
 
 

 

  
Abstract—Based on the electromagnetism-like algorithm 

(EM), we propose a novel hybrid learning algorithms which is 
the improved EM algorithm with genetic algorithm technique 
(IEMGA) for recurrent fuzzy neural system design. IEMGA are 
composed of initialization, local search, total force calculation, 
movement, and evaluation. They are hybridization of EM and 
GA. EM algorithm is a population-based meta-heuristic 
algorithm originated from the electromagnetism theory. For 
recurrent fuzzy neural system design, IEMGA simulates the 
“attraction” and “repulsion” of charged particles by 
considering each neural system parameters as an electrical 
charge. The modification from EM algorithm is the 
neighborhood randomly local search is replaced by GA and the 
competitive concept is adopted for IEMGA. For gradient 
information free system, IEMGA is proposed to treat the 
optimization problem. Besides, IEMGA consists of EM and GA 
to reduce the computation complexity of EM. IEMGA is used to 
develop the update laws of RFNN for nonlinear system control 
problem. Finally, several illustration examples are presented to 
show the performance and effectiveness of IEMGA. 
 

Index Terms—Electromagnetism-like algorithm, genetic 
algorithm, fuzzy neural system, nonlinear control  

I. INTRODUCTION 
 There are many literatures address in the training and 

designing of neural fuzzy systems [5, 10-12, 14-16, 19-20, 
22-23, 26]. To solve this problem, back-propagation (BP) 
algorithm is widely used and is a powerful training technique 
[12, 16-19, 22]. This may obtain a local minimum rapidly and 
cannot find the global solution. Hence, training the neural 
network and finding the global optimization are important. 
Recently, several algorithms are proposed by the observation 
of real-world systems, such as, genetic algorithm (GA), 
evolutionary algorithm (EA), particle swarm optimization 
(PSO), immune algorithm (IA), etc [6-8, 10-11, 14-15, 27-28, 
30, 32, 33]. Recently, a novel meta-heuristic algorithm: 
electromagnetism-like (EM) mechanism, for global 
optimization was proposed [1-4, 31, 34]. EM algorithm is 
originated from the electromagnetism theory in physics 
which simulated the electromagnetism theory of physics by 
considering each particle to be an electrical charge. 
Subsequently, the movement of attraction and repulsion is 
introduced by Coulomb’s law. It has advantages of multiple 
search, global optimization, and faster convergence 
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procedure and simultaneously evaluates many point in search 
space, they are more likely to find the better solution [1-4, 31, 
34]. However, the local search procedure of EM is stochastic. 
Hence, the major drawback of EM is highly computation 
complexity. In order to improve performance of EM, a 
modified local search phase and the competition concept are 
adopted. 

In recent years, fuzzy systems and neural networks are 
being used successfully in many application areas [5, 7, 10, 
12, 14-16, 19-20, 24-26, 28-29, 33-34]. Based on the 
approximation ability, many adaptive control techniques are 
accompanied with them for approximation of system 
functions or controllers. A major drawback of the existing 
feed-forward neural fuzzy systems is that their application 
domain is limited to static problems due to the network 
structure. In literature [20], a recurrent fuzzy neural network 
(RFNN) system is proposed to identify and control nonlinear 
systems. It is more suitable than feed-forward neural network 
for temporal problems. By the way, some other recurrent 
fuzzy neural systems have been proposed [9, 13-14, 20, 
21-23, 27, 37]. They have the ability of storing system past 
information. With the advantages, this study develops a 
recurrent fuzzy neural network-based control scheme for 
nonlinear systems. 

This paper proposes the improved EM algorithm with 
genetic algorithm technique (IEMGA). The major 
modification from EM algorithm is the randomly 
neighborhood local search which is replaced by GA, and the 
competitive selection concept is adopted for reducing the 
computation complexity. The IEMGA has the ability of 
multiple searches, global optimization, and less computation 
complexity. Furthermore, IEMGA does not need any 
gradient information for optimization process. As a result of 
these advantages, we use IEMGA to solve nonlinear system 
control problem. 

The paper is organized as follows. Section II introduces 
the electromagnetism-like algorithm for recurrent fuzzy 
neural system. In Section III, the hybrid algorithm IEMGA 
for RFNN controller design is introduced. Section IV shows 
the simulation and comparison results of nonlinear system 
control is shown to demonstrate the performance of the 
proposed IEMGA. Finally, conclusion is given.  

II. ELECTROMAGNETISM-LIKE ALGORITHM FOR RECURRENT 
FUZZY NEURO SYSTEM 

A. Recurrent Fuzzy Neural Network (RFNN) 
Many results have been obtained by using fuzzy neural 

networks (FNNs) approach for system identification and 
control [5, 12, 15, 26]. However, there are some 
disadvantages of the FNNs such as their application domains 
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are limited in static problems because of feedforward 
structure. It is inefficient when the FNN is applied in the 
temporal problems. Hence, the recurrent fuzzy neural 
network (RFNN) is proposed [20], which is more suitable for 
solving temporal problems and describing dynamic systems 
than the FNN. It is more effective and more adaptive than the 
conventional FNN with non-adaptive fuzzy reasoning [9, 
13-14, 17, 19-20, 27, 33]. 

The schematic diagram of RFNN is shown in Fig. 1, where 
G denotes the Gaussian membership function. The RFNN 
system is inherently a recurrent multilayered connectionist 
network for realizing fuzzy inference using dynamic fuzzy 
rules. In layer 2, the feedback networks are existed to afford 
the dynamic properties. Each dynamic fuzzy if-then rule in 
RFNN consists of n external inputs x1, x2, …, xn, and output y, 
which is in the form of 
Rule j:  IF z1 is A1j and … zn is Anj, THEN y is jω    (1) 

where input linguistic variable zj is ( ) ( ) ( ) ( )kOkO iijij
12 1 +⋅− θ  

which includes the current input and the past information, A1j 
is a fuzzy set represented by Gaussian function and jω  is the 
consequent part parameter for inference output y. In the 
following, we indicate the signal propagation and the basic 
function of each layer, )(l

ix  and )( l
iO  denote the node input 

and output; the superscript )(l  denotes the lth layer and the 
subscript i denote the ith input. 
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Figure 1: Network diagram of RFNN system [20]. 

Layer 1: Input Layer 
Layer 1 accepts input variables and its nodes represent 

input variables. The corresponding output is 
( ) ( )kxkO i

l
i =)(            (2) 

where xi(k), i=1, 2, …, n, represent the input variables. 
 Layer 2: Membership Layer 

Layer 2 is used to calculate Gaussian membership grade, 
i.e., 

( ) ( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= 2

2

2
)(

exp
ij

ijj
ij

mkz
kO

σ
.                   (3) 

As above, zj is the fuzzy input linguistic variable, 
zj= ( ) ( ) ( ) ( )kOkO iijij

12 1 +⋅− θ . In addition, here mij and σij are the 
center and the width of the Gaussian function, θij is the 
adjustable parameter of feedback layer. Obviously, the 
RFNN can store the past information [20]. And if we set θij=0, 
the RFNN can be reduced to an FNN system [5, 20]. 
Layer 3: Rule Layer 

Nodes in layer 3 represent fuzzy rules. Links before layer 3 
represent the preconditions of the rules, and the links after 

layer 3 represent the consequences of the rule nodes. The 
product operation is used here i.e., 

( ) ( )∏=
i

ijj kOkO )2()3( .        (4) 

Layer 4: Output Layer 
Layer 4 is the output layer which is used to implement the 

defuzzification operation. Each node is for actual output to be 
pumped out this system. The links between layer 3 and layer 
4 are connected by the weighting value jω , i.e., 

( ) ( )∑
=

==
R

j
jj kOkOy

1

)3()4( ω              (5) 

where ω = [ω1, ω2, …, ωR]T is the weighting vector. As above 
description, it has adjustable parameters m, σ, θ, and ω, 
which is denoted by [ ]TmW ωθσ ,,,= . 

B. Electromagnetism-like (EM) Algorithm 
This section introduces the electromagnetism-like 

algorithm (EM) for training RFNN systems. EM algorithm 
was developed to simulate the electromagnetism theory by 
each sample point to be a particle [1]. The EM for 
optimization problems with lower and upper bound is in the 
form of 

Minimize   )(xf    
Subject to x∈S,                     (6) 

where },...,1,,,{ nkuluxlxS kkkkk
n =ℜ∈≤≤ℜ∈=  and the 

parameters are defined as: n : dimension of the problem, uk : 
corresponding upper bound, lk : corresponding lower bound, 
f(x) : pointer to the function that is minimized.  

Herein, each particle x represents a solution and a particle 
is associated with each particle which is depended on the 
fitness function f(x). EM utilizes the mechanisms of attraction 
and repulsion to put the points towards to the optimum. By 
the Coulomb’s law, the magnitude of force is proportional to 
product of the particles and inversely proportional the 
distance between two particles. There are three phases in the 
learning algorithm EM which are “Initialization,” 
“Evaluation,” and “Operation.”  

 
M … σ … θ  … ω …

Figure 2: Particle representation of RFNN. 
 

B.1 Initialization Phase 
The real-value coding technique is used to represent a 

solution to a given problem. Each particle is encoded as a 
vector of real numbers with the same lengths as the solution 
vector. Each particles denotes a weighting vector 

[ ]TmW ωθσ  , , ,=  shown in Fig. 2 and the EM is utilized to 
find the optimal value [ ]TmW *****  , , , ωθσ= . 

Typically, initial particles are randomly chosen from a 
feasible solution region. “Initialization phase” is used to 
generate m initial particles. At first, the feasible region of 
solution for RFNN parameters should be defined. In addition, 
the training cycle is chosen to be the termination condition. 

 
B.2 Evaluation Phase 

This phase is used to calculate the fitness values of entire 
particles. Each particle is evaluated by the given fitness 
function to decide its survival or extinction in the next 
generation. Evaluation phase helps us to find superiority 
particles by determining the value of RMSE (or fitness value). 
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A particle with better fitness value has the higher possibility 
to survive. Three steps should be done in this phase- fitness 
values evaluation, fitness ranking, and best particle definition. 
To evaluate the performance of each particle in training 
RFNN system, we define the root-mean-square-error (RMSE) 
as 

Nkexf
N

k

/)()(
1

2∑
=

≡          (7) 

where e denotes the approximated error and N denotes the 
data number. The corresponding fitness function is 

RMSE1
1)(

+
=xg .            (8) 

Subsequently, all particles are ranked and indexed by the 
corresponding of fitness value. Finally, the particle having 
the largest fitness value (minimum RMSE) is stored in xbest. 
 
B.3 Operation Phase 

As description of literature [1-4, 31, 34], there are three 
steps in the EM operation phase. They are “local search”, 
“total force calculation”, and “movement”, respectively. 

 
B.3.1 Local Search of EM Algorithm 

Local search step is used to gather the local information for 
each particle xj. A new particle y is moved along the direction 
of xj with the maximum feasible random step length δ 
(maxk{uk − lk}). A simple neighborhood search is utilized 
which works on a small ball or radius δ around the particle. If 
the new particle y has better fitness value, the particle xj is 
replaced by y. Then a new best particle is re-defined in this 
step. Details of local search can be found in literature [1, 17, 
19]. 

By the results of [17, 18], EM algorithm has the properties 
of rapid convergence and global optimization. However, it 
spends a highly complexity computation for each generation.  

 
B.3.2 Total Force Calculation 

In this step, a particle is assigned to each particle of the 
population like electromagnetic charges. The charge qi of 
particle xi is determined by  
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the force is inversely propositional to the distance between 
two particles and directly proportional to the product of their 
chargers. Hence, the total force vector exerted on xi computed 
by the superposition principle as follows 
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After comparing the RMSE values, (i.e., f(x)), the direction 
of the forces between the particle and the others is selected. 
For two particles, the one has a better RMSE value attracts 
the other one. On the other hand, the particle with larger 
RMSE repels the others.  
 
B.3.3 Movement 

After determining the total force vector Fi, particle xi 
moves in the direction of the total force by a random step 
length, i.e., 
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where the random step length λ = random (0, 1), and RNG is a 
vector whose components denotes the allowed feasible 
movement toward the upper bound, uk, or lower bound lk.  

 
III. HYBRID ALGORITHM IEMGA FOR RFNN SYSTEM 

We introduce an improved EM algorithm with genetic 
algorithm (GA) technique, we called it IEMGA. Beacuse GA 
do not require derivative information, the most appropriate 
applications are problems where gradient information is 
unavailable or difficult to obtain. In real-world applications, 
precise system sensitivity is usually unknown. In addition, 
due to its global optimization capability, GAs has become 
another useful tool to the automatic adjustment of network 
parameters. For this reason, there has been a growing interest 
in GAs for FNN design [7-8, 14, 29, 32]. The IEMGA 
method contains the reproduction (competitive selection), 
crossover, and mutation. IEMGA does not need any gradient 
information and it is capable of decreasing the computational 
complexity. As a result of these advantages, we use IEMGA 
to solve nonlinear system control and the optimization of PID 
controller design. 

A. Improved EM Algorithm Using GA Technique (IEMGA) 
IEMGA combines the advantages of EM and GA 

algorithms to result high speed convergence and less 
computation complexity. Moreover, it does not need any 
system gradient information. The major modification from 
EM algorithm is the randomly neighborhood local search is 
replaced by GA. Figure 3 depicts the flow chart of the 
IEMGA algorithm. 

Figure 4 shows the flow chart of the modified local search. 
After evaluation phase, the elites concept is adopted to 
implement the competitive selection. The 50% front particles 
are selected to enter the local search. The other 50% particles 
are discarded. Subsequently, the GAs optimization 
procedures including reproduction, crossover, and mutation 
are used to generate the better particles. Finally, the new 
particles and the remained 50% particles are combined to be 
the new population.. r is a floating-point number randomly 
between 0 and 1 for each chromosome. Pc and Pm are 
crossover rate and mutation rate, respectively. 
 
A.1 Genetic Algorithm 

Population size M is the number of solutions to parallel 
search in each generation. Large population size is difficult to 
fall into the area of best solutions. Therefore, for the setting 
of this parameter, a balance must be achieved between 
solution quality and operation time. In this paper, M is equal 
to the half of total particles according the competitive 
selection, i.e., M = m/2.  

 
A.1.1 Reproduction by Competitive Selection 

Fitness function is used to judge whether the chromosome 
is good or not. Chromosomes with lower fitness values may 
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be easily eliminated during reproduction, highlighting the 
feature of “the fittest survival in natural selection” in the 
biosphere. 

After fitness function calculation, population will decide 
whether to keep or get rid of the chromosomes. The species 
with high fitness is more ascendant than those with low 
fitness in the reproduction. The reproduced chromosomes 
will be placed in the mating pool, waiting for the next 
operation procedure. During the process of reproduction 
operation is usually divided into two ways [7, 8, 14]:  

(1) Competitive selection 
(2) Roulette wheel selection. 

In this study, we choose the first method. Competitive 
selection is to randomly pick up more than two chromosomes 
to compare their fitness values. The one with a higher fitness 
value will be reproduced while the one with a lower fitness 
value will be eliminated. 

 
 

 
Figure 3: Descriptions of learning algorithm IEMGA. 

 

 
Figure 4: Flow description for IEMGA local search. 
 

A.1.2 Crossover 
Based on the pre-assigned crossover rate, a certain amount 

of pairs of chromosomes are randomly chosen to execute the 
crossover operation. During this operation, one chromosome 
in a pair will exchange parts of its sub-sequence with the 
other. Generally, the common used methods are [7-8, 29, 35]: 

(1) One-Point Crossover 
(2) Two-Point Crossover 
(3) Uniform Crossover. 

In this study, we select the uniform crossover method  
 
A.1.3 Mutation 

The use of higher mutation rate Pm may be somewhat 
helpful in introducing gene structures that have not been 
searched again [7-8, 14, 30]. Randomly produce a 
floating-point number r between 0 and 1 for each 
chromosome, if r＜Pm , the chromosome must be mutated. 

Using above modifications, simple comparison results of 
EM and IEMGA is shown in Table 1. Obviously, the 
proposed IEMGA algorithm obtains a smaller computation 
time than the traditional EM. IEMGA only uses 2.14 seconds 
(about 5.2% of EM algorithm) in a generation calculation. 
Besides, the competition selection improve the computation 
efficiency of EM algorithm. 

r < Pc ? 

Competition selection 

Randomly choose 
two strings as parents 

Offspring 
= parents 

Putting offspring into 
new population 

Satisfying enough 
new population 

Keeping the same 
value in the gene 

Putting offspring into 
new population 

Randomly assign a 
value to the gene 

Produce 
new population 

Yes 

No 

The best 50% 
particles 

Start of local search 

End of local search 

The best 50% 
particles 

Uniform 
crossover 

Yes 

No 

Yes 

No 
r < Pm ? Step 1 

Determine the size of particles 
[m] and choose initial particles 

 

Start 

Step 2 
Calculation of 
fitness function Step 9 

Fitness ranking 

Step 4 
Define the best particle xbest 

Step 5  
Competitive  particles 

selection ? 
 

Discard particles 

Yes 

Step 6 
New particles are produced by 

GA 

Step 7 
Generate new population 

No 

No 

50% 

Step 8 
Calculation of 
fitness function 

Step 10 
Total force calculation 

via (9) and (10)  
 

Step 11 
Movement  

via (11), (12)  
 

Step 12 
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satisfies ? 

Step 13 
Find the xbest 

Step 3 
Fitness ranking 

End 
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Table 1: Computation time comparison of EM and IEMGA 
algorithms. 

Algorith
m 

Total 
time 
(sec) 

Local 
search time 

(sec) 

Percentage of local 
search 

EM 41.07 39.36 95.84 % 

IEMGA 2.14 1.65 46.45 % 

IV. SIMULATION RESULTS 

In this section, an example for nonlinear system control 
using RFNN is presented to show the performance of 
IEMGA. Consider the tracking control of 
two-input-two-output nonlinear system [14, 36] 
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Note that system state yp=[yp1 yp2] and tracking trajectory 
vector is yr=[yr1 yr2], where )45/sin()(1 πkkyr =  and 

)45/cos()(2 πkkyr = . The inputs of RFNN controller are yp 
and yr and the outputs are u1 and u2. The system control 
scheme is shown in Fig. 9. Thus, the corresponding RMSE 
function of tracking error is defined 

RMSE: 
2
1

2
22
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2
11 ]))1()1(())1()1((1[ +−+++−+∑

=

kykykyky
N pr

N

k
pr

(15) 
where N is the number of time step. The fitness function is 
defined as 1/(1+RMSE). 

To show the effectiveness and efficiency of IEMGA, EM, 
and GA are used to have comparison results.  

For IEMGA, EM, and GA algorithm, the following 
parameters are chosen 

- Total generation number (or epoch): 20 
- Population size (or particles): 30 
- Crossover rate of GA: 0.8 
- Mutation rate: 0.03 

The RFNN’s initial parameters ωθσ  , , ,m  are chosen 
randomly between [-1, 1] and the network structure is 

- Network structure: 4-20-10-2 
- Parameter number of RFNN: 70 
- Rule number of RFNN: 5 

 
Simulation results are shown in Figs. 5-6 and Table 2. 

Figure 5 shows the system trajectories after 20 training cycles 
(solid line: desired trajectory; dashed line: system actual 
output). Comparison results of RMSE between IEMGA and 
other algorithms are shown in Fig. 6 (dashed line: GA, 
dash-dotted line: EM, and solid line: IEMGA). Obviously, 
the IEMGA algorithm has better performance in RMSE than 
the EM algorithm and GA algorithm. The computation time 
of EM and IEMGA are 614.182 seconds and 25.138, 
respectively. IEMGA enhances the performance of EM in 
computation effort. Table 2 shows the comparison results of 
RMSE and computation time. From Table 2, IEMGA 
algorithm has best approximation result (Mean RMSE: 
0.5814). We see that the best, worst, and mean RMSEs of 

IEMGA are smaller than those of EM and GA. In addition, 
the corresponding computation time comparison using 
MATLAB is also shown in Table 2. Obviously, we can 
conclude that the IEMGA does reduce the computation 
complexity of multiple particles optimization. 
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Figure 5: Dynamic system control configuration with RFNN 

controller. 
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Figure 5: System trajectories after 20 training cycles of 

Example 1: (solid line: desired trajectory; dashed line: system 
actual output). 
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Figure 6: Comparison results of tracking error RMSE for 

Example 1: (dashed line: GA, dash-dotted line: EM, and solid 
line: IEMGA).  

Table 2: Comparison results of Example 1: RMSE and 
computation time. 

Algorithm Best 
RMSE 

Worst 
RMSE 

Mean 
RMSE

GA 0.67274 0.92351 0.7851 
EM 0.56687 0.75151 0.6379 

IEMGA 0.34856 0.68149 0.5814 
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V. CONCLUSION 
In this paper, we propose novel hybrid learning algorithm 

IEMGA for training the RFNN system. For gradient 
information free system, IEMGA is proposed to treat the 
optimization problem. IEMGA consists of EM and GA to 
reduce the computation complexity of EM. The major 
modification from EM algorithm is the randomly 
neighborhood local search is replaced by GA. In addition the 
competitive selection concept is adopted for reducing the 
computation. The advantages of GA are multiple searches, 
global optimization. IEMGA is used to develop the update 
laws of RFNN for nonlinear system control. Illustration 
example of nonlinear system control is proposed to show that 
IEMGA have the ability of gradient information free and it is 
capable of decreasing the computational complexity. 
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