
An FPT Variant Of The Shadow Problem With

Kernelization

Stefan Porschen ∗

Abstract—The shadow problem (SIS) gets as input
a forest F , and a map that assigns subtrees, called
shadows, to leaves of F . SIS asks whether there exists
a set of |F | leaves, one from each tree, such that no
leaf lies in the shadow of another. Usually SIS is con-
sidered as a parameterized problem with parameter k

bounding the cardinality of F , for which some fixed-
parameter tractability time bounds have been proven,
namely O(n2kk) in [2] and O(n33k) in [4], where n is
the number of vertices in F . In this paper, we dis-
cuss a variant of SIS that essentially is characterized
through a different parameterization using two inde-
pendent parameters, namely k as above, and s bound-
ing the shadow size. We provide a kernelization w.r.t.
this parameterization, and prove a fixed-parameter
tractability bound of O(k · n2 + p(k, s)3k) where p is a
polynomial in the parameters k, s.

Keywords: shadow-independent set problem, forest,

fixed-parameter tractability, kernelization

1 Introduction

The shadow-independent set problem (for short shadow
problem or SIS) is the graph theoretical formulation of
a propositional logic problem, namely the falsifiability
problem for pure implicational formulas; for details the
reader is refered to [2]. SIS has also been investigated
in a pure graph theoretical framework [4] likewise in the
present paper. Input instances of SIS consist of a finite
forest F over n vertices and a (partial) map σ, called
shadow map, assigning leaves of F to its vertices. The
relevant objects in SIS are the leaves of F , which obey a
dependence structure impressed by the shadow map: For
a leaf ℓ (in the domain of σ), we call the subtree of F

rooted at vertex σ(ℓ) the shadow of ℓ, and we say that
all leaves of that subtree are shadow-dependent on ℓ. SIS
then asks for the existence of a set of mutually shadow-
independent leaves in F exactly one of each tree. In gen-
eral, this problem is NP-complete [2]. Nevertheless, from
the point of view of parameterized complexity [1], SIS ad-
mits a natural parameterization where the parameter k

bounds the number of trees in an input instance: |F | ≤ k.
According to this parameterization, SIS has been proven
to belong to the complexity class FPT (fixed-parameter
tractable problems) in [2], where an algorithm for SIS

∗Institut für Informatik, Universität zu Köln, D-50969 Köln,

Germany, Email: porschen@informatik.uni-koeln.de

running in time O(n2kk) is provided. Another algorithm
has been designed by in [4] providing the time bound
O(n33k) substantially improving on the parameter fac-
tor.
An important feature exhibited by all problems in FPT
is the existence of a so-called kernelization w.r.t. the pa-
rameter(s) [1]. By a kernelization one extracts in a pre-
processing step the kernel of the problem which is the
relevant part of the input instance bounded in size by
a function f in the parameter(s). Thus kernelization
leads to an overall bound of the form O(p(n, k1, . . . , ks)+
f(k1, . . . , ks)), called kernel form, where p is a polynomial
in the problem size n as well as in the parameters, and f is
an arbitrary function depending on the parameters only.
So far, no kernelization for SIS w.r.t. k was constructed,
which however must exist [1]. A reason might be that SIS
input instances (F, σ) consist of two independent compo-
nents, and the standard parameter k only controls the
forest part. To circumvent this difficulty, here we propose
a variant of the shadow independent set problem which is
defined through an additional parameter s bounding the
number of leaves contained in shadows generated by σ.
We are able to prove a fixed-parameter tractability time
bound having the kernel form O(k · n2 + p(k, s)3k), with
a polynomial p(k, s) in the two parameters. The proof
is based on the dynamic programming algorithm as de-
signed for the standard parameterization of SIS provided
in [4].

2 Basic definitions and notation

For a graph G, we denote by V (G) its vertex set. In this
paper we are mainly interested in finite forests F and
(rooted) trees T (a tree is a connected forest, for details
cf., e.g., [3]). Let L(F) denote the set of leaves in F . In a
rooted tree T , with root w, every vertex x ∈ V (T)−{w}
selects the unique proper subtree Sx of T rooted at x.
Given a vertex x ∈ V (F), we denote by T (x) ∈ F the
unique tree it belongs to; similarly for a vertex set X ⊂
V (F) we write T (X) ∈ F , if X contains vertices of one
tree only. Let 2M denote the power set of a set M , and
let A := M −A denote the complement of A ⊆M . Given
a (partial) map f : M → M ′, we denote its domain by
D(f) ⊆M and its image by I(f) ⊆M ′. Recall that each
y ∈ I(f) has a non-empty preimage f−1(y) ⊆ D(f).
A SIS input instance (F, σ) consists of a finite forest F

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

and a (partial) map σ : L(F)→ V (F), the shadow map.
For ℓ ∈ D(σ), we call the unique subtree Sσ(ℓ) of F the
shadow of ℓ as depicted in Figure 1.

Two leaves ℓ, ℓ′ ∈ L(F) are said to be shadow-independent
if and only if ℓ 6∈ L(Sσ(ℓ′)) and ℓ′ 6∈ L(Sσ(ℓ)). The notion
of shadow-independency canonically transfers to sets of
leaves. A transversal in a forest F is defined to be a set
Λ ⊆ L(F) of leaves such that |Λ ∩ L(T)| = 1, for each
T ∈ F .

Definition 1 The shadow(-independent set) problem
(SIS) is defined through: input instance (F, σ) ∈ SIS if
and only if there exists a shadow-independent transversal
in F .

Throughout it is assumed that each input instance (F, σ)
of SIS satisfies the following conditions:
(i): No leaf is mapped to the root of a tree in F , and
(ii): no leaf is mapped to a vertex of its own tree.
(These conditions essentially yield no loss of generality
since an arbitrary input instance can be transformed fast
into one satisfying (i), (ii): Leaves that are mapped to
roots have to be marked and ignored since their shadows
rule out whole trees and thus can never join a shadow-
independent transversal in F . Similarly, a leaf generat-
ing a shadow in its own tree is of importance only if it
is contained in its own shadow, in which case it has to
be ignored, too. Otherwise such a leaf can contribute
to any shadow-independent transversal. Marking corre-
sponding leaves in an arbitrary SIS input instance accord-
ingly needed O(|V (F)|2) time using depth first search,
which is dominated by the time complexity of the pre-
procedure as stated in the final result.)

Definition 2 The parameterized problem SISk with pa-
rameter k ∈ N is defined by: (F, σ, k) ∈ SISk if and only
if |F | ≤ k and (F, σ) ∈ SIS.

The parameterized version of SIS as above has been stud-
ied in the past to some extent [2, 4]. In the following a
different parameterization is defined introducing a second
parameter bounding the size of shadows generated by σ:

sσ := max
ℓ∈D(σ)

|L(Sσ(ℓ))|

Throughout we assume that sσ ≥ 1, equivalently D(σ) 6=
∅, otherwise the instance contains no shadow and thus
is trivial.

Definition 3 With (vector-)parameter κ = (k, s) ∈ N
2,

problem SISκ is defined through: (F, σ, κ) ∈ SISκ if and
only if |F | ≤ k, sσ ≤ s, and (F, σ) ∈ SIS.

A leaf is called free if it neither is contained in D(σ)
nor in I(σ). Observe that a tree having a free leaf can be

removed from a SIS input instance because it contributes,
via its free leaf, to any shadow-independent transversal
in the remaining forest.

3 Specifying the kernel of SISκ

In this section we provide the specification of a (problem)
kernel for input instances (F, σ, κ) of SISκ. We show that
the relevant part of the kernel is bounded in size by a
function in the parameters k, s. It turns out to be useful,
first to take a more abstract view on the shadow structure
of (F, σ) by only considering those shadows that are not
subtrees of other shadows. Note that two shadows in a
tree T either are disjoint subtrees of T or one is a subtree
of the other. Thus, in a tree T containing shadows there
exists at least one shadow that is not subtree of any other
shadow in T ; we call such a shadow an envelope. An
envelope usually contains several shadows as subtrees (cf.
Fig. 2).

Let B ⊆ I(σ) be the collection of all envelope roots in
the input instance. Clearly, largest shadows in F are
envelopes, hence sσ = maxb∈B |L(Sb)|. For envelope Sb,
b ∈ B, we consider its preenvelope

H(b) :=
⋃

x∈I(σ)∩V (Sb)

σ−1(x)

collecting the leaves of all non-empty preimages of ver-
tices in Sb. A preenvelope H(b) is composed of its tree
fragments HT (b) := H(b) ∩ L(T), for each T ∈ F . For
convenience, let H(T) := {HT (b) : b ∈ B} denote the col-
lection of all different preenvelope fragments in T . Every
leaf of a preenvelope fragment HT (b) either is contained
in exactly one envelope of T . Or it lies outside of all en-
velopes contained in T , i.e., is contained in no shadow at
all; we call the set of these leaves the 0-fragment H0

T (b)
of HT (b). Let H0(W) := {H0

T (b) : b ∈ B, T ∈ W} be
the collection of all 0-fragments in subforest W ⊆ F (if
W = {T} we simply write H0(T)). A basic object re-
garding kernelization is an autonomous tree which, as
will turn out, can be characterized by the number of its
preenvelope fragments.

Definition 4 A tree T in (F, σ) is called autonomous if
for every transversal Λ in F − {T} there exists a leaf in
L(T) that is mutually shadow-independent of every leaf
in Λ.

From the definition directly follows that an autonomous
tree can be removed from a SIS input instance since it
always can complete a shadow-independent transversal in
the remaining forest. Therefore, a SIS search algorithm
can be restricted to the remaining forest:

Lemma 1 If T in (F, σ) is autonomous then there exists
a shadow-independent transversal in F if and only if there
exists a shadow-independent transversal in F − {T}.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

T T

σ

i j

l

(l)

Figure 1: Leaf ℓ of Ti generates the shadow rooted at σ(ℓ) in Tj.

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

T

S

S

b

b
1

1

2

2

σ σ
σ

σ

b

b

Figure 2: A tree T containing two envelopes Sb1 , Sb2 ; arrows correspond to assignments of σ.

The key to specifying a problem kernel of SISκ is the
observation that there either exists an autonomous tree
in F or all its trees have a bounded number of preenve-
lope fragments. Basis for this observation is the following
necessary condition for a tree to be autonomous.

Lemma 2 A tree T in (F, σ) is autonomous if

(∗) |H(T)| ≥ 1 + (|F | − 1)(sσ + 1)

Proof. Let T ∈ F such that |H(T)| ≥ 1+(|F |−1)(sσ +
1), and let Λ be an arbitrary transversal in F − {T}. In
worst case, each ℓ ∈ Λ is mapped into V (T) generating
shadow Sσ(ℓ) in T , and all these shadows are mutually
vertex-disjoint, i.e., envelopes. Because sσ is the maxi-
mum number of leaves in a shadow of (F, σ) we have

∑

ℓ∈Λ

|L(Sσ(ℓ))| ≤ (|F | − 1)sσ

In worst case all preenvelope fragments of T are single el-
ement sets, implying that Λ rules out at most (|F |−1)sσ

preenvelope fragments in H(T). On the other hand, we
have to assume that there is a set Λ̂ ⊆ D(σ) ∩L(T) con-
taining |F | − 1 leaves lying outside of

⋃

ℓ∈Λ L(Sσ(ℓ)) such

that, for every ℓ̂ ∈ Λ̂, there exists ℓ ∈ Λ with ℓ ∈ L(Sσ(ℓ̂)).

Again supposing that each ℓ̂ ∈ Λ̂ delivers a single element
preenvelope fragment another |F | − 1 preenvelope frag-
ments in H(T) are ruled out. In summary, there are
r := |F |− 1 + (|F |− 1)sσ preenvelope fragments in H(T)
which under worst circumstances cannot provide a leaf
shadow-independent of all leaves in Λ. But by assump-
tion, for T we have |H(T)| − r ≥ 1, so there is at least
one preenvelope fragment left in H(T) containing at least

one element ℓ̂0. Although its shadow Sσ(ℓ̂0) must be con-

tained in a tree of F̂ it does not contain a member of Λ
because envelopes, by construction, are mutually disjoint
subtrees. Observe that ℓ̂0 does not need to be the same

leaf for every transversal in F − {T}. The situation is
illustrated in Fig. 3. 2

Hence, existence of autonomous trees in fact allows us
to reduce the input instance: Recursively remove all au-
tonomous trees. Then it is sufficient to decide SIS for the
remaining input instance, called the kernel of the prob-
lem.

Definition 5 The kernel (F̂ , σ̂) of a SIS instance (F, σ)
is defined as follows:
F̂ ⊆ F is the largest subforest of F such that for every
T ∈ F̂ we have:
(i) there is no free leaf in T , (ii) T is not autonomous,
and
σ̂ := σ|F̂ is the restriction of σ to F̂ (meaning D(σ̂) :=

D(σ) ∩ [L(F̂) − {ℓ ∈ L(F̂) : σ(ℓ) ∈ V (F̂)}], i.e., the
domain is restricted to L(F̂), and additionally all leaves
are removed from the domain that were previously mapped
to vertices of F − F̂).

Proposition 1 (1) For every (F, σ), the kernel (F̂ , σ̂)
exists and is unique.
(2) (F, σ) ∈ SIS if and only if (F̂ , σ̂) ∈ SIS.
(3) Let B denote the set of all envelope roots in F̂ and
LB :=

⋃

b∈B L(Sb), then

(α)
∑

T∈F̂

|H(T)| ≤ ρ(|F̂ |, sσ̂), (β) |LB| ≤ sσ̂ ·ρ(|F̂ |, sσ̂)

with ρ(x, y) := x(x− 1)(y + 1).

Proof. For a constructive proof of (1) consider:
Procedure KERNEL:
For input (F, σ), initially assign F̂ ← F , σ̂ ← σ, and
F ′ ← F .
Loop (to be repeated as long as F ′ 6= ∅):
(A) Assign F ′ ← ∅.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

l r

�
�
�

�
�
�

l
0

σ(l)1

l
2 l 1

l r

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

T TT

l l

1 2 r

1 2

T

σσ(l)r 2

F \ {T}

(l)

...
...

...

Figure 3: An autonomous tree T in the forest F = {T1, . . . , Tr, T}. Leaf ℓ̂0 is mutually shadow-independent of all
members of the transversal Λ = {ℓ1, . . . , ℓr} in F − {T}. Arrows correspond to assignments of σ.

(B) Add to F ′ each tree in F̂ containing a free leaf.
(C) Add to F ′ each tree in F̂ satisfying condition (∗) of
Lemma 2.
(D) Assign F̂ ← F̂ − F ′ and σ̂ ← σ̂|F̂ ,
finishing the loop body and also the procedure.
It is obvious that the procedure is purely deterministic
and thus yields a unique result for each fixed input in-
stance. We claim that the resulting object (F̂ , σ̂) meets
Definition 5: Indeed, suppose (F̂ , σ̂) returned by Pro-
cedure KERNEL contains an autonomous tree T (resp.
a tree T containing a free leaf). Since the procedure
stopped, container F ′ must be empty. Hence during the
last iteration of the loop there was found neither an au-
tonomous tree in Step (C) nor a tree containing a free
leaf in Step (B) contradicting that T is autonomous (resp.
contains a free leaf). Finally, each tree T that has been
removed from (F, σ) during Procedure KERNEL contains
a free leaf or satisfies relation (∗) of Lemma 2, for F̂ ∪{T}
and correspondingly extended σ̂. Hence (F̂ , σ̂) cannot be
enlarged to an instance that contains a greater subforest
of F and has kernel properties completing the proof of
(1).
(2) obviously holds true if F = ∅. For F 6= ∅, we claim
that each iteration of the loop in Procedure KERNEL
preserves SIS-status meaning that the current instances
at the beginning and at the end of each iteration either
both belong to SIS or both do not, obviously implying (2).
The claim is proven by induction on the number n ∈ N of
loop iterations: At the end of the first iteration n = 1 we
either have (i) F ′ = ∅ meaning F̂ = F , and the proce-
dure stops, or (ii) F̂ = F −F ′ where F ′ = Ff ∪Fa ⊆ F is
a subforest containing trees having a free leaf collected in
Ff , or autonomous trees in F collected in Fa. In case (i)
there is nothing to prove. In case (ii) it is obvious that if
F admits a shadow-independent transversal, so does each
subforest of F , especially F̂ . For the converse direction,
assume that F̂ admits a shadow-independent transver-
sal Λ but F does not. Let Λf denote any transversal
in Ff composed of free leaves, then clearly, Λ ∪ Λf is a

shadow independent transversal in F̂ ∪ Ff . If there is
T ∈ Fa then it satisfies |H(T)| ≥ 1 + (|F | − 1)(sσ + 1) ≥
1+(|F̂ ∪Ff |−1)(sσ|(F̂∪Ff) +1). Hence T is autonomous

in F̂ ∪ Ff according to Lemma 2. Therefore Λ ∪ Λf

can be enlarged to a shadow-independent transversal in
F̂ ∪ Ff ∪ {T} by Lemma 1. By analogous conclusion for
each remaining tree in Fa − {T}, we obtain a shadow-
independent transversal in F̂ ∪ Ff ∪ Fa = F contradict-
ing the assumption and establishing the induction base.
If the claim is true at the end of the ith iteration of the
loop, for all i < n, n ≥ 2, then it also holds true at the
end of its nth iteration by means of an analogous argu-
mentation.
To verify (3), first observe that (β) follows from (α): As-
sume kernel (F̂ , σ̂) contains at most ρ(|F̂ |, sσ̂) different
preenvelopes. Because the number of envelopes in the
kernel equals the number of its preenvelopes, and each
envelope contains at most sσ̂ leaves, (β) holds true. So
it remains to prove (α). According to (1), (F̂ , σ̂) con-
tains no autonomous tree. Thus, for each T ∈ F̂ , we
have |H(T)| ≤ (|F̂ | − 1)(sσ̂ + 1) according to Lemma 2.
Therefore (F̂ , σ̂) contains at most

∑

T∈F̂

|H(T)| ≤ |F̂ | · (|F̂ | − 1)(sσ̂ + 1) = ρ(|F̂ |, sσ̂)

different preenvelope fragments. Because any preenve-
lope fragment belongs to exactly one preenvelope, the
number of preenvelopes in (F̂ , σ̂) is certainly upper
bounded by ρ(|F̂ |, sσ̂).2

4 The main algorithm

In this section we provide an algorithm for SISκ that
works in two parts: After the kernel (F, σ, κ) of an input
instance is computed, two dynamic programming steps
are performed consecutively to decide whether (F, σ, κ) ∈
SISκ. These dynamic programs are based on Algorithm
INITIAL (DP1) and Algorithm GLOBAL (DP2) in [4].
Whereas it turns out that we can use DP2 without modifi-
cations, DP1 needs to be adapted for our purposes result-
ing in DP1’. So we briefly recall the main ideas underly-
ing DP1 to keep the presentation self-contained. Observe
that a SIS input instance (F, σ) determines a digraph G,
the shadow graph: Trees in F correspond to nodes and
two nodes Tj, Ti are joined by an arc Tj → Ti if and only
if there is a leaf-vertex in Tj that is mapped by σ to a
vertex of Ti (cf. right part of Fig. 4). (We will call the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

��
��
��
��

��
��
��
��

��
��
��
��

������������

T

T

T

T T

T

3

4

6

5

1

2

1

T

T

T

T
k2

j

i

k

T
k
3

Figure 4: A shadow pattern over the forest F = {T1, . . . , T6} (left part), and shadow graph construction (right part):
all mappings of leaf-vertices in Tj to vertices in Ti defined through σ are identified yielding arc Tj → Ti in the shadow
graph.

vertices of the shadow graph nodes, so that the notion
vertex is reserved for members in V (F) having no struc-
ture. Similarly, we distinguish between the trees in F and
directed trees as subgraphs of G called G-trees.)

Basic objects in DP1 are specific subgraphs of G, namely
shadow patterns. A shadow pattern consists of all nodes
in G, but selects exactly one outgoing arc of each node.
Consequently, each connected component of a shadow
pattern is a “cycle of G-trees”. Figure 4 (left part),
e.g., depicts a shadow pattern over {T1, . . . , T6}, where
{T3, . . . , T6} are roots of G-trees in a (directed) cycle,
and only node T4 is the root of a non-trivial G-tree with
node set {T1, T2, T4}. Observe that each transversal in F

composed of leaves in D(σ) determines a unique shadow
pattern in G. It turns out to be useful that also the
leaf-vertices in D(σ) can determine shadow patterns. To
that end, we simply make σ a total map by assigning
to each ℓ ∈ D(σ) an arbitrary fixed vertex x of another
tree, but define the shadow of ℓ to be empty. Hence x is a
“dummy” image of ℓ, and the SIS-status of the instance
is preserved. Afterwards each transversal in F defines a
unique shadow pattern. There are only two possibilities
for dividing a connected shadow pattern into two parts.
E.g., consider the connected shadow pattern depicted in
Fig. 4: Either cut one arc of the G-tree rooted at T4

or cut two arcs of the cycle. Define a shadow pattern
part (spp) to be an induced (not necessarily proper) con-
nected subgraph of a connected shadow pattern. Hence
a spp either is a cycle of G-trees called spp of tree-cycle
type where each node has exactly one outgoing arc, or
the spp is a root directed G-tree, where each node has
at most one outgoing arc, and the root is the only node
having no outgoing arc, called spp of tree type. Recur-
sively, a connected induced subgraph of a spp is a spp,
too. Thus, reversing the possible dividing operations we
can combine two spp’s yielding a larger one in exactly
two ways: Connect the root of the first one (which must
be of tree type) by an arc to any node of the second one
(which can be of tree type or of tree-cycle type) yielding
a larger spp of tree type, resp. of tree-cycle type. Or two

spp’s of tree type are combined by connecting either root
via an arc to a node of the other spp yielding a spp of
tree-cycle type. Abstractly a triple (W, o, i) defines a spp
of tree type: W ⊂ F is its node set, o ∈ L(W) defines
its root node T (o) ∈ W , and i ∈ I(σ) ∩ V (W) is any
selected image vertex. We call o an out-object because
it can define the source of an arc combining (W, o, i) to
another spp, and we call i an in-object because it can
define the sink of an arc coming from another spp. i is
also allowed to be the empty set, then (W, o, ∅) can be
combined to another spp only in the first way as stated
above. If o and i both are empty, then (W, ∅, ∅) corre-
sponds to a connected spp of tree-cycle type which can-
not be enlarged by further combinations, since no source
or sink vertices are reserved for combining arcs. Triples
(W, ∅, i) correspond to spp’s of tree-cycle type where i is
the sink of an arc coming from a spp of tree type. How-
ever, such configurations do not need to be considered,
see below. Now suppose there are shadow-independent
transversals inducing spp’s of tree type in subforests W

resp. W ′ with W ∩W ′ = ∅. For testing whether these
spp’s can be combined to one over W ∪W ′ without dis-
turbing shadow-independency, we have to try whether
there are leaf-vertices o ∈ L(W) resp. o′ ∈ L(W ′) which
yield arcs into W ′ resp. W such that their shadows do not
contain members of the transversals in W , W ′. Starting
with single tree subforests, in that way, it was possible in
DP1 to test each subforest W of the input instance in-
ductively whether it admits a spp induced by a shadow-
independent transversal.
We now provide adaptation DP1’ of DP1 yielding a
bound of kernel form for SISκ instances. Instead of test-
ing each single leaf-vertex of the kernel as out-object and
each single image vertex i as in-object, we test only leaves
in LB as single out-objects, and only images of leaves in
LB as single in-objects. Leaves outside LB are treated
as classes, namely all leaves of the same 0-fragment of
a preenvelope are tested simultaneously. Hence whole 0-
fragments are out-objects and their envelope images are
in-objects. So we define a set O of generalized out-objects

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

and a set I of generalized in-objects:

O := LB ∪H
0(F) ∪ {eo} and I := σ(LB) ∪B ∪ {ei}

where eo is the empty out-object and ei is the empty in-
object being instances of the empty set, and σ is assumed
to be total. For subforest W ⊆ F , we define OW :=
LB(W) ∪H0(W), and IW := σ(LB(W)) ∪ (B ∩ V (W)),
with LB(W) := LB ∩L(W).

Definition 6 We extend σ (assumed to be made total)
to a mapping Σ : O → I by

Σ(O) :=







σ(ℓ), O = ℓ ∈ LB

b, O = H0
T (b) ∈ H0(F)

ei, O = eo







∈ I

If O ∈ LB, and I = Σ(O′), for O′ ∈ H0(F), then for
short we write O 6∈ L(SI) if there exists ℓ ∈ O′ such that
O 6∈ L(Sσ(ℓ)), and we write O ∈ L(SI) otherwise. For
O′ ∈ LB , expression O 6∈ L(SI), resp. O ∈ L(SI), has
the usual meaning as I = σ(O′) is a unique image vertex
then.

Definition 7 For SIS input instance (F, σ) and Σ as
above, define Q : 2F ×O × I → {0, 1} by Q(W, O, I) = 1
iff the following conditions are satisfied simultaneously:
(i) W 6= ∅, O ∈ OW ∪ {eo}, Σ(O) ∈ IW ∪ {ei}, there
exists O′ ∈ OW ∪ {eo} such that I = Σ(O′) ∈ IW ∪ {ei},
(ii) there exists a shadow-independent transversal Λ in
W inducing a shadow pattern part over W such that
O∩Λ 6= ∅, (in case O is a single leaf ℓ, O∩Λ is identified
with {ℓ} ∩ Λ)
(iii) for each ℓ ∈ Λ it holds that ℓ 6∈ L(SI).

Algorithm DP1’:
Input: SIS-kernel (F, σ) with |F | ≥ 2, sσ ≥ 1 .
Output: Values Q(U) := Q(U, e0, ei), U ⊆ F, |U | ≥ 2.
(A): Initial values: ∀T ∈ F , ∀(O, I) ∈ O{T} ×I{T} com-
pute

Q(T, O, I) =



1, I = ei ∨ O ∈ H0(T) ∨ (O ∈ LB({T}) : O 6∈ L(SI))
0, else

(B): ∀U ⊆ F : |U | ≥ 2, ∀O ∈ OU compute:

Q(U, O, ei) =
_

W⊂U:
T(O)6∈W

_

O′∈OW :

Σ(O′)∈I{T (O)}
∧O/∈L(SΣ(O′))

Q(W, O
′
, ei) ∧ Q(W, O, ei)

(C): ∀U ⊆ F : |U | ≥ 2 compute:

∀O ∈ OU ,∀I ∈ I{T (O)} :

Q(U, O, I) =



1, Q(U,O, ei) = 1 ∧ O /∈ L(SI)
0, else

∀O ∈ OU ,∀I ∈ IU , T (I) 6= T (O) :

Q(U, O, I) =
_

W⊂U:
T (O)6∈W
∧T (I)∈W

_

O′∈O{T(I)}

Q(W, O′, I) ∧ Q(W, O,Σ(O′))

(D): For each U ⊆ F : |U | ≥ 2 compute:

Q(U,eo, ei) =
_

W⊂U

_

O,O′∈OU

Q(W, O, Σ(O
′
)) ∧ Q(W, O

′
, Σ(O))

=: Q(U)

Theorem 1 Let (F, σ) be the kernel of a SIS input in-
stance, where σ has been made total. Assume that,
for each pair (O, I) ∈ O × I, the information whether
O ∈ L(SI) can be accessed in O(1) time. Via DP1’ fol-
lowed by DP2, i.e. Algorithm GLOBAL in [4], can be
decided in O([sσ ·ρ(|F |, sσ)]33|F |) time whether (F, σ) ad-
mits a shadow-independent transversal, where ρ(x, y) :=
x(x− 1)(y + 1).

Proof. Observe that a kernel containing only one tree
cannot exist, because this tree is autonomous and thus
is removed via Procedure KERNEL. So a kernel either is
empty and therefore trivial or has size at least two which
is assumed for the input of DP1’.
For proving correctness of DP1’, we have to show that
in Step (D) value Q(U) := Q(U, e0, ei) is correctly cal-
culated for each U ⊆ F . That means Q(U) = 1 if
there exists a shadow-independent transversal in U in-
ducing a connected spp (U, eo, ei), and Q(U) = 0 oth-
erwise. (U, eo, ei) corresponding to a spp of tree-cycle
type can be composed either via connecting two spp’s
(W, O, Σ(O′)), (W, O′, Σ(O)) of tree type, for O ∈ OW ,
O′ ∈ OW , and W ⊂ U as calculated in Step (D). Or it can
be combined via connecting a spp (W, O, ei) of tree type
and a spp (W, eo, Σ(O)) of tree-cycle type, for O ∈ OW .
Observe that the latter combination type needs not to
be considered because it is covered already by a combi-
nation of the first kind: Indeed, replace W by W ′ with
W ⊂ W ′ ⊆ U containing the root of that G-tree in the
cycle of (W, eo, Σ(O)) which contains the node Σ(O).
As long as O and O′ both are single leaves in LB(U) cor-
rectness of (D) is justified by the arguments above. If
O or O′ is a 0-fragment we have to verify that no con-
flict can occur when simultaneously treating all leaves
contained in O resp. O′. If both O, O′ ∈ H0(U) this is
obvious because no leaf in O resp. O′ is contained in the
shadow of any leaf in O′ resp. O. If w.l.o.g. O ∈ H0(U)
and O′ ∈ LB(U), we only need to decide whether there
is a leaf ℓ ∈ O such that O′ 6∈ L(Sσ(ℓ) which with-

out conflict tells us the value Q(W, O′, Σ(O)), by def-
inition. Therefore Q(W, O, Σ(O′)) ∧ Q(W, O′, Σ(O)) is
correctly computed. Observe that a conflict could oc-
cur only if leaves of 0-fragments O, O′ lied in shadows:
Q(W, O, Σ(O′)) ∧Q(W, O′, Σ(O)) = 1 then would mean
that there are ℓ1 ∈ O, ℓ′1 ∈ O′ such that ℓ1 6∈ L(Sσ(ℓ′1))
and simultaneously that there are ℓ2 ∈ O, ℓ′2 ∈ O′ such
that ℓ′2 6∈ L(Sσ(ℓ2)). But there was no guarantee that
ℓ1 = ℓ2 and ℓ′1 = ℓ′2 which could obviously yield a conflict
in case that e.g. ℓ1 is contained in the shadow of ℓ2. So
we are sure to obtain no conflict because leaves in shad-
ows, i.e. in LB(U), are touched as single objects and not

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

as classes.
To have made σ a total map without disturbing the
shadow structure as described above guarantees that we
touch each leaf in LB as an out-object and therefore no
possible candidate for a shadow-independent transversal
is missed that might induce a connected spp. Clearly
only leaves in LB need to be considered for making σ a
total map because the kernel contains no free leaves.
In Step (A), Step (B) and Step (C) all values necessary
for Step (D) are provided. Correctness of Step (A) is ob-
vious. Correctness of Steps (B) and (C) can be proven
analogous to the argumentation above.
All calculations in (A) - (D) are of the same structure
as those in DP1 for which the bound O(n3 · 3|F |) has
been proven ([4], Proposition 4.2) under the assumption
that all operations for calulating values of Q can be per-
formed in constant time. The only crucial part regard-
ing these computations in DP1’ concerns the decision
whether O ∈ L(SI) or O 6∈ L(SI), for O ∈ O, I ∈ I,
which has assumed to be managable in O(1) time. (In
the proof of Theorem 2 below we will provide a preproce-
dure making available these information appropriately.)
Factor n in the bound stated above is the number of all
vertices in F which is an upper bound for the number
of all leaves in F , resp. the number of all image ver-
tices w.r.t. the shadow map. Recall that leaves are the
out-objects, and their images are the in-objects in DP1.
Hence, to obtain the time complexity for calculating (A)
- (D) we have to replace n by |O| ≤ |LB| + |H

0(F)|+ 1
upper bounding the number of out- resp. in-objects in
DP1’. According to Prop. 1 (3)(α), we have

|H0(F)| =
∑

T∈F

|H0(T)| ≤
∑

T∈F

|H(T)| ≤ ρ(|F |, sσ)

and according to Prop. 1 (3)(β) we have |LB| ≤ sσ ·
ρ(|F |, sσ). Therefore, and because sσ ≥ 1, we have
|O| ∈ O(sσ · ρ(|F |, sσ)), hence DP1’ runs in O([sσ ·
ρ(|F |, sσ)]33|F |) worst case time.
If during DP1’ no shadow-independent transversal is
found in F then there still can exist such a transver-
sal inducing a disconnected shadow pattern. That means
(∗∗): for appropriate j ∈ N there can exist a partition
F = U1 ∪ · · · ∪Uj such that Q(Ui) = 1 with |Ui| ≥ 2, for
each 1 ≤ i ≤ j. Since the values Q(Ui) are independent
of out- and in-objects, we are allowed to use dynamic pro-
gram DP2 (i.e. Algorithm GLOBAL in [4]) without pay-
ing attention to 0-fragments as out-objects specifically.
DP2 gets as input all values Q(U), U ⊂ F , and outputs
1 if (∗∗) holds true, 0 otherwise. Correctness of DP2 as
well as its worst case time complexity of O(|F | · 3|F |) are
stated in [4], Prop. 4.1. Thus the running time of DP2 is
dominated by that of DP1’ completing the proof. 2

So far we only know how to treat the kernel, next we
state the final result presenting a bound for a general
input instance:

Theorem 2 Whether (F, σ, κ = (k, s)) ∈ SISκ can be
decided in O(k·n2+[s·ρ(k, s)]33k) time, where n = |V (F)|
and ρ(x, y) := x(x− 1)(y + 1).

Proof. Given input instance (F, σ, κ = (k, s)) we claim
that in time O(k · n2) we can compute its kernel, pro-
vide all information that DP1’ needs to access in constant
time, and moreover that we can decide whether |F | ≤ k

and sσ ≤ s. This claim implies the theorem using DP1’
and DP2 according to Theorem 1. We prove the claim
via the preprocedure stated below. To that end, suppose
that σ is represented, for each fixed T ∈ F , by array σT of
length |L(T)| which for each leaf of T in prescribed order
contains its image vertex if existing and nil otherwise.
We further assume that each vertex x ∈ V (F) “knows”
the tree T (x) ∈ F it belongs to.

Preprocedure:
(1) For each fixed T ∈ F , maintain array AT of Boolean
having length |V (T)| where vertices in V (T) are assumed
to have a prescribed order. Running once through each
σT , T ∈ F , we fill all arrays AT simultaneously: if
σT (ℓ) = x we assign AT (x)(x) := 1. Afterwards run-
ning once through each AT , we assign 0 to all entries still
having no value. Hence, AT , T ∈ F , can be filled in O(n)
time. Observe that AT contains the information which
vertex of T appears as image of the shadow map.
(2) For each fixed T ∈ F , hold array BT of Boolean hav-
ing length |V (T)|, and array NT of Boolean having length
|L(T)|. These containers are filled via depth first search
(DFS) as follows: For each ℓ ∈ L(T), start DFS in T ,
and for each vertex x on the path from ℓ to the root of T

check in constant time whether AT (x) = 1, i.e. ℓ lies in
the shadow of x, and store for each ℓ the last current such
vertex x in last(ℓ). After all DFS rounds were finished,
assign NT (ℓ) := 1 iff last(ℓ) = ∅, i.e. ℓ is contained in
no shadow at all. Otherwise, assign BT (last(ℓ)) := 1,
meaning that vertex last(ℓ) is an envelope root in that
case. All other entries of BT , T ∈ F, get value 0. Because
each DFS runs in O(n) time, Step (2) can be performed
in O(n2) time.
(3) For each x ∈ V (F) : BT (x)(x) = 1, compute by DFS
set L(Sx) of all leaves in envelope Sx and store cardinality
|L(Sx)|. If there is x ∈ V (F) s.t. s < |L(Sx)| then reject
the instance and stop. Hold array U of length k and for
each T ∈ F assign U(T) := max{|L(Sx)| : x ∈ V (T) :
BT (x) = 1}. Assign sσ := maxT∈F U(T); if sσ = 0 then
accept the instance and stop. Step (3) can be performed
in O(n2) time.
(4) Computation of the number of preenvelope fragments
cT := |H(T)| in T , for all trees T ∈ F simultaneously:
Initially set cT := 0, for each T ∈ F . For each fixed
x ∈ V (F) : BT (x)(x) = 1 do: for each T ∈ F − {T (x)}
do: if there is a first ℓ ∈ L(T) s.t. σT (ℓ) = x then in-
crement cT := cT + 1 and continue with the next tree in
F − {T (x)}. Step (4) can be executed in O(n2) time.
(5) Compute kernel (F̂ , σ̂) of (F, σ) according to Proce-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

dure KERNEL in proof of Prop. 1 (1): Since the values
sσ and cT , T ∈ F , are already computed in Steps (3) and
(4) above, we can find all initially existing autonomous
trees in the input instance in time O(k). For finding all
trees initially containing a free leaf, we simply check, for
each T ∈ F , whether there is ℓ ∈ L(T) s.t. NT (ℓ) = 1
and σT (ℓ) = nil, needing O(n) time. Now assume that
during an iteration of KERNEL subforest W 6= ∅ is
detected to contain autonomous trees resp. free leaves
w.r.t. the current instance (F̂ , σ̂). Then we first have
to calculate the new shadow map σ̂|(F̂ −W): For each
ℓ ∈ L(F̂ −W), assign σT (ℓ)(ℓ) ← nil iff σT (ℓ)(ℓ) ∈ V (W)
needing O(n) time. Now remove T, BT , NT , AT , σT for
each T ∈ W . Finally, execute Steps (1) - (4) for updat-
ing AT , BT , NT , U(T), and cT for each T ∈ F̂ −W w.r.t.
σ̂|(F̂−W). If the forest of the kernel is empty then accept
the input instance and stop. Since KERNEL performes
at most |F | ≤ k rounds, and each iteration needs at most
O(n2) time, Step (5) can be executed within O(k · n2)
time.
(6) Let (F, σ) be the kernel of the input instance as com-
puted previously. Maintain table R of Boolean having
size |L(F)| · |V (F)|. For each leaf ℓ ∈ L(F), start DFS in
T (ℓ), and for each vertex on the path from ℓ to the root
of T (ℓ), assign R(ℓ, x) := 1 if AT (ℓ)(x) = 1, otherwise
assign 0. Step (6) can be performed in O(n2) time.
(7) For each x ∈ V (F) : BT (x)(x) = 1, and each T ∈ F

fill set H0
T (x) (initially assumed to be empty) as follows:

For each ℓ ∈ L(T) s.t. σT (ℓ) = x, add ℓ to H0
T (x) iff

NT (ℓ) = 0 meaning that ℓ is contained in no shadow and
thus is a member of the 0-fragment H0

T (x). Step (7) can
be executed in O(n2) time.
(8) Maintain table Z of Boolean having size |L(F)| ·
|H0(F)|. For each x ∈ V (F) : BT (x)(x) = 1, consider
each fixed pair (ℓ, H0

T (x)) where ℓ ∈ L(Sx) and H0
T (x) ∈

H0(F), T ∈ F−{T (x)}. Then, for each ℓ′ ∈ H0
T (x) check

whether R(ℓ, σT (ℓ′)) = 0, i.e., whether ℓ does not lie in
the shadow of ℓ′. If a first such ℓ′ ∈ H0

T (x) can be found
for ℓ then assign table entry Z(ℓ, H0

T (x)) := 0, otherwise
set it to 1. Finally, assign value 0 to all entries of Z still
having no value. Since |H0(F)| ∈ O(k · n), Step (8) can
be performed in O(k · n2).
(9) Finally, σ is modified to a total map as follows: Let
F = {T0, . . . , T|F |−1}. Run through each σT , T ∈ F :
if σT (ℓ) = nil, and ℓ ∈ Ti, then assign the root of
Ti+1 mod |F | to σT (ℓ). Observe that the information
about the shadow structure does not be affected since
the tables R and Z have already been constructed be-
fore. Step (9) can be executed in O(n) time.
As shown, the time complexity of each step of the pre-
procedure is bounded by O(k ·n2). It correctly computes
the kernel of the input instance according to Prop. 1, and
makes σ a total map without modifying the shadow struc-
ture. Moreover we observe that in the tables R and Z all
information is collected that DP1’ needs to get access to
in constant time completing the proof. 2

5 Concluding remarks and open prob-

lems

So far, problem SIS, parameterized by k only, did not
reveal a kernelization, especially the FPT-bounds pro-
vided in [2, 4] do not have kernel form. The reason
might be that SIS input instances consist of two com-
ponents, a forest and a shadow map, that essentially
are independent of each other. In this paper we pro-
vided a kernelization and a FPT algorithm for SIS run-
ning in O(k · n2 + [s · ρ(k, s)]33k) time. The price to
pay was the introduction of an additional parameter s

bounding the shadow size. The new parameterization
thus controls both components. An open question is,
whether there is a completely different algorithmic ap-
proach to SISk running faster and exhibiting a kernel-
ization based on parameter k only. A further feature of
such an approach should be polynomial space amount,
which cannot be achieved in the framework of dynamic
programming. A distinct future work direction is to check
whether the methods presented here can be extended to
obtain also kernelizations for the generalized versions of
the shadow problem as recently discussed in [5]. There
the shadow map is replaced by a shadow relation and a
fixed-parameter tractable algorithm w.r.t. standard pa-
rameter k is presented.

References

[1] Downey, R.G., Fellows, M.R., Parameterized Com-
plexity, Springer-Verlag, New York, 1999.

[2] Franco, J., Goldsmith, J., Schlipf, Speckenmeyer, E.,
Swaminathan, R.P., “An algorithm for the class of
pure implicational formulas,” Discrete Appl. Math.,
V96, pp. 89-106, 1999.

[3] Golumbic, M.C., Algorithmic Graph Theory and
Perfect Graphs, Academic Press, New York, 1980.

[4] Heusch, P., Porschen, S., Speckenmeyer, E., “Im-
proving a fixed-parameter tractability time bound
for the shadow problem,” J. Comp. Syst. Science,
V67, pp. 772-788, 2003.

[5] Porschen, S., “On generalizations of the shadow in-
dependent set problem, ” Discrete Math., V37, pp.
1473-1485, 2007.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

