithm is the
neighborhood randomly local search is replaced by GA and the
competitive concept is adopted for IEMGA. For gradient
information free system, IEMGA is proposed to treat the
optimization problem. Besides, IEMGA consists of EM and GA
to reduce the computation complexity of EM. IEMGA is used to
develop the update laws of RFNN for nonlinear system control
problem. Finally, several illustration examples are presented to
show the performance and effectiveness of IEMGA.

Index Terms—Electromagnetism-like algorithm, genetic
algorithm, fuzzy neural system, nonlinear control

I. INTRODUCTION
 There are many literatures address in the training and

designing of neural fuzzy systems [5, 10-12, 14-16, 19-20,
22-23, 26]. To solve this problem, back-propagation (BP)
algorithm is widely used and is a powerful training technique
[12, 16-19, 22]. This may obtain a local minimum rapidly and
cannot find the global solution. Hence, training the neural
network and finding the global optimization are important.
Recently, several algorithms are proposed by the observation
of real-world systems, such as, genetic algorithm (GA),
evolutionary algorithm (EA), particle swarm optimization
(PSO), immune algorithm (IA), etc [6-8, 10-11, 14-15, 27-28,
30, 32, 33]. Recently, a novel meta-heuristic algorithm:
electromagnetism-like (EM) mechanism, for global
optimization was proposed [1-4, 31, 34]. EM algorithm is
originated from the electromagnetism theory in physics
which simulated the electromagnetism theory of physics by
considering each particle to be an electrical charge.
Subsequently, the movement of attraction and repulsion is
introduced by Coulomb’s law. It has advantages of multiple
search, global optimization, and faster convergence

This work was supported in part by the National Science Council,
Taiwan, R.O.C., under contracts NSC-95-2221-E-155-068-MY2.

Ching-Hung Lee is with Department of Electrical Engineering,
Yuan-Ze University, Chung-li, Taoyuan 320, Taiwan. (phone:
+886-3-4638800, ext: 7119; fax: +886-3-4639355, e-mail:
chlee@saturn.yzu.edu.tw).

procedure and simultaneously evaluates many point in search
space, they are more likely to find the better solution [1-4, 31,
34]. However, the local search procedure of EM is stochastic.
Hence, the major drawback of EM is highly computation
complexity. In order to improve performance of EM, a
modified local search phase and the competition concept are
adopted.

In recent years, fuzzy systems and neural networks are
being used successfully in many application areas [5, 7, 10,
12, 14-16, 19-20, 24-26, 28-29, 33-34]. Based on the
approximation ability, many adaptive control techniques are
accompanied with them for approximation of system
functions or controllers. A major drawback of the existing
feed-forward neural fuzzy systems is that their application
domain is limited to static problems due to the network
structure. In literature [20], a recurrent fuzzy neural network
(RFNN) system is proposed to identify and control nonlinear
systems. It is more suitable than feed-forward neural network
for temporal problems. By the way, some other recurrent
fuzzy neural systems have been proposed [9, 13-14, 20,
21-23, 27, 37]. They have the ability of storing system past
information. With the advantages, this study develops a
recurrent fuzzy neural network-based control scheme for
nonlinear systems.

This paper proposes the improved EM algorithm with
genetic algorithm technique (IEMGA). The major
modification from EM algorithm is the randomly
neighborhood local search which is replaced by GA, and the
competitive selection concept is adopted for reducing the
computation complexity. The IEMGA has the ability of
multiple searches, global optimization, and less computation
complexity. Furthermore, IEMGA does not need any
gradient information for optimization process. As a result of
these advantages, we use IEMGA to solve nonlinear system
control problem.

The paper is organized as follows. Section II introduces
the electromagnetism-like algorithm for recurrent fuzzy
neural system. In Section III, the hybrid algorithm IEMGA
for RFNN controller design is introduced. Section IV shows
the simulation and comparison results of nonlinear system
control is shown to demonstrate the performance of the
proposed IEMGA. Finally, conclusion is given.

II. ELECTROMAGNETISM-LIKE ALGORITHM FOR RECURRENT
FUZZY NEURO SYSTEM

A. Recurrent Fuzzy Neural Network (RFNN)
Many results have been obtained by using fuzzy neural

networks (FNNs) approach for system identification and
control [5, 12, 15, 26]. However, there are some
disadvantages of the FNNs such as their application domains

A Hybrid Algorithm of Electromagnetism-like
and Genetic for Recurrent Neural Fuzzy

Controller Design
Ching-Hung Lee, Member, IAENG , Che-Ting Kuo, Hao-Han Chang, Jen-Chieh Chien, and Fu-Kai

Chang

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

are limited in static problems because of feedforward
structure. It is inefficient when the FNN is applied in the
temporal problems. Hence, the recurrent fuzzy neural
network (RFNN) is proposed [20], which is more suitable for
solving temporal problems and describing dynamic systems
than the FNN. It is more effective and more adaptive than the
conventional FNN with non-adaptive fuzzy reasoning [9,
13-14, 17, 19-20, 27, 33].

The schematic diagram of RFNN is shown in Fig. 1, where
G denotes the Gaussian membership function. The RFNN
system is inherently a recurrent multilayered connectionist
network for realizing fuzzy inference using dynamic fuzzy
rules. In layer 2, the feedback networks are existed to afford
the dynamic properties. Each dynamic fuzzy if-then rule in
RFNN consists of n external inputs x1, x2, …, xn, and output y,
which is in the form of
Rule j: IF z1 is A1j and … zn is Anj, THEN y is jω (1)

where input linguistic variable zj is () () () ()kOkO iijij
12 1 +⋅− θ

which includes the current input and the past information, A1j
is a fuzzy set represented by Gaussian function and jω is the
consequent part parameter for inference output y. In the
following, we indicate the signal propagation and the basic
function of each layer,)(l

ix and)(l
iO denote the node input

and output; the superscript)(l denotes the lth layer and the
subscript i denote the ith input.

G1−z
ijθ

()2O

Layer 4

Layer 3

Layer 2

Layer 1

y

1x nx

GG G GGGG GG

Π ΠΠ Π

∑

Rω1ω

G1−z 1−z
ijθ

()2O

Layer 4

Layer 3

Layer 2

Layer 1

y

1x nx

GG G GGGG GG

Π ΠΠ Π

∑

Rω1ω

Figure 1: Network diagram of RFNN system [20].

Layer 1: Input Layer
Layer 1 accepts input variables and its nodes represent

input variables. The corresponding output is
() ()kxkO i

l
i =)((2)

where xi(k), i=1, 2, …, n, represent the input variables.
 Layer 2: Membership Layer

Layer 2 is used to calculate Gaussian membership grade,
i.e.,

() () ()
() ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2

2
)(

exp
ij

ijj
ij

mkz
kO

σ
. (3)

As above, zj is the fuzzy input linguistic variable,
zj= () () () ()kOkO iijij

12 1 +⋅− θ . In addition, here mij and σij are the
center and the width of the Gaussian function, θij is the
adjustable parameter of feedback layer. Obviously, the
RFNN can store the past information [20]. And if we set θij=0,
the RFNN can be reduced to an FNN system [5, 20].
Layer 3: Rule Layer

Nodes in layer 3 represent fuzzy rules. Links before layer 3
represent the preconditions of the rules, and the links after

layer 3 represent the consequences of the rule nodes. The
product operation is used here i.e.,

() ()∏=
i

ijj kOkO)2()3(. (4)

Layer 4: Output Layer
Layer 4 is the output layer which is used to implement the

defuzzification operation. Each node is for actual output to be
pumped out this system. The links between layer 3 and layer
4 are connected by the weighting value jω , i.e.,

() ()∑
=

==
R

j
jj kOkOy

1

)3()4(ω (5)

where ω = [ω1, ω2, …, ωR]T is the weighting vector. As above
description, it has adjustable parameters m, σ, θ, and ω,
which is denoted by []TmW ωθσ ,,,= .

B. Electromagnetism-like (EM) Algorithm
This section introduces the electromagnetism-like

algorithm (EM) for training RFNN systems. EM algorithm
was developed to simulate the electromagnetism theory by
each sample point to be a particle [1]. The EM for
optimization problems with lower and upper bound is in the
form of

Minimize)(xf
Subject to x∈S, (6)

where },...,1,,,{ nkuluxlxS kkkkk
n =ℜ∈≤≤ℜ∈= and the

parameters are defined as: n : dimension of the problem, uk :
corresponding upper bound, lk : corresponding lower bound,
f(x) : pointer to the function that is minimized.

Herein, each particle x represents a solution and a particle
is associated with each particle which is depended on the
fitness function f(x). EM utilizes the mechanisms of attraction
and repulsion to put the points towards to the optimum. By
the Coulomb’s law, the magnitude of force is proportional to
product of the particles and inversely proportional the
distance between two particles. There are three phases in the
learning algorithm EM which are “Initialization,”
“Evaluation,” and “Operation.”

M … σ … θ … ω …

Figure 2: Particle representation of RFNN.

B.1 Initialization Phase
The real-value coding technique is used to represent a

solution to a given problem. Each particle is encoded as a
vector of real numbers with the same lengths as the solution
vector. Each particles denotes a weighting vector

[]TmW ωθσ , , ,= shown in Fig. 2 and the EM is utilized to
find the optimal value []TmW ***** , , , ωθσ= .

Typically, initial particles are randomly chosen from a
feasible solution region. “Initialization phase” is used to
generate m initial particles. At first, the feasible region of
solution for RFNN parameters should be defined. In addition,
the training cycle is chosen to be the termination condition.

B.2 Evaluation Phase

This phase is used to calculate the fitness values of entire
particles. Each particle is evaluated by the given fitness
function to decide its survival or extinction in the next
generation. Evaluation phase helps us to find superiority
particles by determining the value of RMSE (or fitness value).

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

A particle with better fitness value has the higher possibility
to survive. Three steps should be done in this phase- fitness
values evaluation, fitness ranking, and best particle definition.
To evaluate the performance of each particle in training
RFNN system, we define the root-mean-square-error (RMSE)
as

Nkexf
N

k

/)()(
1

2∑
=

≡ (7)

where e denotes the approximated error and N denotes the
data number. The corresponding fitness function is

RMSE1
1)(

+
=xg . (8)

Subsequently, all particles are ranked and indexed by the
corresponding of fitness value. Finally, the particle having
the largest fitness value (minimum RMSE) is stored in xbest.

B.3 Operation Phase

As description of literature [1-4, 31, 34], there are three
steps in the EM operation phase. They are “local search”,
“total force calculation”, and “movement”, respectively.

B.3.1 Local Search of EM Algorithm

Local search step is used to gather the local information for
each particle xj. A new particle y is moved along the direction
of xj with the maximum feasible random step length δ
(maxk{uk − lk}). A simple neighborhood search is utilized
which works on a small ball or radius δ around the particle. If
the new particle y has better fitness value, the particle xj is
replaced by y. Then a new best particle is re-defined in this
step. Details of local search can be found in literature [1, 17,
19].

By the results of [17, 18], EM algorithm has the properties
of rapid convergence and global optimization. However, it
spends a highly complexity computation for each generation.

B.3.2 Total Force Calculation

In this step, a particle is assigned to each particle of the
population like electromagnetic charges. The charge qi of
particle xi is determined by

mi
xfxf

xfxfnq m

k

bestk

besti
i ,...2,1 ,

)]()([

)()(exp

1

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
×−=

∑
=

 (9)

the force is inversely propositional to the distance between
two particles and directly proportional to the product of their
chargers. Hence, the total force vector exerted on xi computed
by the superposition principle as follows

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥
−

⋅−−

<
−

⋅−

=
∑

∑

≠

≠

).()(if)(

)()(if)(

2

2

ij
m

ij
ij

ji
ij

ij
m

ij ij

ji
ij

i

xfxf
xx

qqxx

xfxf
xx

qqxx

F (10)

After comparing the RMSE values, (i.e., f(x)), the direction
of the forces between the particle and the others is selected.
For two particles, the one has a better RMSE value attracts
the other one. On the other hand, the particle with larger
RMSE repels the others.

B.3.3 Movement

After determining the total force vector Fi, particle xi
moves in the direction of the total force by a random step
length, i.e.,

miRNG
F
Fxx

i

i
ii ..., ,2 ,1)(=+= λ , (11)

nk
Flx
Fxu

RNG
i

kk
i
k

i
k

i
kk ..., ,2 ,1

0if
0if

=
⎩
⎨
⎧

≤−
>−

= (12)

where the random step length λ = random (0, 1), and RNG is a
vector whose components denotes the allowed feasible
movement toward the upper bound, uk, or lower bound lk.

III. HYBRID ALGORITHM IEMGA FOR RFNN SYSTEM

We introduce an improved EM algorithm with genetic
algorithm (GA) technique, we called it IEMGA. Beacuse GA
do not require derivative information, the most appropriate
applications are problems where gradient information is
unavailable or difficult to obtain. In real-world applications,
precise system sensitivity is usually unknown. In addition,
due to its global optimization capability, GAs has become
another useful tool to the automatic adjustment of network
parameters. For this reason, there has been a growing interest
in GAs for FNN design [7-8, 14, 29, 32]. The IEMGA
method contains the reproduction (competitive selection),
crossover, and mutation. IEMGA does not need any gradient
information and it is capable of decreasing the computational
complexity. As a result of these advantages, we use IEMGA
to solve nonlinear system control and the optimization of PID
controller design.

A. Improved EM Algorithm Using GA Technique (IEMGA)
IEMGA combines the advantages of EM and GA

algorithms to result high speed convergence and less
computation complexity. Moreover, it does not need any
system gradient information. The major modification from
EM algorithm is the randomly neighborhood local search is
replaced by GA. Figure 3 depicts the flow chart of the
IEMGA algorithm.

Figure 4 shows the flow chart of the modified local search.
After evaluation phase, the elites concept is adopted to
implement the competitive selection. The 50% front particles
are selected to enter the local search. The other 50% particles
are discarded. Subsequently, the GAs optimization
procedures including reproduction, crossover, and mutation
are used to generate the better particles. Finally, the new
particles and the remained 50% particles are combined to be
the new population.. r is a floating-point number randomly
between 0 and 1 for each chromosome. Pc and Pm are
crossover rate and mutation rate, respectively.

A.1 Genetic Algorithm

Population size M is the number of solutions to parallel
search in each generation. Large population size is difficult to
fall into the area of best solutions. Therefore, for the setting
of this parameter, a balance must be achieved between
solution quality and operation time. In this paper, M is equal
to the half of total particles according the competitive
selection, i.e., M = m/2.

A.1.1 Reproduction by Competitive Selection

Fitness function is used to judge whether the chromosome
is good or not. Chromosomes with lower fitness values may

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

be easily eliminated during reproduction, highlighting the
feature of “the fittest survival in natural selection” in the
biosphere.

After fitness function calculation, population will decide
whether to keep or get rid of the chromosomes. The species
with high fitness is more ascendant than those with low
fitness in the reproduction. The reproduced chromosomes
will be placed in the mating pool, waiting for the next
operation procedure. During the process of reproduction
operation is usually divided into two ways [7, 8, 14]:

(1) Competitive selection
(2) Roulette wheel selection.

In this study, we choose the first method. Competitive
selection is to randomly pick up more than two chromosomes
to compare their fitness values. The one with a higher fitness
value will be reproduced while the one with a lower fitness
value will be eliminated.

Figure 3: Descriptions of learning algorithm IEMGA.

Figure 4: Flow description for IEMGA local search.

A.1.2 Crossover
Based on the pre-assigned crossover rate, a certain amount

of pairs of chromosomes are randomly chosen to execute the
crossover operation. During this operation, one chromosome
in a pair will exchange parts of its sub-sequence with the
other. Generally, the common used methods are [7-8, 29, 35]:

(1) One-Point Crossover
(2) Two-Point Crossover
(3) Uniform Crossover.

In this study, we select the uniform crossover method

A.1.3 Mutation

The use of higher mutation rate Pm may be somewhat
helpful in introducing gene structures that have not been
searched again [7-8, 14, 30]. Randomly produce a
floating-point number r between 0 and 1 for each
chromosome, if r＜Pm , the chromosome must be mutated.

Using above modifications, simple comparison results of
EM and IEMGA is shown in Table 1. Obviously, the
proposed IEMGA algorithm obtains a smaller computation
time than the traditional EM. IEMGA only uses 2.14 seconds
(about 5.2% of EM algorithm) in a generation calculation.
Besides, the competition selection improve the computation
efficiency of EM algorithm.

r < Pc ?

Competition selection

Randomly choose
two strings as parents

Offspring
= parents

Putting offspring into
new population

Satisfying enough
new population

Keeping the same
value in the gene

Putting offspring into
new population

Randomly assign a
value to the gene

Produce
new population

Yes

No

The best 50%
particles

Start of local search

End of local search

The best 50%
particles

Uniform
crossover

Yes

No

Yes

No
r < Pm ? Step 1

Determine the size of particles
[m] and choose initial particles

Start

Step 2
Calculation of
fitness function Step 9

Fitness ranking

Step 4
Define the best particle xbest

Step 5
Competitive particles

selection ?

Discard particles

Yes

Step 6
New particles are produced by

GA

Step 7
Generate new population

No

No

50%

Step 8
Calculation of
fitness function

Step 10
Total force calculation

via (9) and (10)

Step 11
Movement

via (11), (12)

Step 12
Termination
satisfies ?

Step 13
Find the xbest

Step 3
Fitness ranking

End

Yes

50%

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table 1: Computation time comparison of EM and IEMGA
algorithms.

Algorith
m

Total
time
(sec)

Local
search time

(sec)

Percentage of local
search

EM 41.07 39.36 95.84 %

IEMGA 2.14 1.65 46.45 %

IV. SIMULATION RESULTS

In this section, an example for nonlinear system control
using RFNN is presented to show the performance of
IEMGA. Consider the tracking control of
two-input-two-output nonlinear system [14, 36]

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+
⋅=+)1(

)(1
)(

5.0)1(12
2

1
1 ku

ky
ky

ky
p

p
p (13)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

+

⋅
⋅=+)1(

)(1
)()(

5.0)1(22
2

21
2 ku

ky
kyky

ky
p

pp
p (14)

Note that system state yp=[yp1 yp2] and tracking trajectory
vector is yr=[yr1 yr2], where)45/sin()(1 πkkyr = and

)45/cos()(2 πkkyr = . The inputs of RFNN controller are yp
and yr and the outputs are u1 and u2. The system control
scheme is shown in Fig. 9. Thus, the corresponding RMSE
function of tracking error is defined

RMSE:
2
1

2
22

1

2
11]))1()1(())1()1((1[+−+++−+∑

=

kykykyky
N pr

N

k
pr

(15)
where N is the number of time step. The fitness function is
defined as 1/(1+RMSE).

To show the effectiveness and efficiency of IEMGA, EM,
and GA are used to have comparison results.

For IEMGA, EM, and GA algorithm, the following
parameters are chosen

- Total generation number (or epoch): 20
- Population size (or particles): 30
- Crossover rate of GA: 0.8
- Mutation rate: 0.03

The RFNN’s initial parameters ωθσ , , ,m are chosen
randomly between [-1, 1] and the network structure is

- Network structure: 4-20-10-2
- Parameter number of RFNN: 70
- Rule number of RFNN: 5

Simulation results are shown in Figs. 5-6 and Table 2.

Figure 5 shows the system trajectories after 20 training cycles
(solid line: desired trajectory; dashed line: system actual
output). Comparison results of RMSE between IEMGA and
other algorithms are shown in Fig. 6 (dashed line: GA,
dash-dotted line: EM, and solid line: IEMGA). Obviously,
the IEMGA algorithm has better performance in RMSE than
the EM algorithm and GA algorithm. The computation time
of EM and IEMGA are 614.182 seconds and 25.138,
respectively. IEMGA enhances the performance of EM in
computation effort. Table 2 shows the comparison results of
RMSE and computation time. From Table 2, IEMGA
algorithm has best approximation result (Mean RMSE:
0.5814). We see that the best, worst, and mean RMSEs of

IEMGA are smaller than those of EM and GA. In addition,
the corresponding computation time comparison using
MATLAB is also shown in Table 2. Obviously, we can
conclude that the IEMGA does reduce the computation
complexity of multiple particles optimization.

Learning
Algorithm

RFNN
Controller

Nonlinear
Systemu2

Σ

yr2

yp1

e2

＋

－

u1yr1 yp2

Σ
e1

＋

－

z-1

z-1

Learning
Algorithm

RFNN
Controller

Nonlinear
Systemu2

Σ

yr2

yp1

e2

＋

－

u1yr1 yp2

Σ
e1

＋

－

z-1

z-1

Figure 5: Dynamic system control configuration with RFNN

controller.

0 50 100 150 200 250
-1

-0.5

0

0.5

1

O
ut

pu
t Y

1

0 50 100 150 200 250
-1

-0.5

0

0.5

1

Time step

O
ut

pu
t Y

2

Yr2
Yp2

Yr1
Yp1

Figure 5: System trajectories after 20 training cycles of

Example 1: (solid line: desired trajectory; dashed line: system
actual output).

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Epoch

R
M

SE

GA
EM
IEMGA

Figure 6: Comparison results of tracking error RMSE for

Example 1: (dashed line: GA, dash-dotted line: EM, and solid
line: IEMGA).

Table 2: Comparison results of Example 1: RMSE and
computation time.

Algorithm Best
RMSE

Worst
RMSE

Mean
RMSE

GA 0.67274 0.92351 0.7851
EM 0.56687 0.75151 0.6379

IEMGA 0.34856 0.68149 0.5814

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

V. CONCLUSION
In this paper, we propose novel hybrid learning algorithm

IEMGA for training the RFNN system. For gradient
information free system, IEMGA is proposed to treat the
optimization problem. IEMGA consists of EM and GA to
reduce the computation complexity of EM. The major
modification from EM algorithm is the randomly
neighborhood local search is replaced by GA. In addition the
competitive selection concept is adopted for reducing the
computation. The advantages of GA are multiple searches,
global optimization. IEMGA is used to develop the update
laws of RFNN for nonlinear system control. Illustration
example of nonlinear system control is proposed to show that
IEMGA have the ability of gradient information free and it is
capable of decreasing the computational complexity.

REFERENCES
[1] S. I. Birbil and S. C. Fang, “An Electromagnetism-like Mechanism

for Global Optimization,” Journal of Global Optimization, Vol. 25,
No.3, pp. 263-282, 2003.

[2] S. I. Birbil, S. C. Fang, and R. L. Sheu, “On the Convergence of A
Population-based Global Optimization Algorithm,” Journal of
Global Optimization, Vol. 30, No.2, pp. 301-318, 2004.

[3] S. I. Birbil and O. Feyzioglu, “A Global Optimization Method for
Solving Fuzzy Relation Equations,” Lecture Notes in Artificial
Intelligence, Vol. 2715, pp. 718-724, 2003.

[4] P. C. Chang, S. H. Chen, and C. Y. Fan, “A Hybrid
Electromagnetism-like Algorithm in Single Machine Scheduling
Problems with Learning Effect,” Appear in Expert Systems with
Appl., Vol. 39, No.3, 2008.

[5] Y. C. Chen and C. C. Teng, “A Model Reference Control Structure
Using a Fuzzy Neural Network,” Fuzzy Sets and Systems, Vol. 73,
No.3, pp. 291-312, 1995.

[6] M. Clerc and J. Kenney, “The Particle Swarm-explosion, Stability,
and Convergence in A Multidimensional Complex Space,” IEEE
Trans. on Evolutionary Computation, Vol. 6, No.1, pp. 58-73, 2002.

[7] W. A. Farag, V. H. Quintana, and L. T. Germano, “A Genetic-based
Neuro-fuzzy Approach for Modeling and Control of Dynamical
Systems,” IEEE Trans. on Neural Networks, Vol. 9, No. 5, pp.
756-767, 1998.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, 1989.

[9] V. Gorrini and H. Bersini, “Recurrent Fuzzy Systems,” In Proc. IEEE
Int. Conf. Fuzzy Systems, Vol. 1, pp. 193-198, June, 1994.

[10] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of Particle
Swarm Optimization and Backpropagation as Training Algorithm for
Neural Networks,” IEEE Swarm Intelligence Symp., pp. 110-117,
April, 2003.

[11] G. Hong and M. Z. Yuan “Immune Algorithm,” Proc. of the 4th
World Congress on Intelligent Control and Automation, Vol. 3, pp.
1784-1788, June, 2002.

[12] S. Horikawa, T. Furuhashi, and Y. Uchikawa, “On Fuzzy Modeling
Using Fuzzy Neural Networks with the Back-propagation
Algorithm,” IEEE Trans. on Neural Networks, Vol. 3, No. 5, pp.
801-806, 1992.

[13] C. F. Juang, “A TSK-type Recurrent Fuzzy Network for Dynamic
Systems Processing by Neural Network and Genetic Algorithms,”
IEEE Trans. on Fuzzy Systems, Vol. 10, No. 2, pp. 155-170, 2002.

[14] C. F. Juang, “A Hybrid of Genetic Algorithm and Particle Swarm
Optimization for Recurrent Network Design,” IEEE Trans. on
Systems, Man, Cybernetics- Part: B, Vol. 34, No.2, pp. 997-1006,
2004.

[15] D. H. Kim, “Parameter Tuning of Fuzzy Neural Networks by Immune
Algorithm,” IEEE Int. Conf. on Fuzzy Systems, Vol. 1, pp. 408-413,
May, 2002.

[16] C. H. Lee, “Stabilization of Nonlinear Nonminimum Phase Systems:
An Adaptive Parallel Approach Using Recurrent Fuzzy Neural
Network,” IEEE Trans. on Systems, Man, Cybernetics- Part: B, Vol.
34, No. 2, pp. 1075-1088, 2004.

[17] C. H. Lee and F. K. Chang, “Recurrent Fuzzy Neural Controller
Design for Nonlinear Systems Using Electromagnetism-like
Algorithm,” Far East Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 1, No. 1, pp. 5-22, 2008.

[18] C. H. Lee, F. K. Chang, and C. W. Chen, “A Modified
Electromagnetism-like Algorithm for Training Neural Fuzzy
Systems in Control Applications,” CACS Int. Automatic Control
Conf., Taichung, Taiwan, Nov., 2007.

[19] C. H. Lee and M. H. Chiu, “Adaptive Nonlinear Control Using
TSK-type Recurrent Fuzzy Neural Network System,” Lecture Notes
in Computer Science, Vol. 4491, pp. 38-44, 2007.

[20] C. H. Lee and C. C. Teng, “Identification and Control of Dynamic
Systems Using Recurrent Fuzzy Neural Networks,” IEEE Trans. on
Fuzzy Systems, Vol. 8, No. 4, pp. 349-366, 2000.

[21] C. J. Lin and Y. C. Hsu, “Reinforcement Hybrid Evolutionary
Learning for Recurrent Wavelet-based Neuro-fuzzy Systems,” IEEE
Trans. on Fuzzy Systems, Vol. 15, No. 4, pp. 729-745, 2007.

[22] C. J. Lin, C. Y. Lee, and C. C. Chin, “Dynamic Recurrent Wavelet
Network Controllers for Nonlinear System Control,” Journal of The
Chinese Institute of Engineers, Vol. 29, No. 4, pp. 747-751, 2006.

[23] C. J. Lin and Y. J. Xu, “A Novel Evolution Learning for Recurrent
Wavelet-based Neuro-fuzzy Networks,” Soft Computing Journal,
Vol. 10, No. 3, pp. 193-205, 2006.

[24] C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems, Prentice Hall:
Englewood Cliff, 1996.

[25] C. T. Lin and C. S. G. Lee, “Neural-network-based Fuzzy Logic
Control and Decision System,” IEEE Trans. on Computers, Vol. 40,
No. 12, pp. 1320-1336, 1991.

[26] F. J. Lin, R. J. Wai, and C. C. Lee, “Fuzzy Neural Network Position
Controller for Ultrasonic Motor Drive Using Push-pull DC-DC
Converter,” IEE Proc.- Control Theory and Appl., Vol. 146, No. 1,
pp. 99-107, 1999.

[27] P. A. Mastorocostas and J. B. Theocharis, “A Recurrent Fuzzy-neural
Model for Dynamic System Identification,” IEEE Trans. on Systems,
Man, Cybernetics- Part: B, Vol. 32, No. 2, pp. 176-190, 2002.

[28] J. B. Pomet, “Explicit Design of Time-varying Stabilizing Control
Laws for A Class of Controllable Systems Without Drift,” Systems
and Control Letters, Vol. 18, No. 2, pp. 147-158, 1992.

[29] M. N. H. Siddique and M. O. Tokhi, “Training Neural Networks:
Backpropagation vs. Genetic Algorithms,” Proc. of Int. J. Conf. on
Neural Networks, Vol. 4, pp. 2673-2678, 2001.

[30] M. Srinivas and L. M. Patnaik, “Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms,” IEEE Trans. on Systems, Man
and Cybernetics, Vol. 24, No. 4, pp. 656-667, 1994.

[31] C. S. Tsou and C. H. Kao, “Multi-objective Inventory Control Using
Electromagnetism-like Meta-heuristic,” Int. Journal of Production
Research, Vol. 1, pp. 1-16, 2007.

[32] D. F. Wang, P. Han, N. Liu, Z. Dong, and S. M. Jiao, “Modeling the
Circulating Fluidized Bed Boiler Using RBF-NN Based on Immune
Genetic Algorithm,” Proc. of the First Int. Conf. on Machine
Learning and Cybernetics, Vol. 4, pp. 2121-2125, Nov., 2002.

[33] J. S. Wang and Y. P. Chen, “A Fully Automated Recurrent Neural
Network for Unknown Dynamic System Identification and Control,”
IEEE Trans. on Circuits and Systems-I, Vol. 56, No. 6, pp.
1363-1372, 2006.

[34] P. Wu, W. H. Yang, and N. C. Wei, “An Electromagnetism
Algorithm of Neural Network Analysis-An Application to Textile
Retail Operation,” Journal of the Chinese Institute of Industrial
Engineers, Vol. 21, No. 1, pp. 59-67, 2004.

[35] H. G. Xu, X. Y. Wei, and M. S. Xu, “Schema Analysis of
Multi-points Crossover Genetic Algorithm,” Proc. 3rd World
Congress on Intelligent Control and Automation, Vol. 1, pp. 521-524,
2000.

[36] X. Yao, Evolutionary Computation: Theory and Applications, World
Scientific, 1999.

[37] J. Zhang, and A. J. Morris, “Recurrent Neuro-fuzzy Networks for
Nonlinear Process Modeling,” IEEE Trans. on Neural Networks, Vol.
10, pp. 313-326, 1999.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

