
 
 

 

  
Abstract— Identification of defective tablets at the time of 

creation is currently infeasible. Medications are dispensed to 
patients in health care locations without a final check to see if a 
patient is receiving the correct medications. A prototype of a 
practical embedded, network based sensor system to solve both 
problems is described in this paper. 
 

Index Terms—DDDAS, integrated sensing and processing, 
modeling, sensor networks.  
 

I. INTRODUCTION 
 Administration of incorrect medications by professional 

caregivers is estimated in 1997 to have killed as many as 
44,000 to 98,000 Americans after prescriptions were filled 
[1]. These numbers are likely to be underestimates due to 
unreported deaths. To put this number in perspective, use of 
incorrect medication is the eighth leading cause of death in 
the United States and actually kills more people in a given 
year than traffic accidents, breast cancer, or AIDS. The 
situation is no better in 2007. 

A secondary issue is defective tablets coming off a 
pharmaceutical production line or mistaken packaging. 
Many errors are readily visible and are caught immediately. 
However, not all are detected and the defective or 
mislabeled tablets reach the marketplace. 

In Section 2, we discuss the advantages of using a 
real-time dynamic approach instead of using static data. 

In Section 3, we discuss why catching errors at the 
pharmaceutical production and packaging areas is essential 
to reducing recalls and should be part of process analytical 
technologies. 

In Section 4, we describe an integrated acoustic sensing 
and processing device. A handheld version can also be used 
to identify medications before a caregiver delivers them to 
individuals.  We also describe a cyber physical system 
(CPS) to detect incorrect or defective tablets. 
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In Section 5, we provide simple results based on a 
prototype system that has been built and tested in a limited 
manner. 

In Section 6, we provide conclusions and briefly describe 
what needs to done next. 

 

II. DYNAMIC VERSUS STATIC DATA 
A data driven system allows for the implementation of 

real-time data to model or predict a measurement or event. 
By incorporating data dynamically rather than statically, the 
predictions and measurements become more reliable. 

Consider weather forecasting. If predictions are made 
based on static data collected from sparsely distributed 
sensors, then rapidly changing conditions often make a 
prediction obsolete shortly after it is made. A more reliable 
forecasting system continuously incorporates real-time 
changes from many sensors into its predictions so that the 
forecast is always built around current conditions. As the 
conditions change, so does the forecast, in real-time. 

Data driven applications have the ability to guide their 
measurement processes and refocus their resources, much as 
forecasts guide US Air Force 53rd Weather Reconnaissance 
Squadron aircraft away from calm seas and into the eyes of 
hurricanes to concentrate their data collection. The 
information collected makes possible advance warning of 
hurricanes and increases the accuracy of hurricane 
predictions and warnings by as much as 30 percent [2]. 

Dynamic data-driven application systems (DDDAS) 
provide a paradigm that is ideal for designing a network of 
intelligent sensors that form a symbiotic relationship with 
the computational model we use in this project. We quote 
from the 2005 DDDAS NSF solicitation, “DDDAS is a 
paradigm whereby application (or simulations) and 
measurements become a symbiotic feedback control system. 
DDDAS entails the ability to dynamically incorporate 
additional data into an executing application, and in reverse, 
the ability of an application to dynamically steer the 
measurement process. Such capabilities promise more 
accurate analysis and prediction, more precise controls, and 
more reliable outcomes. The ability of an application to 
control and guide the measurement process and determine 
when, where, and how it is best to gather additional data has 
itself the potential of enabling more effective measurement 
methodologies. Furthermore, the incorporation of dynamic 
inputs into an executing application invokes new system 
modalities and helps create application software systems 
that can more accurately describe real world, complex 
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systems. This enables the development of applications that 
intelligently adapt to evolving conditions and that infer new 
knowledge in ways that are not predetermined by the 
initialization parameters and initial static data. The need for 
such dynamic applications is already emerging in business, 
engineering and scientific processes, analysis, and design. 
Manufacturing process controls, resource management, 
weather and climate prediction, traffic management, systems 
engineering, civil engineering, geological exploration, social 
and behavioral modeling, cognitive measurement, and 
bio-sensing are examples of areas likely to benefit from 
DDDAS.” 

DDDAS environments require new software capabilities 
for application modeling and composition, dynamic runtime, 
resource management, data management, and measurement 
control aspects, as well software architecture drilling across 
all layers and end-to-end software infrastructure. The 
DDDAS program solicitation includes a comprehensive list 
of challenges and has inspired the scientific community, as 
exemplified by DDDAS projects that have started to address 
these and other related challenges.  In our own DDDAS 
projects, we have identified several relatively diverse areas 
that have common issues that must be addressed by DDDAS: 
computer science, informational, and computational 
sciences, that lead to significant impact for addressing 
important problems. These include: 

1. Effectively assimilating continuous streams of data into 
running simulations. These data streams most often will 
be… 

a. Noisy but with known statistics, and must be 
incorporated into the model using stochastic methods, 
such as filters and smoothers. 

b. Received from a large number of scattered remote 
locations and must therefore be assimilated to a usable 
computational grid. 

c. Missing bits or transmission packets, as for example 
is the case in wireless transmissions. 

d. Injecting dynamic and unexpected data input into the 
model. 

e. Limited to providing information only at specific 
scales, specific to each sensor type. 
2. Warm restarting simulations by incorporation of the 

new data into parallel or distributed computations, which 
require the data but are sensitive to communication speeds 
and data quality. 

3. Tracking and steering (control of measurements, 
models, reporting results, and visualization) of remote 
distributed simulations to efficiently interact with the 
computations and to collaborate with other researchers. 

4. Translation components to rectify when simulation 
output parameters do not directly match observational data. 

5. Interpretation and analysis components to assist 
researchers with collections of simulations. 

6. Application program interface and middleware 
components for designing and creating a DDDAS or 
DDDAS problem solving environment. 

7. Better scheduling of computational and network 
resources so that multiple models, possibly running at 
different locations, can be coordinated and data can be 
exchanged in a timely manner. 

 

DDDAS assumes that application components, resource 
requirements, application mapping, interfaces and control of 
the measurement system can be modified during the course 
of the application simulation. The diagram in below shows 
how a number of elements might dynamically interact with 
each other. 

 
  Physical                    Physical                  Mathemtical 

      Process                       Model                        Model 
 
 
Visualization               Discrete                  Numerical 
                                      Model                       Model 
 
Any of the components may change without resorting to a 

new simulation as the computation progresses. Many 
DDDAS applications are multiscale in nature. As the scale 
changes, models change, which in turn, changes which 
numerical algorithms must be used and possibly the 
discretization methods. DDDAS applications involve a 
complicated time dependent, nonlinear set of coupled partial 
differential equations, stochastic or agent-based simulation 
methods, which add to the complexity of dynamically 
changing models and numeric algorithms. It also causes 
computational requirements to change, particularly if 
dynamic adaptive grid refinement or coarsening methods are 
used, in response to the dynamically streamed data into the 
executing model. 
 

To support data management needs in our DDDAS 
projects, data acquisition, data accessing, and data 
dissemination tools are typically used. Data acquisition tools 
are responsible for retrieving of the real-time or near 
real-time data, processing, and storing them into a common 
internal data store. Data accessing tools provide common 
data manipulation support, e.g., querying, storing, and 
searching, to upper level models. Data dissemination tools 
read data from the data store, format them based on requests 
from data consumers and deliver the formatted data to the 
data consumers.  

We illustrate a simplified view of the software framework 
of a typical DDDAS below. 

 
        Data Provider      Data Provider       Data Provider  

 
                        Data Acquisition Tools 

 
        Data                                                       Model 1 
        Store                        Data 
                                     Accessing                 Model 2 
        Internal                    Tools 
        Format                                                   Model N 
 
                            Data Dissemination Tools 
 
     Data Consumer      Data Consumer      Data Consumer 
 

In our implementation, the data used to drive a DDDAS 
system are retrieved periodically by a data retrieval service, 
extracted, converted, quality controlled, and then staged as 
dynamic inputs to our simulation models. The extraction 
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process reads the retrieved data based on the meta data 
associated with them and feeds the extracted values to the 
conversion model whose major purpose is unit conversion, 
e.g., from inches to millimeters. The converted data are then 
analyzed for potential errors and missing values by the 
quality control model. This control process will ensure the 
correctness of the data, which is of great importance for the 
model simulation accuracy. The quality controlled data are 
then fed to the data storage model, which either saves the 
data to a central file system or loads them to a central 
database (this depends on project requirements). The data 
store model may also need to register the data in a metadata 
database so that other models can query it later. 

A community web site, http://www.dddas.org, has been 
developed by Prof. Douglas with help from about 50 other 
DDDAS-related projects. The site currently has a complete 
funded project list (from 2000 to 2008), virtual proceedings 
from workshops from 2000 through 2008, a number of talks 
on topics that range from disaster management to 
transportation to homeland security to how a bat flies, news 
items, pointers to working DDDAS codes, and the January 
2006 NSF DDDAS workshop report. Most of the projects 
listed are from the United States, though a number of the 
projects have international partners and interest in DDDAS 
overseas has been increasing. 

 

III. CATCHING MISTAKES AT THE SOURCE 
Numerous large pharmaceutical manufacturers outsource 

their small-scale manufacturing needs as a way of reducing 
cost or meeting their production deadlines. A contract 
manufacturer may make several kinds of pills that are 
similar in appearance at almost the same time, e.g., testing 
various dosages and placebos for clinical trials. A contract 
manufacturer may also produce pills for multiple 
companies.   One way to reduce the possibility that pills 
may inadvertently become confused or contaminated is to 
employ a rapid and nondestructive means of verifying tablet 
identity. Such systems for identifying contaminated or 
mislabeled products must be strategically placed to prevent 
problems with pills before they are shipped. Process 
analytical technologies (PAT) on the production line should 
have the ability to work in real-time. Currently there are no 
foolproof methods to eliminate mislabeling or 
contamination. As a result, millions of pills are recalled in 
some years. 

For example, in November 2006, 11 million bottles of 
contaminated acetaminophen were voluntarily recalled by 
the Perrigo Company of Allegan, Michigan due to 
contamination of the tablets with metal wire 3 The FDA 
admits that current good manufacturing processes (cGMP) 
have reached their limits and better “science-based” 
approaches are needed to insure product safety [3]. PATs 
are designed to prevent large recalls by detecting problems 
before they occur.  

 

IV. AN INTEGRATED SENSING AND PROCESSING APPROACH 
Integrated sensing and processing acoustic resonance 

spectroscopy (ISP-ARS) is a novel approach to conventional 

acoustic spectroscopic techniques. In ISP-ARS, an ISP 
acoustic waveform is created such that it comprises only the 
distinguishing spectral details associated with an analyte in 
question.  Fourier transform acoustic resonance 
spectroscopy (FTARS) is used to develop ISP acoustic 
waveforms employed in differentiating different drugs. 

ISP-ARS is fast and non-destructive. Acoustic methods 
are able to deeply penetrate many types of opaque 
packaging, in contrast to near-infrared and other optical 
methods. The ability to penetrate many types of packaging 
can be a distinct advantage in preparation of clinical trial 
lots, where drugs and placebos must be blinded from users. 
As a PAT, a series of ISP-ARS sensors could potentially 
scan every pill produced by a manufacturer, enabling the 
removal of only those pills that did not meet quality 
standards.  A dynamic system should control a 
manufacturer’s product line based on measurements from a 
series of ISP-ARS sensors, adjusting process conditions and 
ingredients in real time based on actual process 
measurements [4], [5]. 

ISP-ARS reduces the time required for processing that is 
normally observed with full spectrum FTARS. An ISP 
acoustic waveform is the result of chemometric analysis of 
the FTARS spectrum. By weighting the frequency changes 
according to their individual component scores, an acoustic 
waveform can be made that excites only those frequencies 
important to the analyte under observation. 

The ISP output is a voltage that can be read immediately 
and corresponds to only the analyte under investigation. 

Creation of the ISP acoustic wave begins with the 
chemometric analysis of the initial FTARS data. Therefore, 
FTARS itself makes a prediction about what will work as an 
ISP acoustic waveform for a given set of samples.  This 
training process can be viewed as a dynamic data-driven 
application system when the performance of the ISP 
waveform is continuously monitored and the ISP waveform 
is continuously adjusted through retraining. 

 
A. Excitation            B. Fourier                C. Multivariate 

    of sample with          transformed             analysis 
    white noise               spectral data 
 
 
 
                                      E. Creation of          D. Classification 
                                      waveform                 of sample 
 
 
 
    H. Sample                 F. Excitation            G. Sample 
    unclassified               of sample                 classified 
 
  

The traditional FTARS cycle is A→B→C→D→A.  In 
traditional FTARS, samples are scanned and classified 
according to their inter-cluster distances found via 
multivariate analysis (A-D). This process is repeated for 
each sample or groups scanned. With ISP-ARS the FTARS 
data is used as a predictor and an ISP acoustic waveform is 
constructed from the prediction (E).  Once the ISP 
waveform is constructed the traditional FTARS cycle is not 
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needed. Samples scanned with the ISP waveform are 
classified according to their voltages (F-G). If a sample 
cannot be classified (H) then FTARS is employed and a new 
ISP acoustic waveform is constructed chemometrically with 
a training set that it includes the new unknown.  As samples 
change the ISP waveform can adapt to the new data. 

FTARS is well established and has been shown to 
differentiate drugs, powders, liquids, as well as predict 
dissolution rate in otherwise identical samples.  FTARS is 
nondestructive and complete scans can be made in seconds, 
therefore it should be a prime candidate for use as a PAT.  

Unfortunately, FTARS relies on intensive computer 
processing following data collection due to the amount of 
information gained in each scan. An ARS spectrum recorded 
over the interval of 20 Hz to 20 kHz with a sample rate of 
44.1 kHz for one second generates a substantial amount of 
data (44100 data points).  Chemometric analysis of multiple 
FTARS data sets are computationally demanding and limits 
the production rate of tablets, especially if 100% tablet 
inspection is considered. 

ISP-ARS reduces the computational burden of FTARS 
because it directly produces the analyte identity as an 
output. ISP-ARS is fast enough to not limit production rates. 

 

V. RESULTS 
ISP acoustic waveforms composed of 10, 100, and 1000 

frequencies were used to identify several toll-manufactured 
drugs.  The pills used in this study were aspirin, 
acetaminophen, D-tagatose, ibuprofen, vitamin C, and 
vitamin B. It was found that only the top 10 frequencies 
were required to properly classify each pill used in this 
study. Intra-cluster distances were calculated to be less than 
3 multidimensional standard deviations (MSD) for each pill 
type.  The average accuracy of prediction was 98.47, 97.45 
and 95.41 percent for the 10, 100 and 1000 frequency 
component acoustic waveforms respectively [7], [8]. 

The study was performed in a laboratory under controlled 
circumstances using prototype ISP_ARS devices custom 
built for the purpose. The results can be improved 
significantly by having the devices constructed by a 
professional sensor building company. For practical use of 
the ISP-ARS of this paper on a manufacturing line or in a 
hospital or clinic, this option is clearly necessary and viable 
financially. 

 

VI. CONCLUSIONS AND FUTURE PLANS 
We have described a prototype DDDAS for use in 

identifying defective or mislabeled pills. Integrated sensing 
processing acoustic resonance spectroscopy has the ability 
to differentiate between different types of pills in contract 
manufacturing and bedside applications. 

The results are preliminary and much more research and 
development will be necessary in order to produce systems 
that can be deployed on pharmaceutical manufacturing lines. 
A large number of pills need to be analyzed to build 
comprehensive libraries. We have been building libraries 
using the simple technique that whenever any member of the 
research team is prescribed a medication not in the library, 

we analyze it and add it. This is nondestructive procedure so 
the pill is still useful. 

We need to design and produce production quality 
devices for two quite different environments: (1) for 
manufacturing lines in which pills go by very quickly with 
with considerable background noise, and (2) a hospital or 
clinic so that caregivers can correctly identify all pills before 
giving them to patients. 

In the first environment, the sensors will be in fixed 
locations as part of a government approved production 
facility. The major obstacle is implementing an enclose that 
reduces the background noise to a level that can be easily 
filtered out by the sensor. 

In the second environment, a handheld version must be 
networked wirelessly. There should be little background 
noise and the device has to be sturdy enough to survive 
inevitable drops and daily wear and tear from caregivers. 

In both cases, substantial computing resources will be 
needed on occasion to create or update libraries. 
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