
 
 

 

  
Abstract—We consider in this paper decomposing 

quasi-cyclic low-density parity check codes (LDPC) based on 
difference family. The resulting codes can be encoded with low 
complexity and perform well when iteratively decoded with the 
sum-product algorithm. 
 

Index Terms—quasi-cyclic codes, difference families and 
low-density parity-check codes.  
 

I. INTRODUCTION 
Low density parity-check (LDPC) codes were first 

presented by Gallager [1] in 1962 and have created much 
interest recently when rediscovered and shown to perform 
remarkably close to the Shannon limit. Decoding with the 
sum-product algorithm requires only that the parity-check 
matrix, H , be sparse. However, decoding performance can 
often be improved if the code is also free of 4-cycles, which 
occur if two code bits are both checked by the same pair of 
parity-check equations. Gallager described regular codes, 
defined by parity-check matrices with constant column and 
row weights, which were constructed pseudo-randomly to 
avoid 4-cycles [1]. Randomly realized finite length irregular 

LDPC codes with block size on the order of 
410  approach 

their density evolution threshold closely at rate 1/2. While 
optimized irregular codes are capable of excellent 
performance with reasonable decoding complexity, one of 
the main hurdles in the implementation of LDPC codes is the 
computational complexity of the encoding algorithm. 
Encoding is, in general, performed by matrix multiplication 
and so complexity is quadratic in the code length. One option 
for efficient encoding is to use algebraic code constructions 
and exploit the subsequent code structure. In the case of 
regular codes a number of algebraic constructions have been 
presented, such as in [2], [3], [4]. Less consideration however 
has been given to structured irregular codes. The aim of this 
paper is to give a new construction of irregular quasi-cyclic 
codes free of 4 cycles by circulant decomposition using 
difference families to improve their performance with 
sum-product decoding. 

This paper is organized as follows: In section II and 
section III quasi-cyclic codes and different family are shown 
respectively, then we give the method of decomposing 
quasi-cyclic codes in section IV. Finally we present 
simulation results and conclusion in section V. 
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II. QUASI-CYCLIC CODES 
A code is quasi-cyclic if, for any cyclic shift of a codeword 

by 1≠p  places, the resulting word is also a codeword [5]. 
A cyclic code is a quasi-cyclic code with 1=p . We 
consider binary quasi-cyclic codes described by a 
parity-check matrix 

[ ]pBBBH …,, 21=                                                (1) 

where pBBB …,, 21  are binary vv ×  circulant 

matrices. Provided that one of the Circulant matrices is 
invertible (say pB ) the generator matrix for the code can be 

constructed in systematic form 
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resulting in a quasi-cyclic code of length vp  and dimension 
)1( −pv . Encoding can be achieved with linear complexity 

using )1( −pv -stage shift register in much the same way as 
for cyclic codes [5]. 
  The algebra of vv ×  binary Circulant matrices is 
isomorphic to the algebra of polynomials modulo 1−vx  
over GF (2) [5]. A Circulant matrix B is completely 
characterized by the polynomial 

1
110)( −

−+++= v
v xaxaaxa "  with coefficients from 

its first row, and a code C with parity-check matrix of the 
form (1) is completely characterized by the polynomials 

)(,),(1 xaxa p… . Polynomial transpose is defined as 
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For a binary [n, k] code, length vpn =  and dimension 

)1( −= pvk , the bitk −  message [ ]110 ,, −kiii …  is 
described by the polynomial 

1
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k xixiixi …  and the codeword for this 

message is )()()( xpxxixc k⋅=  where )(xp  is given by 
Tp
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)(xi j  is the polynomial representation of the information 

bits )1( −jvi  to 1−vji  
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and polynomial multiplication (∗ ) is mod 1−vx . 
As an example, consider a rate-1/2 quasi-cyclic code with 

2,5 == pv , first circulant described by xxa += 1)(1  

and second Circulant described by 42
2 1)( xxxa ++=  

which is invertible 
4321

2 )( xxxxa ++=− . 
The generator matrix contains a 55×  matrix described by 
the polynomial 

32
1

1
2 1)1())()(( xxxaxa TT +=+=∗−  

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

11111
11111

11111
11111

11111

H
 

a) Parity-check matrix with two circulants 
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b) Generator matrix in systematic form 
 

Bi t s i n t he f i sr t
ci r cul ant

Bi t s i n t he second
ci r cul ant

Par i t y checks

 
c) Tanner graph representation 

 
 
 

III. DIFFERENCE FAMILY 
A difference family is an arrangement of a group of v  

elements such as vZ  into not necessarily disjoint subsets of 
equal size, which meet certain difference requirements. 

Definition: The t  −γ element subsets of the group 

vZ , tDDD …,, 21  with { }γ,2,1, ,, iiii dddD …=  form a 

),,( λγv  difference family if the differences ,,1, yii dd −  

( ),,,1,;,1 yxyxti ≠== γ……  given each nonzero 

element of vZ  exactly λ times. 
For a quasi-cyclic code we define the column weight 

distribution of a length vp  rate pp /1− code as the vector 

[ ]pwwwW …,21 ,=  where jw  is the column weight of 

the columns in the jth  circulant. 

Construction1: To construction a length vp  rate 
pp /)1( −  quasi-cyclic code, 

[ ])(,),(),( 21 xaxaxaH p…= , with weight distribution 

[ ]pwwwW …,, 21= , take p  sets pDD …,1  of a 

)1,,( γv  difference family ,as such that )(xa j  is defined 

using jw  of the elements of jD  as  

jwjjj ddd
j xxxxa ,2,1,)( +++= …  

To ensure invertibility at least one )(xa j  must divide 

1−vx . 
Lemma1: A pair of elements from vZ  occur together 

exactly λ times in the set of translates of every set in a 
),,( λγv  difference family. 

Lemma2: The codes of the Construction 1 have Tanner 
graphs free of 4-cycles. 

Proof: [6]. 
 
 

IV. CIRCULANT DECOMPOSING 

Consider a vv ×  circulant 1B over GF (2) with column 
and row weight w . Because column and row weights of a 
circulant are the same, for simplicity, we say that 1B  has 

weight w . For wt ≤≤1 , let twww …,, 21  be a set of 

positive integers such that wwww t ≤≤ …,1 2,1 , and 

wwww t =+++ …21 . Then we can decompose 1B  into 

t  vv ×  circulants with weights twww …,, 21 , 

respectively. Let  1b  be the first column of 1B . We split 1b  
into t  columns of the same length v , denoted by 

)(
1

)2(
1

)1(
1 ,, tbbb … , such that the first 1w  1-components of 

1b  are put in )1(
1b , the next 2w  1-components of 1b  are put 

in …,)2(
1b , and the last tw  1-components of 1b  are put in 

)(
1

tb . For each new column )(
1

ib , we form a vv ×  circulant 

iB ,1  by cyclically shifting )(
1

ib  downward v  times. This 

results in t  vv ×  circulants, tBBB 11211 ,, … , with weights 

twww …,, 21  respectively. These circulants are called the 

descendants of 1B . Such a decomposition of 1B  is called 

column decomposition of 1B . Column decomposition of 1B  
results in a tvv ×  matrix 

[ ]tBBBB 112111 "= , 
which is a row of t  vv ×  circulants. The parameter t  is 
called the column splitting factor. If wt = and 

1)(21 ==== twww … then each descendant circulant 

iB1 of B is a permutation matrix and B is a row of t  
permutation matrices.  

Figure 1 shows a column decomposition of a 55×  
circulant of weight 3 into two descendants with weights 2 and 
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1, and descendant matrices can be described by 42 ,1 xx+ , 
respectively. 
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Fig 1 A column decomposition of a circulant of weight 3 
 

If no two columns in 1B  have more than one 1-component 

in common, then no two columns in 1B  have more than one 

1-component in common. In this case the null space of 1B  
gives a quasi-cyclic LDPC code whose Tanner graph is free 
of cycles of length 4. If 1B  is a sparse matrix, 11B  is also a 

sparse matrix with smaller density than 1B . So after 
decomposing we extended the H matrix to get the smaller 
density matrix with a minimum distance of at least 6. 

 

V. CONCLUSION 
Using the (101,5,1) difference family from [7], 
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the quasi-cyclic irregular LDPC codes have been 
constructed: 

a rate-2/3,[303,202] code with 3
1

Dxa =  decomposing to 
descendant matrices expressed by 
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a rate-3/4,[404,303] code with 3
1

Dxa =  decomposing to 
descendant matrices expressed by 
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a rate-6/7,[707,606] code with 24
21 , DD xaxa ==  

decomposing to descendant matrices expressed by 
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where γ,1, jjj ddD xxx ++= "  
 

 
Fig 2. Error correction performance of LDPC codes on an 

AWGN channel. The rate-2/3 [303,202] irregular 
quasi-cyclic code with W=[2,2,1], the rate-3/4 [404,303] 
irregular quasi-cyclic code with W=[2,1,1,1] and the rate-6/7 
[707,606] irregular quasi-cyclic code with W=[2,1,1,1,2,2,1] 

 
   These new codes are compared to regular quasi-cyclic 

codes based on difference family. The decoding performance 
of the quasi-cyclic codes shown in Fig2, Fig 3 presents that it 
is a modest performance gain to be made over the regular 
quasi-cyclic codes by using column decomposition method to 
get irregular quasi-cyclic LDPC codes.  Further it has the 
advantage of a reduced encoding complexity. 

 
Fig 3 Error correction performance of LDPC codes on an 

AWGN channel. The rate-2/3 [303,202] irregular 
quasi-cyclic code with W=[2,2,1] and the rate-3/4 [404,303] 
irregular quasi-cyclic code with W=[2,1,1,1] compared 
regular quasi-cyclic LDPC codes. 
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