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Abstract—In this paper, the optimal convolutional
encoding for the five quadratic residue (QR) codes
are investigated. Simulation results show that the
smallest constraint length K = 4 (respectively, K = 4,
8, 11, 14) is convolutionally encoded for the QR code
with length 24 (respectively, 32, 48, 72, 80).

Keywords: convolutional encoding, quadratic residue

codes

1 Introduction

Let n be a prime number of the form n ≡ ±1 (mod
8). A binary QR code of length n is an (n, (n + 1)/2, d)
cyclic code with the minimum distance d and the genera-
tor polynomial g(x) =

∏
i∈Q(x−βi) , where Q = {i|i ≡ j2

mod n for 1 ≤ j ≤ n− 1} is the collection of all nonzero
quadratic residues modulo n and β is a primitive nth
root of unity in GF (2m) satisfying n | 2m − 1. A code-
word of the QR code of length n is a binary vector
c= (c0, c1, . . . , cn−1) so that its associated polynomial
c(x) = c0+c1x+· · ·+cn−1x

n−1 is a multiple of g(x). The
extended QR code is defined to be the extended code of
the QR code whose codewords are obtained by adjoining
a parity-check bit to every codeword c of the QR code.
For convenience, the parity-check bit with c∞ is added to
the right of the last entry of c; that is, c̄ = c0c1 · · · cn−1c∞
with c∞ ≡ c0 + c1 + · · ·+ cn−1 (mod 2). It is readily seen
that the length of an extended QR code is n + 1.

It is well known that QR codes were good cyclic codes
with high error-correcting capacity. In the past decades,
many excellent studies concerning the algebraic meth-
ods to decode binary QR codes were presented in [1]-[3].
These decoding methods requires a vast calculation over
the large finite field. This fact makes it difficult for soft-
ware and hardware implementations. To solve them, the
convolutional techniques of commonly used convolutional
codes are considered for binary extended QR codes. In
the late 1970s, Solomon and van Tilborg [4] developed
that the binary (24, 12, 8) perfect Golay, (32, 16, 8), and
(48, 24, 12) extended QR codes were shown to be con-
volutionally encoded with the small constraint lengths
K = 4, 4, 9, respectively. Solomon in [5] has improved on
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the constraint length K = 8 for the extended QR code of
length 48; moreover, Solomon and Jin [6] discovered the
constraint lengths K = 14 and K = 21 for the (80, 40, 16)
and (104, 52, 20) extended QR codes, respectively. Un-
fortunately, no satisfactory searching algorithm has been
provided to confirm whether such a constraint length is
the smallest value and the convolutional encoding way is
unique for an extended QR code.

In this paper, programs written in C++ language is used
to calculate the possible convolutional encoding of the five
binary extended QR codes with lengths up to 80. It is
shown in a simulation that the encoding of the extended
QR code with length 24 (resp, 32, 48, 80) has the small-
est constraint length K = 4 (resp., K = 4, 8, 14), which
are the same results as given in [4]-[6]. The new convo-
lutional encoding constructed for K = 11 is proposed for
binary extended QR code with code length 72, which has
not been investigated before. The convolutional encod-
ing of the extended QR codes mentioned above with the
smallest constraint length is listed in Section 3.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the convolutional encoding of bi-
nary extended QR codes of length 24 developed in [4].
In Section 3, the encoding techniques of some binary ex-
tended QR codes, which have not been encoded previ-
ously, are individually constructed by the smallest con-
straint length.

2 Preliminaries

In the (24, 12, 8) extended Golay code, a code polynomial
c̄(x) = 1+x2 +x4 +x5 +x6 +x10 +x11 +x23 is of weight
8 and is expressed as a sum of the generator polynomial
g(x) and the parity-check polynomial x23, where g(x) =∏

i∈Q(x − βi) = 1 + x2 + x4 + x5 + x6 + x10 + x11 is a
code polynomial in the (23, 12, 7) Golay code and Q =
{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. It is noticed that in
the polynomial g(x) except for x0 = 1 term, the sets SQ =
{2, 4, 6} and SN = {5, 10, 11} imply that |SQ| = |SN | =
3. Then, the code polynomial g(x) can be constructed
below. The polynomial p(x) = 1+x2 +x3 is mapped into
xφ(0) +xφ(2) +xφ(3) = x2 +x4 +x6 through the mapping
φ(i) = 2 · 16i (mod 23); similarly, the polynomial q(x) =
1 + x + x3, which is the reciprocal polynomial of p(x),
becomes xϕ(0) + xϕ(1) + xϕ(3) = x5 + x10 + x11 by ϕ(i) =
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5 · 16i (mod 23). Obviously, the constructed polynomial
c(x) = 1 + (x2 + x4 + x6) + (x5 + x10 + x11) = g(x) is a
code polynomial for the Golay code. As a consequence of
the polynomials p(x) and q(x), the extended Golay code
with its constraint length K = 4 is thus obtained.

It is a simulation on a computer that used the C++ lan-
guage has been executed to search the possible convolu-
tional encoding of 5 extended QR codes mentioned in this
paper. The convolutional encoding of each extended QR
code with the smallest constraint length is illustrated in
the next section.

3 New Convolutional Encoding

This section illustrates the convolutional encoding
techniques of binary extended QR codes for 23 ≤ n ≤ 80,
which are not published before. In each of the follow-
ing codes, the code polynomial is constructed by using a
technique similar to that given in the previous section.

3.1 (48, 24, 12) extended QR code

The convolutional encoding of this code with the
smallest constraint length K = 8 having p(x) = 1 + x2 +
x5 + x6 + x7 and q(x) = 1 + x + x2 + x5 + x7 was found
in [5]. In this code, however, another method is provided
below. Let p(x) = 1 + x3 + x4 + x5 + x7 and q(x) =
1 + x2 + x3 + x4 + x7. The primitive polynomial p(x) is
mapped into x6 + x9 + x12 + x16 + x18 by φ(i) ≡ 6 · 17i

(mod 47). The polynomial x22 + x40 + x44 + x45 + x46

is obtained from q(x) through ϕ(i) ≡ 46 · 17i (mod 47).
As a result, the polynomial 1 + x6 + x9 + x12 + x16 +
x18 + x22 + x40 + x44 + x45 + x46 is a code polynomial
for the (47, 24, 11) QR code with generator polynomial
g(x) = 1 + x + x2 + x3 + x5 + x6 + x7 + x9 + x10 + x12 +
x13 + x14 + x18 + x19 + x23.

3.2 (72, 36, 12) extended QR code

A full computer search shows in this code that there
exists two ways to be convolutionally encoded for the
constraint length K = 11.

Case 1: Let p(x) = 1 + x + x2 + x4 + x7 + x8 + x10

and q(x) = 1 + x2 + x3 + x6 + x8 + x9 + x10 be the
primitive polynomials. These two polynomials can be
mapped into c1(x) = x6 +x8 +x10 +x16 +x20 +x25 +x45

and c2(x) = x7 + x13 + x14 + x23 + x34 + x66 + x68 via
φ(i) ≡ 16 · 27i (mod 71) and ϕ(i) ≡ 68 · 27i (mod 71),
respectively. The code polynomial c(x) = 1+c1(x)+c2(x)
is of weight 15.

Case 2: Let the polynomials p(x) = 1 + x2 + x3 +
x5 + x6 + x9 + x10 and q(x) = 1 + x + x4 + x5 + x7 +
x8 + x10. These two polynomials can be mapped into
c1(x) = x20 + x24 + x25 + x29 + x30 + x45 + x49 and
c2(x) = x7 + x11 + x13 + x34 + x44 + x52 + x65 via φ(i) ≡
45 ·60i (mod 71) and ϕ(i) ≡ 7 ·60i (mod 71), respectively.

The code polynomial c(x) = 1 + c1(x) + c2(x) can thus
be constructed.

The code polynomials c(x) in both Case 1 and Case
2 are a multiple of the generator polynomial g(x) = 1 +
x+x4 +x5 +x7 +x8 +x13 +x17 +x24 +x25 +x26 +x27 +
x28 + x33 + x35.

3.3 (80, 40, 16) extended QR code

The developed algorithm written in C++ language
has been executed to determine that K = 14 is the
smallest constraint length. There are two encoding ways.
The first way is due to Solomon and Jin [6] that the
polynomials p(x) = 1 + x + x2 + x8 + x9 + x11 + x13

and q(x) = 1 + x2 + x4 + x5 + x11 + x12 + x13 can
construct the extended QR code with code length 80.
The second way is to utilize the polynomials p(x) =
1 + x2 + x4 + x5 + x6 + x7 + x8 + x12 + x13 and p(x) =
1+x+x5+x6+x7+x8+x9+x11+x13. The code polyno-
mial c(x) = 1+(x4+x8+x11+x18+x19+x25+x36+x49+
x67)+(x6+x12 +x15 +x29+x30 +x43 +x54 +x69 +x75) is
constructed by using the mappings φ(i) ≡ 18 · 32i (mod
79) and ϕ(i) ≡ 15 · 32i (mod 79), and c(x) is a multiple
of the generator polynomial g(x) = 1+x+x2 +x4 +x5 +
x11 +x13 +x14 +x16 +x18 +x19 +x20 +x21 +x24 +x25 +
x26 + x27 + x29 + x30 + x31 + x35 + x36 + x39.
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