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Abstract—This paper presents a new two-
dimensional Empirical Mode Decomposition Based on
classical Empirical Mode Decomposition and Radon
transform. The proposed method avoids to search for
the maxima and minima in a two-dimensional func-
tion and produce two-dimensional envelopes, which
are necessary in existed methods and usually difficult.
Experiments show encouraging results.
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1 Introduction

Empirical mode decomposition is a method to decompose
signals proposed by N.E.Huang et. al in 1998. It can ex-
tract adaptively the oscillatory modes at each time from a
complex signal, namely it can decompose the signal into
a finite (often less) number of intrinsic mode functions
(IMFs). With Hilbert transform, the IMFs yield instan-
taneous frequencies as functions of time, that give sharp
identifications of embedded structures. The final presen-
tation of the results is a time-frequency-energy distrib-
ution, designated as the Hilbert spectrum and the new
method for signal processing is called as Hilbert-Huang
transform(HHT)[1]. Being different from Fourier decom-
position and wavelet decomposition, EMD has no speci-
fied ”basis”. Its ”basis” is adaptively produced depending
on the signal itself, which brings not only high decompo-
sition efficiency but also sharp frequency and time local-
ization. A key point is that the signal analysis based on
HHT is physically significant. Because of its excellence,
HHT has been utilized and studied widely by researchers
and experts in signal processing and other related fields.
In recent years, more and more works on HHT theory
are reported such as [5, 6, 7, 2, 8]. Its application have
spread from earthquake research, ocean science, biomedi-
cine, speech signal analysis to image analysis and process-
ing [9, 10, 11, 12, 13, 14, 4, 15, 16].
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However, the EMD is just applicable to one-dimensional
signals, which makes it is difficult to use HHT in many ap-
plications such as image processing, pattern recognition
and so on. To apply HHT to a two-dimensional signal,
one has to convert it into one or more one-dimensional
signal(s) by means of various methods[14, 15]. How-
ever, many information will be lost inevitably when a
two-dimensional signal is converted into one-dimensional
ones no matter which method is employed. So a thor-
ough resolution is to develop an available two-dimensional
EMD algorithm. Some researchers have focused on this
problem[10, 3], however, up to now, all of the existed
methods attempt to spread, almost parallel, the EMD
algorithm from one to two dimension. That is to say the
maxima and minima of a two-dimensional signal should
be found at first in order to produce the upper and lower
envelopes. However, in the case of two dimensions, to
determine the maxima and minima is often difficult due
to the possible ridges, saddle points and so on. It means
that there are many essential difficulties in the existed
methods. Thus, to develop an available two-dimensional
EMD algorithm, some new ideas and technologies should
be employed.

Radon transform was presented in 1917. However, it
wasn’t attended enough before the FFT was developed.
Now, it has became an important technology in medical
imaging, remote sensing imaging and many other appli-
cations. In this paper, a new two-dimensional EMD al-
gorithm combining classical EMD and Radon transform
will be presented. The proposed method avoids to search
for the maxima and minima in a two-dimensional func-
tion , which are necessary in existed methods and usually
difficult. Experiments show encouraging results.

The rest of this paper is organized as follows: The Radon
transform will be introduced briefly in Section 2; a new
two-dimensional EMD algorithm is given in Section 3;
Section 4 includes the experimental results and analysis;
Section 5 is the conclusion of the paper.

2 The Radon transform

The Radon transform is actually a projection transform.
Let f(x, y) is a function defined in the plane (x, y), then
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its Radon transform is

Pα(u) =
∫ +∞

−∞
f(x, y)dv (1)

where α is the angle between u and x, as shown in fig.1.
x, y and u, v satisfy

{
x = u cos α− v sinα
y = u sinα + v cos α

(2)

The Fourier transform of the function f(x, y) can be writ-
ten as

F (Ω1,Ω2) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j(Ω1x+Ω2y)dxdy (3)

then the values of function F (Ω1,Ω2) at the line with the
angle of α with Ω1 and passing the original point are

Fα(Ω1,Ω2) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−jΩ(x cos α+y sin α)dxdy

(4)
where Ω1 = Ω cos α, Ω2 = Ω sin α.

Let us change the integration variable from (x, y) to
(u, v), then the equation (4) can be written as

Fα(Ω1,Ω2) =
∫ ∞

−∞

[∫ ∞

−∞
f(u cos α− v sinα,

u sinα + v cos α)dv] e−jΩudu

=
∫ ∞

−∞
Pα(u)e−jΩudu (5)

The equation (5) suggests that Fα(Ω1,Ω2) can be ob-
tained from applying the Fourier transform to Pα(u) and
F (Ω1,Ω2) can be formed by all Fα(Ω1,Ω2) in each an-
gle. Then the f(x, y) can be reconstructed by the inverse
Fourier transform of F (Ω1,Ω2).

3 Two-dimensional EMD algorithm
based on one-dimensional EMD and
Radon transform

In the one-dimensional case, an IMF is the approximation
of a mono-component signal. The similar idea could be
applied to two-dimensional case. That is to say an two-
dimensional IMF, denoted as BIMF, should be the ap-
proximation of a two-dimensional mono-component sig-
nal too. Thus a BIMF should be a signal which satisfies
that only one oscillatory mode can be included at each
local and its oscillatory is symmetric with respect to the
local zero mean. Some examples of ideal BIMF are given
in Fig.2(a-c). To be convenient for comparison, a non-
BIMF is given too. One have no difficulty noticing that
more than one oscillatory modes are included in f4(x, y)
nearby ’A’ and ’B’,as shown in Fig.2(d).

A great deal of experiments suggest that the Radon trans-
forms of a two-dimensional IMF in any angle must be
an one-dimensional IMF. For example, Fig.3(a-d) are the
Radon transforms of the signals shown in Fig.2(a-d) when
the angle are 0◦,5◦,· · · , 175◦ respectively. We can see
that the Radon transforms in these angles are really one-
dimensional IMFs when the signals are two-dimensional
IMFs. On the contrary, there are always some angles in
which the Radon transform aren’t one-dimensional IMFs
as marked by bold lines in Fig.3(d).

The experiments imply if we can decompose the Radon
transforms of a two-dimensional signal in the angle of α
into a finite number of one-dimensional IMFs, for sim-
plicity, we denoted them by imfα

i , then the ith two-
dimensional IMF, denote by bimfi, can be produced by
reconstructing the one-dimensional IMFs,imfα

i , (0 ≤ α ≤
180◦).

Finally, we give the two-dimensional EMD algorithm as
following:

Algorithm 3.1 Let f(x, y) be a two-dimensional signal
and α = 0, N = int( 180

4α )− 1, where 4α is the step span
of angle.

step 1 If α < 180−4α, go to step 2, else go to Step 5;

Step 2 Calculate the Radon transform of f(x, y) in the
angle of α, denote by Pα(u);

Step 3 Apply the EMD to Pα(u) to produce imfα
i (i =

1, 2, · · · ,Mα);

Step 4 Let α = α +4α and go to Step 1

Step 5 Let M = max(Mα), α = 0,4α, · · · , N4α;

Step 6 If Mα < M , let imfα
i = imfα

i−M+Mα
, i =

M, M−1, · · · ,M−Mα+1; imfα
i = 0, i = 1, · · · ,M−

Mα, else go to Step 7;

Step 7 Let R(i) = (imf0
i , imf4α

i , · · · , imfk4α
i , · · · , imfN4α

i ), (i =
1, 2, · · · ,M)

Step 8 Apply inverse Radon transform to R(i) to form
bimfi, (i = 1, 2, · · · ,M)

4 Experimental Results and Analysis

Fig.4(a) is the Lena image. We apply Algorithm 3.1 on
it and the decomposition results are shown in Fig.4(b-h).
It should be noticed that each pixels have been added by
128 to be convenient for showing in (b-g). One has no
difficulty seeing that the images become blur more and
more from bimf2 − bimf6. The high frequency details
which are usually the contour information are included
mainly in bimf2−bimf4 and the next bimfs are the lower
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Figure 1: A sketch map of the Radon transform
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Figure 2: Some examples of two-dimensional IMF
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Figure 3: Some examples of the Radon transform of two-dimensional IMFs

Figure 4: Lena image is decomposed into 6 bimfs and a residue image.
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Figure 5: A MR image is decomposed into 6 bimfs and a residue image.

frequency information. The bimf1 corresponds generally
to noise and the image tendency is contained in bres.

Fig.5(a) is a MR image. Applying Algorithm 3.1 on it,
we obtain six bimfs and a bres. An encouraging result
can be explicitly seen that the details in multi-scales have
been depicted by different bimfs, as shown in bimf2 −
bimf6, respectively.

Fig.6(a) is a synthetical texture. It is decomposed into
6 bimfs and a residue image and similar results can be
received too.

5 Conclusion

Many signals in applications are two-dimensional signals.
So an available two-dimensional EMD algorithm is very
important. The existed methods attempt to spread, al-
most parallel, the EMD algorithm from one to two di-
mension. It means that many essential difficulties are
inevitable. In this paper, a new two-dimensional EMD al-
gorithm based on classical EMD and Radon transform is
developed. The proposed method avoids to search for the
maxima and minima in a two-dimensional function and
produce two-dimensional envelopes. Experiments show
encouraging results.
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