

Abstract – Swamp poisoning in BitTorrent corrupts files
sharing between peers. The worst case causes the swamp
unusable as the protocol does not provide sufficient data
integrity checking. This paper proposes two solutions in order
to resolve this attack.

Index Terms: Peer-to-peer systems, BT networks,
distributed file sharing, file sharing attacks

I. INTRODUCTION

In peer-to-peer (P2P) systems, peers are contributing
themselves to benefit others [1][2]. Unlike the traditional
client-server systems, P2P systems rely on the sharing of the
available bandwidth to upload resources, and download
resources from other peers.. Thus, throughput between peers
can be increased substantially.

BitTorrent is one of the most popular implementation of
P2P file sharing networks. It combines the benefits of the
client server and P2P mechanism by adding a tracker server
into each sharing network [1]. Fig.1. shows one of the roles
of tracker server is to identify and forward incoming the
peers into specific sharing network, called swamp. The other
feature of tracker server is to help accomplish fairness of
sharing among peers [3].

During the file sharing process, the BitTorrent protocol
can be exploited by malicious users to share some polluted
pieces of a file in the swamp, making others fail to
download the correct file. It may even end up in the
termination of the whole file transfer process. This paper
mainly discusses how swamp poisoning attacks the
BitTorrent sharing networks and proposes some possible
solutions for it.

This paper points out how swamp-poisoning attack
corrupts the BitTorrent sharing network and purposes some
possible solutions about it.

Manuscript received November 26, 2008. The work described in this

paper is supported by Macao Science and Technology Development Fund
(Project No. 099/2005/A).

K. Y. Wong is with the Computer Studies Program, Macao Polytechnic
Institute (phone: +853-85996440; fax: +853-28719227; e-mail:
kywong@ipm.edu.mo).

K. H. Yeung is with the Department of Electronic Engineering, City
University of Hong Kong (e-mail: eeayeung@cityu.edu.hk).

Y. M. Choi is with the Computer Studies Program, Macao Polytechnic
Institute (e-mail: choiyiuman@gmail.com).

Fig.1. Diagram to illustrate the operation of BitTorrent.

II. SWAMP POISONING ATTACK

Apart from free-riding, swamp poisoning brings much
higher impact to the peer-to-peer network. This kind of
attack can be achieved mainly because of the weakness of
p2p protocol [3]. On the one hand, based on conventional
point-to-point data transferring schema, whole of the file be
sent from one end to another end. It is hard for malicious
users to manipulate attack such as man-in-the-middle. On
the other hand, in P2P sharing swamp, files are divided into
numerous of sub-pieces, possible attack can be achieved on
sub pieces level.

As peer can stay within or rejoin the swamp after
successfully download the whole piece of file [3], mainly
design for increase other peers’ download bandwidth, this
feature provides a reasonable channel for malicious users to
resident the sharing swamp with the corrupted sub pieces.

The worst case is some of the BitTorrent application only
checks the file size of the file when the peer as a seeder role
[3], Fig.2. shows that the torrent file can be opened in editor
in order to know the actual size and name of the source file,
which provides spaces for malicious users to manipulate the
attack.

Solutions to Swamp Poisoning Attacks in
BitTorrent Networks

K.Y. Wong, K. H. Yeung, and Y. M. Choi

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig.2. Possible information for malicious users to launch

the attack.
Swamp poisoning is easy to be achieved as leech never

check any byte of the received sub pieces until all of them
have been received, If any sub piece extract cannot match
with the SHA-1 hash code, generated by the original source
file, the entire file then be discarded and retry for the whole
file. As a result the swamp will be corrupted by and spread
to other leeches like plague.

As leeches are seeking for their missing pieces from peers,
they intend to find a peer with more available pieces to
download [4]. This phenomenon increases the chances of
malicious users poisoning the swamp as it increases the
chance of peers request malicious users to deliver corrupted
pieces to them.

Fig.3. An example of Swamp Poisoning Attack.
Currently numerous of BitTorrent applications recheck

the file before seeder do the sharing, however tracker server
allow different applications at different version to join the
swamp in order to fulfill the design of high compatibility.

Some users suggested blacklisting some of the outdated
versions by the tracker server, yet version checking
mechanism can easily be pass over by spoofing technique.
The solutions going to be discussed are based on the sub
piece level checking mechanism.

III. PEER-SELECTION-BASED SOLUTION

The basic concept of peer-selection-based solution is to
divide the whole swamp into minor swamps if encountered
any error sub piece, coordinated by tracker server.

Whenever any sub piece dropped, the leech updates the
tracker server about the incident. The tracker randomly
hides half the existing peers; as a result the leech can only
requested sub-pieces from the selected peers group. If the
leech encounters poisoning again, the tracker server then
hide the existing the minor swamp and send the other hidden
minor swamp to the leech.

Once all available minor swamps are tried, still the
poisoning encountered. Then the tracker server divides each
the minor swamp by half, and leaves one-forth of peers for
the peer to do the sharing. If the minor swamp does not have
sufficient sharing pieces to reform the original file, leech
can request the tracker server for another minor swamp.

This mechanism ensures leeches having a higher
successful rate of downloading files. It can also narrow
down the possible suspect malicious user(s). The location of
malicious user can be revealed as most peers are different
from the infect swamps.

A. Example of Applying Peer-Selection-Based
Solution

Suppose the swamp has 9 peers, as shown in Fig. 4, since
the leech B encountered swamp poisoning, the tracker server
divides the swamp into 2, minor swamp 1 and minor swamp
2, and each minor swamp contains of 4 peers [A, C, I, H]1
& [D, E, G, F]2.

Let say the minor swamp 1 has been hidden by tracker
server thus leech B only request sub pieces from peer D, E,
G & F. As all peers within minor swamp 2 does not have the
sub piece 1, then B can request tracker server to send the
other minor swamp 1 to it.

Fig.4. Illustration of peer-selection-based solution.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig.5. Illustration of peer-selection-based solution.

As shown in Fig. 5, the tracker server then divides the
minor swamps into 4, [A, C]1, [I, H]2, [D, E]3 & [G, F]4,
and try the sharing minor swamp by minor swamp. By this
time B gets the sub piece 1 from peer C and finishes the
downloading process.

B. Overhead Calculation of the Solution
Table 1 shows the prediction about the overheads

implementing the Peer-Selection- Based solution. It is the
prediction about the overhead if this solution being
implemented at the existing BitTorrent environment. It
obviously shows that the overhead mainly depends on the
number of available malicious users within the swamp as
number of trials is proportion to number of malicious users.

Table 1. Overhead calculation on Peer-selection-based
solution

Parameters

(No. of
malicious
users, No.
of normal
peers)

Traffic
Overhead
(Max. no. of
round trips,
Min. no. of
round trip)

Bandwidth Overhead

Network bandwidth used
(Kbytes) assuming each
piece = 256 kb

(1,7) (2,1) Max=256*2=512

Min=256

(4,4) (8,1) Max=256*8 = 2048

Min = 256kb

(7,1) (14,8) Max = 256*14 = 3584kb

Min = 256*8 = 2048kb

(1,3) (2,1) Max = 256*2 = 512kb

Min = 256kb

(2,2) (4,1) Max = 256*4 = 1024kb

Min = 256kb

(3,1) (6,3) Max = 256*6 = 1536kb

Min = 256*3 = 768kb

IV. SUB-PIECES-VERIFICATION-BASED SOLUTION

Apart from dividing the swamp, sub-pieces also provide
enough evidence to proof if any sub piece has been modified.
As mostly no more than one malicious user poisoning the
swamp, which implies most legitimate peers having the
correct sub pieces.

Sub-pieces-verification-based solution is designed by this
hypothesis and it mainly tracks the malicious users by the
source the peers received. Before grouping all sub pieces
together, Sub-pieces-verification-base solution verify in sub
piece level as the checksum is also generated in sub piece
level.

Whenever any sub piece found unmatched with the
original hush, leech then temporarily memorize the source
peer and ask other peers for the missing sub pieces.

If the sub piece from other peer can pass the checksum,
then the leech will update the suspicious remark of the
previous source peer to other leeches. If it still cannot pass
the checksum, the leech then redo the mentioned steps until
successfully obtain the correct sub piece.

A. Example of Implementing Sub-pieces-verification-
based solution

Fig.6. shows the steps implementing this solution. For
example, firstly leech B collects sub pieces from other peers
A, C, & D, at the same time the leech also maintain a
peer-sub piece table about whom the sub piece has sent to
the leech. If sub pieces 3 & 4 from malicious user D cannot
match with the checksum, leech B then discard the
corrupted sub pieces and request other peers A & C for sub
pieces 3 & 4.

After leech has received the sub pieces from A & C, then
leech B updates other peers that malicious user D contains
error sub pieces 3 & 4. Whenever other leeches joining the
swamp, they will be notified that peer D has the error sub
pieces. As a result the possibility of requesting peer D for
sub pieces 3 & 4 will be lower than other peers’ even it
holds all sub pieces.

Fig.6. Illustration sub-pieces-verification-based solution

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table 3. The strengths and weaknesses of treatment-based solutions
 Advantages Disadvantages

Peer-selection-based
solutions

1. The malicious users may be
found.

2. It can be achieved by modifying
the application.

1. The efficiency will reduced since all
sub-pieces need to be downloaded
from fewer peers only.

2. Track suffers from heavy workload at
busty traffic

Sub-Piece-
verification- based
solutions

1. The efficiency will higher than
Peer-selection-based solutions
since the new arrived sub-pieces
will be checked immediately.

2. It can be achieved by modifying
the application.

1. It doesn’t work for more than one
malicious users

2. The size of the torrent file will be
greatly increased.

3. The BitTorrent protocol need to be
modified

If still sub pieces from peers C & D cannot match with the
checksum, then leech B regard the case as connection
problem and request other peers for the missing sub pieces
at later time.

B. Overhead Calculation of the Solution
Table 2 is the calculation of the overhead prediction about

implementing the Sub-Pieces- Verification-Based solution.
It is the prediction about the overhead if this solution being
implemented at the existing BitTorrent environment. It
shows that the overhead mainly depends on the number of
normal users. As this solution mainly aim at resolving the
case if and only if one malicious user within the swamp,
thus the overhead of implement this solution will not bring
an impact to the swamp.

Table 2. Overhead calculation on Sub-pieces-
verification-based solution

Parameters

(No. of
malicious
users, No.
of normal
peers)

Traffic
Overhead
(Max. no. of
round trips,
Min. no. of
round trip)

Bandwidth Overhead

Network bandwidth
used (Kbytes)
assuming each piece =
256 kb

(1,1) (2,1) Max=16*3*2=96

Min =16*3=48

(1,3) (4,1) Max=16*3*4=192

Min=16*3=48

(1,7) (8,1) Max=16*3*8=384

Min=16*3=48

V. DISCUSSION AND CONCLUSION

The comparison on both advantages and disadvantages
between two proposed solutions is shown in Table 3.

As peer-selection-based solution aims at resolving the
case with more than one malicious users, it brings an
obvious overhead to the swamp since the size of the swamp
has been limited as a result the performance of the swamp
drops if numerous of the malicious users attack at the same
time.

Sub-piece-verification-based solution can perform an
outstanding efficiency to the system, however its protection
can only be achieved if and only if one malicious user
within the swamp.

As version checking and peer blacklisting cannot
effectively resolve the attack, sub piece level checking is
suggested into to reduce the impact of swamp poisoning.
This can both minimize the impact of the poisoning attack
also it can guarantee the integrity among sub pieces.
Proposed solutions discussed above are suggested solutions
based on sub-pieces protecting the concept to against swamp
poisoning.

REFERENCE

[1] A. Parker, “The true picture of peer-to-peer file-sharing,” Proc. IEEE
10th Intl. Workshop on Web Content Caching and Distribution,
Sophia Antipolis, France, 2005.

[2] B. Cohen, “Incentives build robustness in BitTorren” Proc. of the
First Workshop on Economics of Peer-to-Peer Systems, 2003

[3] Publications: Bittorrent Protocol Specification v1.0 (2006, September)
http://wiki.theory.org/BitTorrentSpecification

[4] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and
Choke Algorithms Are Enough,” Proc. 6th ACM SIGCOMM
conference on Internet measurement, pp.203-216, 2006.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

