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Abstract— Automata theory has proved to be a cornerstone in 

theoretical computer science since last couple of decades. It is
playing an important role in modeling behavior of complex 
systems. The algebraic automaton which is an advanced form of 
automata, having properties and structures from algebraic theory, 
is emerging with several modern applications. Optimization of 
logic based programs, design and development of model checkers
are couple of examples of it. Design of a complex system not only 
requires the functionality but it also needs to capture its control 
behavior. Z notation is an ideal specification language used for 
describing state space of a system and operations over it. 
Consequently, an integration of algebraic automata and Z will be 
an effective tool for modeling purposes. In this paper, we have 
established a relationship between few fundamentals of algebraic 
automata and Z notation. At first, some important concepts of 
automata are transformed to Z notation. Then, we have given a 
formal construction of algebraic automata. Next, fundamental 
concepts of algebraic automata, for example, monoid, semi-group 
and group are formalized and refined. Finally, an important 
notion of homomorphism for verifying similarity between 
algebraic structures is described. Formal specification of this
linkage is analyzed and validated using Z/EVES tool.

Index Terms—Integration of approaches, Algebraic automata, 
Formal methods, Z notation, Validation.

I. INTRODUCTION

As computers are being used almost in every machine or in 
electrical equipment, that is, machines are being controlled by 
computer based systems. And, of course, computers are 
controlled by software systems. When software is used in 
controlling a complex system, for example, safety critical 
system its failure may cause a big loss in terms of wealth, 
deaths, injuries and environmental damages. Consequently,
constructing correct software is as important as its other 
counterparts, for example, hardware or electro-mechanical 
systems [1]. Formal methods are mathematical based 
techniques used for specification of properties of software 
and hardware systems for insuring correctness of a system [2]. 
By applying formal methods, we can describe a mathematical 
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model of a system and then it can be analyzed and validated 
increasing confidence over a system [3]. 

At the current stage of development in software engineering 
approaches, it is not possible to develop a system using a 
single technique and as a result various techniques have to be 
integrated for different purposes at different levels of 
development of software. This is the reason that today 
integration of approaches for software engineering, more 
broadly in computing systems, has become a well-researched 
area. Further, an integration of approaches is an open research 
area to bridge the gap between different methodologies in 
computer science and engineering leading to development of 
automated computer tools and techniques.

Design of a complex system, not only requires functionality
but it also needs to model its control behavior. There are a 
large variety of techniques for software specification which 
are suitable for specific aspects in the process of the software 
development. For example, Z notation, Vienna Development 
Methods, B Method and algebraic techniques are usually used 
for defining the data type while Petri nets, process algebras, 
automata and statecharts are some of the examples which are 
best suited for capturing dynamic aspects of a system [4]. All 
of the above examples have a well-defined mathematics based 
syntax and semantics. Therefore it is required to identify 
relationship between static and dynamic modeling techniques
for development of a complete and consistent system. Further, 
this integration will reduce the complexity of the systems. 

Automata theory has proved to be a cornerstone of 
theoretical computer science since last couple of decades. 
Modeling of finite state systems, defining a regular set of 
finite words, compiler construction and control behavior are 
few traditional applications of automata. The algebraic 
automaton which is an advanced form of automata, having 
properties and structures from algebraic theory, is emerged 
with several modern applications. For example, optimization 
of logic based programs, specification and verification of 
protocols, design and development of model checkers, and 
human computer interaction are some applications areas of it. 
The applications of algebraic theory are not limited to 
computer but are being seen in other disciplines, for example, 
modeling physical phenomena in chemistry and biology.

In this paper, a refinement of a relationship between formal 
methods and algebraic automata identified in [5] is done, and 
some inconsistencies are removed. There are several 
applications of algebraic theory, particularly, in defining 
static part of a system. For example, modeling behavior of 
distributed systems, the objects are usually concatenated and 
hence the associative property is satisfied there at. After 
adding an identity element, the structure produced is called a 
monoid which is an abstract algebraic data type. In modeling 
computerized systems using algebraic structures, we must be 
able to represent it by some data types. Representation of 
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static part of a system is important because time complexity of 
an algorithm depends on it. The major objectives of this paper 
are to (i) propose an integration of automata and formal 
methods enhancing modeling power, (ii) provide a syntactic 
and semantic well-defined relationship between Z notation 
and algebraic automata.

In section 2, related work is discussed. In section 3, an 
introduction to formal methods is given. In section 4, an 
overview of automata is provided. Formal construction of 
algebraic automata is described in section 5. Finally, 
conclusion and future are discussed in section 6.

II. RELATED WORK

Although integration of approaches for software 
development is a well-researched area [6], [7], [8], [9], [10], 
[11], [12] but there does not exist much work on formalization 
of graphical based notations. The work [13], [14] of Dong et 
al., in which they have linked Object Z and timed automata for 
some aspects of these approaches, is close to ours. Their work 
is assumed as a starting point for this research. Another piece 
of good work is reported in [15], [16] in which R.  L. 
Constable has proposed a constructive formalization of some 
important concepts of automata using Nuprl. In [17], a 
combination of Z notation with statecharts is established. A 
relationship is investigated between Petri-nets and Z notation 
in [18], [19]. An integration of B method and UML is 
presented in [20], [21]. Wechler, W. has introduced some
important algebraic structures in fuzzy automata [22]. In [23], 
a treatment of fuzzy automata and fuzzy language theory is 
discussed when the set of possible values is a closed interval 
[0, 1]. Ito, M., has described automata and formal languages 
from the algebraic point of view. Firstly, he investigated the 
algebraic structure of automata and then treated a kind of 
global theory [24]. Kaynar, D. K at al. has proposed a 
modeling framework which is a basic set of mathematical 
models to support description and analysis of real timed 
computing systems [25]. Godsil, C. at al. [26] has given some 
ideas of algebraic graphs with an emphasis on current rather 
than classical theory of graphs. Their work is interesting 
because of usefulness of graph-based notations in modeling of 
various problems of computer science and engineering. 

Most of the researchers listed above have either taken some 
examples in proposing integration of approaches or have 
addressed only some aspects of these approaches. Further, 
there is a lack of formal analysis which can be supported by 
computer tools. Our work is different from others because we 
have given a generic approach to link Z notation and algebraic 
automata. Further, a computer tool support is provided for 
analysis and validation of this relationship.

III. AN INTRODUCTION TO FORMAL METHODS

Formal methods are mathematical approaches used for 
describing and analyzing properties of software and hardware 
systems [27]. That is, descriptions of a system are written 
using symbols and notations which are mathematical 
expressions rather than informal explanations. These 
notations are based on discrete mathematics such as logic, set 
theory and graph theory. Formal methods may be classified in 

several ways. One frequently-made distinction is between 
property oriented and model oriented methods [28]. Property 
oriented methods are used to describe software in terms of 
properties or constraints that must be satisfied on it. Model 
oriented methods are used to construct a model of a system’s 
behavior [29]. For example, state transition diagrams are used 
to model the behavior of a system as a set of states and then 
transitions are defined between these states. 

Formal methods are used to improve quality of software 
systems by means of documenting and specifying in a precise 
and structured manner. Z notation is one of the most popular 
specification languages in formal method. The Z [30] is a 
model oriented approach, which is based on set theory and 
first order predicate logic. It is also used for specifying the 
behavior of systems as an abstract data types. Sequential 
programs can also be modeled using it. The Z notation is used 
in this work for specification and validation because it 
describes a state space of a system and a set of operations that 
may be performed on it [28].

IV. ALGEBRAIC AUTOMATA

Automata theory has become a basis in the theoretical 
computer science since last couple of decades because of its 
various applications and having a vital role in science and 
engineering [31]. Modeling control behavior, modeling of 
finite state systems, compiler constructions, defining a regular 
set of finite words are some of the traditional applications of 
automata [32], [33], [34]. We can classify automata because 
of its deterministic and nondeterministic nature. Both types of 
automata have their own pros and cons in modeling and 
specification of systems but are equal in power. That means if 
a language is recognized by one, it can also recognized by the 
other. Nondeterministic finite automata (NFA) are sometimes 
useful because constructing an NFA is much easier than 
constructing deterministic finite automata (DFA) for a 
particular problem without going into details. Further, 
complexity of system is reduced and many important 
properties can be established easily using NFA. On the other 
hand, DFA is much easier to implement as compared to its 
sibling NFA. Consequently, both of the automata have their 
merits and demerits and any one can be used based on the 
requirements and nature of a problem. 

Finite automata are abstract models of machines based on 
mathematical notations which can be represented using 
diagrams as well. These models can be used to perform 
computations on input and an output can be generated if 
required, by moving through a sequence of configurations. If 
we are able to reach any of the accepting configuration of a 
finite automata by using a series of computation then the 
given input is accepted. Of course, there must be a guide 
called the transition function which computes the next state 
based on the current state and an alphabet, at the every step of 
its computation. The starting point is called an initial state. A
set of alphabets is required as one of the inputs to transition 
function to move from one state to another of a DFA.

The algebraic automaton is an advanced form of automata 
having properties and structures from algebraic theory of 
mathematics. Algebraic automata have emerged with several 
modern applications. Optimization of logic based programs, 
specification and verification of protocols, design and 
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development of model checkers, and human computer 
interaction are few examples of it. The applications of algebraic 
theory are not limited to computers but are also being seen in 
other disciplines of science. Representation of characteristics of 
physical phenomena in chemistry and biology is one of the 
important  examples of it.

On the other hand, diagrams in algebraic automata have 
been difficult to use except  very trivial cases, which is one of 
the issues in representation of automata diagrammatically. 
Further, automata may have different implementations and 
consequently its time and space complexity must also be 
different, which is another issue in modeling using algebraic 
automata similar to other automata. Because of such 
weaknesses and limitations of modeling using automata, it is 
argued that this single approach cannot be used for modeling 
of a complete system and consequently its integration is 
required with other useful approaches. Based on the reasoning 
given in the first section, a linkage between Z and algebraic 
automata will be useful in modeling using integrated 
approaches. If we are able to formalize and map this 
relationship, then it would be  useful tool not only at academic 
but at an industrial level as well. A formal verified linkage of 
algebraic automata and Z is given in the next section.

V. INTEGRATION OF ALGEBRAIC AUTOMATA AND Z

In this section, an integration of some important concepts 
of algebraic automata and Z notation is given. It is to be 
mentioned that the definitions used are based on a well known 
book with title “Algebraic Theory of Automata and 
Languages” [24]. The set of structures used to give the formal 
relationship, as discussed above, between Z and algebraic 
automata is: (i) automaton, (ii) extended automaton, (iii) 
homomorphism and their extended forms, (iv) monoid
endomorphisms, and (v) group automorphism.

A. Design of Algebraic Automaton

We start with the definition of algebraic automata which is 
a 3-tuple (Q, ∑, δ), where (i) Q is a finite nonempty set of 
states, (ii) ∑ is a finite set of alphabets and (iii) δ is a transition 
function which takes a state and an alphabet as input and 
produces a new or the same state as an output. The above 
tuple is a deterministic algebraic automata (DAA) if for each 
state q1 and for every alphabet a, there is a unique state q2
such that: δ(q1, a) = q2. To formalize DAA in Z, Q and ∑ are 
denoted by S and X respectively. [S, X]

In modeling systems using sets in Z notation, we do not 
impose any restriction upon the number of elements of a set 
and a high level of abstraction is supposed there. Further, we 
do not insist upon any procedure for deciding whether an 
element is a member of the given collection. As a consequent, 
our S and X, defined above, are sets over which we cannot 
define any operation. For example, cardinality to know the 
number of elements of a set cannot be defined. Similarly, 
union, intersection, complement, subset and cartesian product
operations over these sets are not defined as well. 

To describe a set of states for the above DAA, a variable
states is introduced. Since, a given state q is of type S therefore 
states is a type of power set of S. Similarly, for alphabets the 
variable alphabets is of type of power set of X. As we know 
that δ relation is a function because for each input (q1, a), 

where q1 is a state and a belongs to set of alphabets there must 
be a unique output state q2, which is image of (q1, a) under 
the transition function δ (delta). Consequently, we can declare
transition function δ as, delta: S x X → S.

For a moment, we have used mathematical language of Z 
notation which is used to describe various objects of a system. 
It is to be mentioned here that the same language can be used 
to define the relationships between these objects. This 
relationship will be used in terms of constraints over a schema 
after composing the objects. The schema structure is used for 
composition because it is very powerful at an abstract level of 
specification and it helps in describing a well organized 
specification approach. All of the above three components, 
states, alphabets and delta of DAA are encapsulated and put in 
the schema named as Automaton. The formal description of 
Automaton is given in Z notation as below.

Automaton
states:  S
alphabets:  X
delta: S  X  S

states  
s: S; x: X s  states  x  alphabets
   t: S t  states delta s x = t

Invariants: (i) The set of states is finite and non-empty. (ii) 
For each input (s, x) for the transition function delta where s is 
an element of states and x is a member of alphabets, there is a
unique state t such that: delta s x = t.

After formalizing DAA, its extended form is described. In 
the extended form, three new components are added and two
components of the algebraic automaton, defined above, are 
reused. In the schema as given below, the variables states and 
alphabets are reused  and have the same meaning. The delta
function defined above is refined. In the extended form, the 
delta function takes a states and a string as inputs and produces 
the same state or new state as output. Since we need to 
compute the set of all the strings which can be generated from
the set of alphabets and hence a fourth variable is used and 
denoted by strings which is of type of power set of set of all the 
sequences. As a sequence can be empty and hence a fifth 
variable is used for it.

AutomatonExt 
Automaton
strings:  seq X
deltae: S  seq X  S
epsilon: seq X

epsilon  strings
s: S s  states deltae s epsilon = s
s: S; a: X; u: seq X s  states  a  alphabets  u  strings
   deltae s a  u = deltae deltae s a u

Invariants: (i) The null string epsilon is an element of strings. 
(ii) If the transition function takes a state and the null string 
epsilon as input then it produces the same state of DAA. (iii) 
For each input s a  u, where s is an element of states, a is 
an element of alphabets and u is an element of strings, the delta
function is defined as: delta s a  u = delta delta s a u.
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B. Homomorphism and Its Extended Forms

Formal specification of homomorphism, isomorphism, 
endomorphism and automorphism over algebraic automata is 
described in this section. All of these morphisms are 
important in algebraic theory and are well-defined on some 
fundamental structures of this theory. In abstract algebra, a
homomorphism is a structure preserving a mapping between 
two given algebraic structures. Monoid, semi-groups, groups, 
semi-rings, rings and vector spaces are some of the examples 
of algebraic structures where the concept of homomorphism 
and its variants can be defined. This concept was extended in
[34] and was defined on algebraic automata. In fact, the word 
homomorphism is meant by “same shape” and is an 
interesting one because the similarity of the structures can be 
verified and tested by defining over the given structures.
Formal description of homomorphism and its variants over 
the algebraic automaton is given below.

Let AA1 = (Q1, ∑1, δ1) and AA2 = (Q2, ∑2, δ2) be two 
given algebraic automata. Let  be a mapping from Q1 into 
Q2. If  (δ1(s, x)) = δ2((s), x) holds for any s Q1 and any x
 ∑1, then  is called a homomorphism of set Q1 into Q2. 
The formal specification of AA1 and AA2 is described by 
reusing the automaton defined above and are represented by 
schemas AutomatonA and AutomatonB respectively.

The automaton AutomatonA is created by replacing the 
variables states, alphabets and delta of the automaton
Automaton with the new variables states1, alphabets1 and delta1
respectively. The definitions of these components and 
variants over it are same as defined in Automaton.

AutomatonA
Automaton[states1/states, alphabets1/alphabets, delta1/delta]

Similar to the definition AA1, the formal description of 
AA2 is given in terms of a schema which is represented by 
AutomatonB. It is to be noted that the invariants over 
AutomatonA and AutomatonB hold as in Automaton because these
are created not defined. 

AutomatonB
Automaton[states2/states, alphabets2/alphabets, delta2/delta]

After defining AA1 and AA2, we can give a formal 
definition of homomorphism from AA1 into AA2. The 
homomorphism is represented by a schema Homomorphism as 
given below. It consists of three components AutomatonA,
AutomatonB and a variable row. The variable row is a mapping 
from S to itself used to represent the homomorphism. The 
invariants which must hold on homomorphism are defined in 
terms of predicates in second part of the schema.

Homomorphism 
AutomatonA
AutomatonB
row: S  S

s: S; x: X s  states1  x  alphabets1
   row delta1 s x = delta2 row s x

Invariant: (i) For every s in the set of states and x in the set of 
alphabets of the first automata AutomatonA, if the mapping row
satisfies the condition: row delta1 s x = delta2 row s x then 
it conforms a homomorphism from the first automata 
AutomatonA into AutomatonB.

If AA1 = AA2 in the homomorphism defined above, then it 
is called an endomorphism. To give a formal description of 
the endomorphism, the mapping row is defined from the set of 
states S to itself. It can be observed that endomorphism is a 
variant more precisely a special case after reduction of 
homomorphism. That is why we have induced it from the 
definition of homomorphism given above.

Endomorphism 
Automaton
row: S  S

s: S; x: X s  states  x  alphabets
   row delta s x = delta row s x

Invariant: (i) For every state s in the set of states and x in the 
set of alphabets of the given automata Automaton, if the 
mapping row satisfies the condition: row delta1 s x = delta2 

row s x, then it conforms an endomorphism from automata
Automaton into itself.

If X and Y are two nonempty sets then a mapping  from set 
X to set Y is called one to one if different elements of X have 
different images in Y. Mathematically,  x1, x2  X; y  Y • 
(x1) = y and (x2) = y  x1 = x2. The mapping  is called 
onto if each element of Y is an image of some element of X 
that is range of  = Y. If a mapping is a one to one (injective) 
as well as onto (surjective) then it is called a bijective 
mapping. Coming back to our definition of homomorphism, if 
it is a bijective mapping from algebraic automata AA1 to AA2 
then it is called an isomorphism and the automata are 
isomorphic. Now we give a formalization of isomorphism 
from AutomatonA to AutomatonB using a schema given below. 
For this purpose, we simply define constraints of bijection 
over the homomorphism which results an isomorphism.  

Isomorphism
Homomorphism

s1, s2, s: S s1  states1  s2  states1  s  states2
   s1 s  row  s2 s  row  s1 = s2
ran row = states2

Invariants: (i) For all s1 and s2 in states of automata 
AutomatonA and s in states of AutomatonB, if the images of s1 
and s2 in the second automata are same under the mapping 
row then s1 and s2 must be same. (ii) Each element of the set 
of states of automata AutomatonB is an image of some element 
of automata AutomatonA under the mapping row.

In the formal definition of isomorphism given above, if the 
algebraic automata AutomatonA and AutomatonB are equal, that 
is, their corresponding components are same and constraints 
are also applied then such an isomorphism is called an 
automorphism. A formal description of an automorphism is 
given below after defining some invariants over the 
endomorphism defined above.

Automorphism 
Endomorphism

s1, s2, s: S s1  states  s2  states  s  states
   s1 s  row  s2 s  row  s1 = s2
ran row = states

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Invariants: (i) For all s1 and s2 in set of states and x in the set 
of alphabets of some automata, if the images of s1 and s2 are 
same under the mapping row then the elements s1 and s2 are
same. (ii) Each element of the set of states of the given 
automata is an image of some element of the set of states of 
the same automata under the mapping row..

C. Formalizing Endomorphisms over Monoid

Let A be a given non-empty set then the algebraic structure
(A, *) is a monoid if the following conditions are satisfied.

i.  x, y  A, the element x*y  A. The symbol * is a binary 
operation over A.

ii.  x, y, z  A, (x*y)*z = x*(y*z), that is associative property is 
satisfied.

iii.  x  A, there exists an element e  A, such that x*e = e * x = 
x. The element e is called an identity of A.

Let us suppose that E (A) = set of all the endomorphisms
over the algebraic automata A. It is already proved in [34] that 
E (A) forms a monoid under the binary operation defined in 
section 5.2. Here we describe the formal specification of it by 
defining a schema MonoidEndomorphisms. To formalize this 
structure, two variables are assumed. The first one is a set of 
all endomorphism which is of type of power set of 
Endomorphism and is denoted by endomorphisms. The second 
one is a binary operation denoted by boperation. It takes two 
endomorphisms as input and produces a new endomorphism as an 
output. The components of MonoidEndomorphisms are defined in 
first part and invariants are defined in the second part of it.

MonoidEndomorphisms
endomorphisms:  Endomorphism
boperation: Endomorphism  Endomorphism  Endomorphism

endo1, endo2: Endomorphism endo1  endomorphisms 
endo2  endomorphisms
   endo3: Endomorphism endo3  endomorphisms
        boperation endo1 endo2 = endo3
endo1, endo2, endo3: Endomorphism
   endo1  endomorphisms  endo2  endomorphisms  endo3 
 endomorphisms
   boperation boperation endo1 endo2 endo3
       = boperation endo1 boperation endo3 endo3
endo: Endomorphism endo  endomorphisms
   endoe: Endomorphism endoe  endomorphisms
        boperation endo endoe = endo  boperation endoe
endo = endo

Invariants: (i) For any two endomorphisms endo1 and endo2
there exists an endomorphism endo3 such that: boperation 
endo1 endo2 = endo3. This property defines the binary 
operation over the monoid structure MonoidEndomorphisms.
(ii) For any three endomorphisms endo1, endo2 and endo3, the 
binary operation satisfies the conditions: boperation 
boperation endo1 endo2 endo3= boperation endo1

boperation endo3 endo3This is the associative property 
defined over the set of all the endomorphisms. (iii) For any 
endomorphisms endo, there exists an endomorphism endoe
such that: boperation endo endoe = endo  boperation 

endoeendo = endo. This property ensures the unique 
existence of left and right identity of E (A).

D. Formalizing Automorphisms over Group

The algebraic structure (A, *) is a group if it satisfies the 
following: (i) A is a monoid, (ii) for each element x in the set 
A, there exists a unique element y in A such that x*y = y*x = e,
that is, the inverse of each element of A exists and is unique.

Now let us suppose that A (A) is a set of all the 
automorphisms over the algebraic automata A. It is also 
proved in [34] that A (A) forms a group. Here we describe its
formal specification by a schema GroupAutomorphisms as was 
done for E(A) in Section C. To formalize this structure, three 
variables are assumed. The first one is a set of all the 
automorphisms which is of type of power set of Automorphism
and is denoted by automorphisms. The second one is an identity 
element under the same binary operation. And the last one is the 
binary operation itself denoted by boperation. It takes two 
automorphisms as input and produces the same or a new 
automorphism as an output. The components of the schema 
GroupAutomorphisms are given in first part and its invariants are 
defined in the second part of the schema GroupAutomorphisms.

GroupAutomorphisms 
automorphisms:  Automorphism
autoe: Automorphism
boperation: Automorphism  Automorphism  Automorphism

auto1, auto2: Automorphism auto1  automorphisms  auto2 
 automorphisms
   auto3: Automorphism auto3  automorphisms
        boperation auto1 auto2 = auto3
auto1, auto2, auto3: Automorphism
   auto1  automorphisms  auto2  automorphisms  auto3 
automorphisms
   boperation boperation auto1 auto2 auto3
       = boperation auto1 boperation auto3 auto3
auto: Automorphism auto  automorphisms
   boperation auto autoe = auto  boperation autoe auto = 
auto
auto: Automorphism auto  automorphisms
   autoi: Automorphism autoi  automorphisms
        boperation auto autoi = autoe  boperation autoi auto
= autoe

Invariants: (i) For any two automorphisms auto1and auto2 
there exists an automorphism auto3 such that: boperation 
auto1 auto2 = auto3. This property defines the binary 
operation over the structure GroupAutomorphisms. (ii) For any 
three automorphisms auto1, auto2 and auto3, the binary 
operation satisfies the conditions: boperation boperation 
auto1 auto2 auto3= boperation  auto1 boperation  auto2

auto3This is the associative property over the set of all the 
automorphisms. (iii) For any automorphism auto, there exists 
an automorphism endoe such that: boperation  auto autoe = 

auto  boperation  autoeauto = auto. This property ensures 
the existence of unique identity element of the given 
collection. (iv) For any automorphism auto, there exists an 
automorphism endoi such that: boperation  auto autoi = autoe 

 boperation autoiauto = autoe. This property is used to 
prove the unique existence of the inverse of each element in 
the set A (A) of all the automorphisms.
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VI. CONCLUSION

The main objective of this research was proposing an 
integration of fundamental concepts in algebraic automata 
and Z notation. To achieve this objective, first we described 
formal specification of an algebraic automaton and then its 
extended form was described. A linkage was identified and 
formalized between various structures of algebraic automata 
and Z structures. Few important concepts of homomorphism 
and isomorphism were described between these algebraic 
structures. Finally its extended form, endomorphism and 
automorphism, over monoid and groups automata were 
described using Z notation.

Our idea is important and original because we have observed 
after integrating that a natural relationship exists between these 
approaches. This work is also important because formalizing 
graph based notation is not easy as there has been little tradition 
of formalization of graph theory due to concreteness of the 
graphs [35]. Our work is useful for researchers interested in 
integration of approaches for modeling the complex systems. We 
believe that this research is also useful because it is focused on 
general principles and concepts and this integration can be used 
for modeling systems after required reduction. 

An extensive survey of existing work was done before 
initiating this research. Some interesting work [21], [22], 
[26], [36], [37], [38] was found but our work and approach 
are different because of conceptual and abstract level 
integration of Z and automata. Why and what kind of 
integration is required, were two basic questions in our mind 
before initiating this research. Since automaton is best suited 
for modeling behavior while Z is an ideal one used for 
describing state of a system. This distinct in nature but 
supporting behavior of Z encouraged us to integrate Z with 
automata. We believe that this work will be useful in 
development of integrated tools increasing their modeling 
power. Formalization of some other concepts in algebraic 
automata is under progress and will appear soon.
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