

Abstract— Automata theory has proved to be a cornerstone in

theoretical computer science since last couple of decades. It is
playing an important role in modeling behavior of complex
systems. The algebraic automaton which is an advanced form of
automata, having properties and structures from algebraic theory,
is emerging with several modern applications. Optimization of
logic based programs, design and development of model checkers
are couple of examples of it. Design of a complex system not only
requires the functionality but it also needs to capture its control
behavior. Z notation is an ideal specification language used for
describing state space of a system and operations over it.
Consequently, an integration of algebraic automata and Z will be
an effective tool for modeling purposes. In this paper, we have
established a relationship between few fundamentals of algebraic
automata and Z notation. At first, some important concepts of
automata are transformed to Z notation. Then, we have given a
formal construction of algebraic automata. Next, fundamental
concepts of algebraic automata, for example, monoid, semi-group
and group are formalized and refined. Finally, an important
notion of homomorphism for verifying similarity between
algebraic structures is described. Formal specification of this
linkage is analyzed and validated using Z/EVES tool.

Index Terms—Integration of approaches, Algebraic automata,
Formal methods, Z notation, Validation.

I. INTRODUCTION

As computers are being used almost in every machine or in
electrical equipment, that is, machines are being controlled by
computer based systems. And, of course, computers are
controlled by software systems. When software is used in
controlling a complex system, for example, safety critical
system its failure may cause a big loss in terms of wealth,
deaths, injuries and environmental damages. Consequently,
constructing correct software is as important as its other
counterparts, for example, hardware or electro-mechanical
systems [1]. Formal methods are mathematical based
techniques used for specification of properties of software
and hardware systems for insuring correctness of a system [2].
By applying formal methods, we can describe a mathematical

Manuscript received November 12, 2008. This work was supported by
Centre for Research in Computer Science, University of Central Punjab
(UCP), Lahore, PAKISTAN.

Nazir A. Zafar is with the Faculty of Information Technology, UCP,
Lahore, Pakistan (telephone: +92-42-5755314; fax: +92-42-5710881; email:
dr.zafar@ucp.edu.pk). Dr Zafar is on leave from Pakistan Institute of
Engineering and Applied Sciences, Islamabad, PAKISTAN (telephone:
+92-51-9290273-4; fax: +92-51-2208070; email: nazafar@pieas.edu.pk).

A. Hussain is Associated Dean of the Faculty of Information Technology,
UCP, Lahore, Pakistan (telephone: +92-42-5755314; fax: +92-42-5710881;
email: ajmal@ucp.edu.pk).

A. Ali is a student of MS in Faculty of Information Technology, UCP,
(e-mail: amiralishahid@ucp.edu.pk).

model of a system and then it can be analyzed and validated
increasing confidence over a system [3].

At the current stage of development in software engineering
approaches, it is not possible to develop a system using a
single technique and as a result various techniques have to be
integrated for different purposes at different levels of
development of software. This is the reason that today
integration of approaches for software engineering, more
broadly in computing systems, has become a well-researched
area. Further, an integration of approaches is an open research
area to bridge the gap between different methodologies in
computer science and engineering leading to development of
automated computer tools and techniques.

Design of a complex system, not only requires functionality
but it also needs to model its control behavior. There are a
large variety of techniques for software specification which
are suitable for specific aspects in the process of the software
development. For example, Z notation, Vienna Development
Methods, B Method and algebraic techniques are usually used
for defining the data type while Petri nets, process algebras,
automata and statecharts are some of the examples which are
best suited for capturing dynamic aspects of a system [4]. All
of the above examples have a well-defined mathematics based
syntax and semantics. Therefore it is required to identify
relationship between static and dynamic modeling techniques
for development of a complete and consistent system. Further,
this integration will reduce the complexity of the systems.

Automata theory has proved to be a cornerstone of
theoretical computer science since last couple of decades.
Modeling of finite state systems, defining a regular set of
finite words, compiler construction and control behavior are
few traditional applications of automata. The algebraic
automaton which is an advanced form of automata, having
properties and structures from algebraic theory, is emerged
with several modern applications. For example, optimization
of logic based programs, specification and verification of
protocols, design and development of model checkers, and
human computer interaction are some applications areas of it.
The applications of algebraic theory are not limited to
computer but are being seen in other disciplines, for example,
modeling physical phenomena in chemistry and biology.

In this paper, a refinement of a relationship between formal
methods and algebraic automata identified in [5] is done, and
some inconsistencies are removed. There are several
applications of algebraic theory, particularly, in defining
static part of a system. For example, modeling behavior of
distributed systems, the objects are usually concatenated and
hence the associative property is satisfied there at. After
adding an identity element, the structure produced is called a
monoid which is an abstract algebraic data type. In modeling
computerized systems using algebraic structures, we must be
able to represent it by some data types. Representation of

A Refinement: Integration of Algebraic Automata and Z
Conforming Some Important Structures

Nazir Ahmad Zafar, Ajmal Hussain and Amir Ali

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

static part of a system is important because time complexity of
an algorithm depends on it. The major objectives of this paper
are to (i) propose an integration of automata and formal
methods enhancing modeling power, (ii) provide a syntactic
and semantic well-defined relationship between Z notation
and algebraic automata.

In section 2, related work is discussed. In section 3, an
introduction to formal methods is given. In section 4, an
overview of automata is provided. Formal construction of
algebraic automata is described in section 5. Finally,
conclusion and future are discussed in section 6.

II. RELATED WORK

Although integration of approaches for software
development is a well-researched area [6], [7], [8], [9], [10],
[11], [12] but there does not exist much work on formalization
of graphical based notations. The work [13], [14] of Dong et
al., in which they have linked Object Z and timed automata for
some aspects of these approaches, is close to ours. Their work
is assumed as a starting point for this research. Another piece
of good work is reported in [15], [16] in which R. L.
Constable has proposed a constructive formalization of some
important concepts of automata using Nuprl. In [17], a
combination of Z notation with statecharts is established. A
relationship is investigated between Petri-nets and Z notation
in [18], [19]. An integration of B method and UML is
presented in [20], [21]. Wechler, W. has introduced some
important algebraic structures in fuzzy automata [22]. In [23],
a treatment of fuzzy automata and fuzzy language theory is
discussed when the set of possible values is a closed interval
[0, 1]. Ito, M., has described automata and formal languages
from the algebraic point of view. Firstly, he investigated the
algebraic structure of automata and then treated a kind of
global theory [24]. Kaynar, D. K at al. has proposed a
modeling framework which is a basic set of mathematical
models to support description and analysis of real timed
computing systems [25]. Godsil, C. at al. [26] has given some
ideas of algebraic graphs with an emphasis on current rather
than classical theory of graphs. Their work is interesting
because of usefulness of graph-based notations in modeling of
various problems of computer science and engineering.

Most of the researchers listed above have either taken some
examples in proposing integration of approaches or have
addressed only some aspects of these approaches. Further,
there is a lack of formal analysis which can be supported by
computer tools. Our work is different from others because we
have given a generic approach to link Z notation and algebraic
automata. Further, a computer tool support is provided for
analysis and validation of this relationship.

III. AN INTRODUCTION TO FORMAL METHODS

Formal methods are mathematical approaches used for
describing and analyzing properties of software and hardware
systems [27]. That is, descriptions of a system are written
using symbols and notations which are mathematical
expressions rather than informal explanations. These
notations are based on discrete mathematics such as logic, set
theory and graph theory. Formal methods may be classified in

several ways. One frequently-made distinction is between
property oriented and model oriented methods [28]. Property
oriented methods are used to describe software in terms of
properties or constraints that must be satisfied on it. Model
oriented methods are used to construct a model of a system’s
behavior [29]. For example, state transition diagrams are used
to model the behavior of a system as a set of states and then
transitions are defined between these states.

Formal methods are used to improve quality of software
systems by means of documenting and specifying in a precise
and structured manner. Z notation is one of the most popular
specification languages in formal method. The Z [30] is a
model oriented approach, which is based on set theory and
first order predicate logic. It is also used for specifying the
behavior of systems as an abstract data types. Sequential
programs can also be modeled using it. The Z notation is used
in this work for specification and validation because it
describes a state space of a system and a set of operations that
may be performed on it [28].

IV. ALGEBRAIC AUTOMATA

Automata theory has become a basis in the theoretical
computer science since last couple of decades because of its
various applications and having a vital role in science and
engineering [31]. Modeling control behavior, modeling of
finite state systems, compiler constructions, defining a regular
set of finite words are some of the traditional applications of
automata [32], [33], [34]. We can classify automata because
of its deterministic and nondeterministic nature. Both types of
automata have their own pros and cons in modeling and
specification of systems but are equal in power. That means if
a language is recognized by one, it can also recognized by the
other. Nondeterministic finite automata (NFA) are sometimes
useful because constructing an NFA is much easier than
constructing deterministic finite automata (DFA) for a
particular problem without going into details. Further,
complexity of system is reduced and many important
properties can be established easily using NFA. On the other
hand, DFA is much easier to implement as compared to its
sibling NFA. Consequently, both of the automata have their
merits and demerits and any one can be used based on the
requirements and nature of a problem.

Finite automata are abstract models of machines based on
mathematical notations which can be represented using
diagrams as well. These models can be used to perform
computations on input and an output can be generated if
required, by moving through a sequence of configurations. If
we are able to reach any of the accepting configuration of a
finite automata by using a series of computation then the
given input is accepted. Of course, there must be a guide
called the transition function which computes the next state
based on the current state and an alphabet, at the every step of
its computation. The starting point is called an initial state. A
set of alphabets is required as one of the inputs to transition
function to move from one state to another of a DFA.

The algebraic automaton is an advanced form of automata
having properties and structures from algebraic theory of
mathematics. Algebraic automata have emerged with several
modern applications. Optimization of logic based programs,
specification and verification of protocols, design and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

development of model checkers, and human computer
interaction are few examples of it. The applications of algebraic
theory are not limited to computers but are also being seen in
other disciplines of science. Representation of characteristics of
physical phenomena in chemistry and biology is one of the
important examples of it.

On the other hand, diagrams in algebraic automata have
been difficult to use except very trivial cases, which is one of
the issues in representation of automata diagrammatically.
Further, automata may have different implementations and
consequently its time and space complexity must also be
different, which is another issue in modeling using algebraic
automata similar to other automata. Because of such
weaknesses and limitations of modeling using automata, it is
argued that this single approach cannot be used for modeling
of a complete system and consequently its integration is
required with other useful approaches. Based on the reasoning
given in the first section, a linkage between Z and algebraic
automata will be useful in modeling using integrated
approaches. If we are able to formalize and map this
relationship, then it would be useful tool not only at academic
but at an industrial level as well. A formal verified linkage of
algebraic automata and Z is given in the next section.

V. INTEGRATION OF ALGEBRAIC AUTOMATA AND Z

In this section, an integration of some important concepts
of algebraic automata and Z notation is given. It is to be
mentioned that the definitions used are based on a well known
book with title “Algebraic Theory of Automata and
Languages” [24]. The set of structures used to give the formal
relationship, as discussed above, between Z and algebraic
automata is: (i) automaton, (ii) extended automaton, (iii)
homomorphism and their extended forms, (iv) monoid
endomorphisms, and (v) group automorphism.

A. Design of Algebraic Automaton

We start with the definition of algebraic automata which is
a 3-tuple (Q, ∑, δ), where (i) Q is a finite nonempty set of
states, (ii) ∑ is a finite set of alphabets and (iii) δ is a transition
function which takes a state and an alphabet as input and
produces a new or the same state as an output. The above
tuple is a deterministic algebraic automata (DAA) if for each
state q1 and for every alphabet a, there is a unique state q2
such that: δ(q1, a) = q2. To formalize DAA in Z, Q and ∑ are
denoted by S and X respectively. [S, X]

In modeling systems using sets in Z notation, we do not
impose any restriction upon the number of elements of a set
and a high level of abstraction is supposed there. Further, we
do not insist upon any procedure for deciding whether an
element is a member of the given collection. As a consequent,
our S and X, defined above, are sets over which we cannot
define any operation. For example, cardinality to know the
number of elements of a set cannot be defined. Similarly,
union, intersection, complement, subset and cartesian product
operations over these sets are not defined as well.

To describe a set of states for the above DAA, a variable
states is introduced. Since, a given state q is of type S therefore
states is a type of power set of S. Similarly, for alphabets the
variable alphabets is of type of power set of X. As we know
that δ relation is a function because for each input (q1, a),

where q1 is a state and a belongs to set of alphabets there must
be a unique output state q2, which is image of (q1, a) under
the transition function δ (delta). Consequently, we can declare
transition function δ as, delta: S x X → S.

For a moment, we have used mathematical language of Z
notation which is used to describe various objects of a system.
It is to be mentioned here that the same language can be used
to define the relationships between these objects. This
relationship will be used in terms of constraints over a schema
after composing the objects. The schema structure is used for
composition because it is very powerful at an abstract level of
specification and it helps in describing a well organized
specification approach. All of the above three components,
states, alphabets and delta of DAA are encapsulated and put in
the schema named as Automaton. The formal description of
Automaton is given in Z notation as below.

Automaton
states:  S
alphabets:  X
delta: S  X  S

states  
s: S; x: X s  states  x  alphabets
 t: S t  states delta s x = t

Invariants: (i) The set of states is finite and non-empty. (ii)
For each input (s, x) for the transition function delta where s is
an element of states and x is a member of alphabets, there is a
unique state t such that: delta s x = t.

After formalizing DAA, its extended form is described. In
the extended form, three new components are added and two
components of the algebraic automaton, defined above, are
reused. In the schema as given below, the variables states and
alphabets are reused and have the same meaning. The delta
function defined above is refined. In the extended form, the
delta function takes a states and a string as inputs and produces
the same state or new state as output. Since we need to
compute the set of all the strings which can be generated from
the set of alphabets and hence a fourth variable is used and
denoted by strings which is of type of power set of set of all the
sequences. As a sequence can be empty and hence a fifth
variable is used for it.

AutomatonExt 
Automaton
strings:  seq X
deltae: S  seq X  S
epsilon: seq X

epsilon  strings
s: S s  states deltae s epsilon = s
s: S; a: X; u: seq X s  states  a  alphabets  u  strings
 deltae s a  u = deltae deltae s a u

Invariants: (i) The null string epsilon is an element of strings.
(ii) If the transition function takes a state and the null string
epsilon as input then it produces the same state of DAA. (iii)
For each input s a  u, where s is an element of states, a is
an element of alphabets and u is an element of strings, the delta
function is defined as: delta s a  u = delta delta s a u.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

B. Homomorphism and Its Extended Forms

Formal specification of homomorphism, isomorphism,
endomorphism and automorphism over algebraic automata is
described in this section. All of these morphisms are
important in algebraic theory and are well-defined on some
fundamental structures of this theory. In abstract algebra, a
homomorphism is a structure preserving a mapping between
two given algebraic structures. Monoid, semi-groups, groups,
semi-rings, rings and vector spaces are some of the examples
of algebraic structures where the concept of homomorphism
and its variants can be defined. This concept was extended in
[34] and was defined on algebraic automata. In fact, the word
homomorphism is meant by “same shape” and is an
interesting one because the similarity of the structures can be
verified and tested by defining over the given structures.
Formal description of homomorphism and its variants over
the algebraic automaton is given below.

Let AA1 = (Q1, ∑1, δ1) and AA2 = (Q2, ∑2, δ2) be two
given algebraic automata. Let  be a mapping from Q1 into
Q2. If  (δ1(s, x)) = δ2((s), x) holds for any s Q1 and any x
 ∑1, then  is called a homomorphism of set Q1 into Q2.
The formal specification of AA1 and AA2 is described by
reusing the automaton defined above and are represented by
schemas AutomatonA and AutomatonB respectively.

The automaton AutomatonA is created by replacing the
variables states, alphabets and delta of the automaton
Automaton with the new variables states1, alphabets1 and delta1
respectively. The definitions of these components and
variants over it are same as defined in Automaton.

AutomatonA
Automaton[states1/states, alphabets1/alphabets, delta1/delta]

Similar to the definition AA1, the formal description of
AA2 is given in terms of a schema which is represented by
AutomatonB. It is to be noted that the invariants over
AutomatonA and AutomatonB hold as in Automaton because these
are created not defined.

AutomatonB
Automaton[states2/states, alphabets2/alphabets, delta2/delta]

After defining AA1 and AA2, we can give a formal
definition of homomorphism from AA1 into AA2. The
homomorphism is represented by a schema Homomorphism as
given below. It consists of three components AutomatonA,
AutomatonB and a variable row. The variable row is a mapping
from S to itself used to represent the homomorphism. The
invariants which must hold on homomorphism are defined in
terms of predicates in second part of the schema.

Homomorphism 
AutomatonA
AutomatonB
row: S  S

s: S; x: X s  states1  x  alphabets1
 row delta1 s x = delta2 row s x

Invariant: (i) For every s in the set of states and x in the set of
alphabets of the first automata AutomatonA, if the mapping row
satisfies the condition: row delta1 s x = delta2 row s x then
it conforms a homomorphism from the first automata
AutomatonA into AutomatonB.

If AA1 = AA2 in the homomorphism defined above, then it
is called an endomorphism. To give a formal description of
the endomorphism, the mapping row is defined from the set of
states S to itself. It can be observed that endomorphism is a
variant more precisely a special case after reduction of
homomorphism. That is why we have induced it from the
definition of homomorphism given above.

Endomorphism 
Automaton
row: S  S

s: S; x: X s  states  x  alphabets
 row delta s x = delta row s x

Invariant: (i) For every state s in the set of states and x in the
set of alphabets of the given automata Automaton, if the
mapping row satisfies the condition: row delta1 s x = delta2

row s x, then it conforms an endomorphism from automata
Automaton into itself.

If X and Y are two nonempty sets then a mapping  from set
X to set Y is called one to one if different elements of X have
different images in Y. Mathematically,  x1, x2  X; y  Y •
(x1) = y and (x2) = y  x1 = x2. The mapping  is called
onto if each element of Y is an image of some element of X
that is range of  = Y. If a mapping is a one to one (injective)
as well as onto (surjective) then it is called a bijective
mapping. Coming back to our definition of homomorphism, if
it is a bijective mapping from algebraic automata AA1 to AA2
then it is called an isomorphism and the automata are
isomorphic. Now we give a formalization of isomorphism
from AutomatonA to AutomatonB using a schema given below.
For this purpose, we simply define constraints of bijection
over the homomorphism which results an isomorphism.

Isomorphism
Homomorphism

s1, s2, s: S s1  states1  s2  states1  s  states2
 s1 s  row  s2 s  row  s1 = s2
ran row = states2

Invariants: (i) For all s1 and s2 in states of automata
AutomatonA and s in states of AutomatonB, if the images of s1
and s2 in the second automata are same under the mapping
row then s1 and s2 must be same. (ii) Each element of the set
of states of automata AutomatonB is an image of some element
of automata AutomatonA under the mapping row.

In the formal definition of isomorphism given above, if the
algebraic automata AutomatonA and AutomatonB are equal, that
is, their corresponding components are same and constraints
are also applied then such an isomorphism is called an
automorphism. A formal description of an automorphism is
given below after defining some invariants over the
endomorphism defined above.

Automorphism 
Endomorphism

s1, s2, s: S s1  states  s2  states  s  states
 s1 s  row  s2 s  row  s1 = s2
ran row = states


Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

http://en.wikipedia.org/wiki/Abstract_algebra
http://en.wikipedia.org/wiki/Map_%28mathematics%29
http://en.wikipedia.org/wiki/Algebraic_structure
http://en.wikipedia.org/wiki/Group_%28mathematics%29
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://en.wikipedia.org/wiki/Vector_space

Invariants: (i) For all s1 and s2 in set of states and x in the set
of alphabets of some automata, if the images of s1 and s2 are
same under the mapping row then the elements s1 and s2 are
same. (ii) Each element of the set of states of the given
automata is an image of some element of the set of states of
the same automata under the mapping row..

C. Formalizing Endomorphisms over Monoid

Let A be a given non-empty set then the algebraic structure
(A, *) is a monoid if the following conditions are satisfied.

i.  x, y  A, the element x*y  A. The symbol * is a binary
operation over A.

ii.  x, y, z  A, (x*y)*z = x*(y*z), that is associative property is
satisfied.

iii.  x  A, there exists an element e  A, such that x*e = e * x =
x. The element e is called an identity of A.

Let us suppose that E (A) = set of all the endomorphisms
over the algebraic automata A. It is already proved in [34] that
E (A) forms a monoid under the binary operation defined in
section 5.2. Here we describe the formal specification of it by
defining a schema MonoidEndomorphisms. To formalize this
structure, two variables are assumed. The first one is a set of
all endomorphism which is of type of power set of
Endomorphism and is denoted by endomorphisms. The second
one is a binary operation denoted by boperation. It takes two
endomorphisms as input and produces a new endomorphism as an
output. The components of MonoidEndomorphisms are defined in
first part and invariants are defined in the second part of it.

MonoidEndomorphisms
endomorphisms:  Endomorphism
boperation: Endomorphism  Endomorphism  Endomorphism

endo1, endo2: Endomorphism endo1  endomorphisms 
endo2  endomorphisms
 endo3: Endomorphism endo3  endomorphisms
 boperation endo1 endo2 = endo3
endo1, endo2, endo3: Endomorphism
 endo1  endomorphisms  endo2  endomorphisms  endo3
 endomorphisms
 boperation boperation endo1 endo2 endo3
 = boperation endo1 boperation endo3 endo3
endo: Endomorphism endo  endomorphisms
 endoe: Endomorphism endoe  endomorphisms
 boperation endo endoe = endo  boperation endoe
endo = endo

Invariants: (i) For any two endomorphisms endo1 and endo2
there exists an endomorphism endo3 such that: boperation
endo1 endo2 = endo3. This property defines the binary
operation over the monoid structure MonoidEndomorphisms.
(ii) For any three endomorphisms endo1, endo2 and endo3, the
binary operation satisfies the conditions: boperation
boperation endo1 endo2 endo3= boperation endo1

boperation endo3 endo3This is the associative property
defined over the set of all the endomorphisms. (iii) For any
endomorphisms endo, there exists an endomorphism endoe
such that: boperation endo endoe = endo  boperation

endoeendo = endo. This property ensures the unique
existence of left and right identity of E (A).

D. Formalizing Automorphisms over Group

The algebraic structure (A, *) is a group if it satisfies the
following: (i) A is a monoid, (ii) for each element x in the set
A, there exists a unique element y in A such that x*y = y*x = e,
that is, the inverse of each element of A exists and is unique.

Now let us suppose that A (A) is a set of all the
automorphisms over the algebraic automata A. It is also
proved in [34] that A (A) forms a group. Here we describe its
formal specification by a schema GroupAutomorphisms as was
done for E(A) in Section C. To formalize this structure, three
variables are assumed. The first one is a set of all the
automorphisms which is of type of power set of Automorphism
and is denoted by automorphisms. The second one is an identity
element under the same binary operation. And the last one is the
binary operation itself denoted by boperation. It takes two
automorphisms as input and produces the same or a new
automorphism as an output. The components of the schema
GroupAutomorphisms are given in first part and its invariants are
defined in the second part of the schema GroupAutomorphisms.

GroupAutomorphisms 
automorphisms:  Automorphism
autoe: Automorphism
boperation: Automorphism  Automorphism  Automorphism

auto1, auto2: Automorphism auto1  automorphisms  auto2
 automorphisms
 auto3: Automorphism auto3  automorphisms
 boperation auto1 auto2 = auto3
auto1, auto2, auto3: Automorphism
 auto1  automorphisms  auto2  automorphisms  auto3 
automorphisms
 boperation boperation auto1 auto2 auto3
 = boperation auto1 boperation auto3 auto3
auto: Automorphism auto  automorphisms
 boperation auto autoe = auto  boperation autoe auto =
auto
auto: Automorphism auto  automorphisms
 autoi: Automorphism autoi  automorphisms
 boperation auto autoi = autoe  boperation autoi auto
= autoe

Invariants: (i) For any two automorphisms auto1and auto2
there exists an automorphism auto3 such that: boperation
auto1 auto2 = auto3. This property defines the binary
operation over the structure GroupAutomorphisms. (ii) For any
three automorphisms auto1, auto2 and auto3, the binary
operation satisfies the conditions: boperation boperation 
auto1 auto2 auto3= boperation  auto1 boperation  auto2

auto3This is the associative property over the set of all the
automorphisms. (iii) For any automorphism auto, there exists
an automorphism endoe such that: boperation  auto autoe =

auto  boperation  autoeauto = auto. This property ensures
the existence of unique identity element of the given
collection. (iv) For any automorphism auto, there exists an
automorphism endoi such that: boperation  auto autoi = autoe

 boperation autoiauto = autoe. This property is used to
prove the unique existence of the inverse of each element in
the set A (A) of all the automorphisms.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

VI. CONCLUSION

The main objective of this research was proposing an
integration of fundamental concepts in algebraic automata
and Z notation. To achieve this objective, first we described
formal specification of an algebraic automaton and then its
extended form was described. A linkage was identified and
formalized between various structures of algebraic automata
and Z structures. Few important concepts of homomorphism
and isomorphism were described between these algebraic
structures. Finally its extended form, endomorphism and
automorphism, over monoid and groups automata were
described using Z notation.

Our idea is important and original because we have observed
after integrating that a natural relationship exists between these
approaches. This work is also important because formalizing
graph based notation is not easy as there has been little tradition
of formalization of graph theory due to concreteness of the
graphs [35]. Our work is useful for researchers interested in
integration of approaches for modeling the complex systems. We
believe that this research is also useful because it is focused on
general principles and concepts and this integration can be used
for modeling systems after required reduction.

An extensive survey of existing work was done before
initiating this research. Some interesting work [21], [22],
[26], [36], [37], [38] was found but our work and approach
are different because of conceptual and abstract level
integration of Z and automata. Why and what kind of
integration is required, were two basic questions in our mind
before initiating this research. Since automaton is best suited
for modeling behavior while Z is an ideal one used for
describing state of a system. This distinct in nature but
supporting behavior of Z encouraged us to integrate Z with
automata. We believe that this work will be useful in
development of integrated tools increasing their modeling
power. Formalization of some other concepts in algebraic
automata is under progress and will appear soon.

REFERENCES

[1] A. Hall, Correctness by Construction: Integrating Formality into a
Commercial Development Process, Praxis Critical Systems Limited,
U.K. Springer-Verlag, London. ISBN:3-540-43928-5.

[2] C. J. Burgess, The Role of Formal Methods in Software Engineering
Education and Industry, University of Bristol, UK. 1995.

[3] B. A. L. Gwandu, D. J. Creasey, The importance of Formal
Specification in the Design of Hardware Systems, School of Electron.
& Electr. Eng., Birmingham University, 1994.

[4] H. A. Gabbar, Fundamentals of Formal Methods, Modern Formal
Methods and Applications, Springer, ISBN, 9781-4020-4222-5, 2006.

[5] N. A. Zafar, A. Hussain and A. Ali, “Integration of Algebraic
Automata and Z Notation Conforming Some Important Structures”,
4th International Computer Engineering Conference, Egypt, 2008.

[6] E. A. Boiten, J. Derrick, and G. Smith, Integrated Formal Methods
(IFM04), Canterbury, UK, Springer-Verlag, 2004.

[7] J. Davies, and J. Gibbons, Integrated Formal Methods (IFM07),
Oxford, UK, Springer-Verlag, 2007.

[8] J. Romijn, G. Smith, and J. v .d Pol, Integrated Formal Methods (IFM
05), Eindhoven, The Netherlands, Springer-Verlag, 2005.

[9] K. Araki, A. Galloway, and K. Taguchi, Integrated Formal Methods
(IFM99), York, UK, Springer-Verlag, 1999.

[10] M. Butler, L. Petre, and K. Sere, Integrated Formal Methods (IFM02),
Turku, Finland, Springer-Verlag, 2002.

[11] W. Grieskamp, T. Santen, and B. Stoddart, Integrated Formal
Methods (IFM 2000), Dagstuhl Castle, Germany, Springer-Verlag,
2000.

[12] T. B. Raymond, Integrating Formal Methods by Unifying
Abstractions, Intec, Ghent University, Belgique, 2006.

[13] J. S. Dong, R. Duke, and P. Hao, Integrating Object-Z with Timed
Automata (ICECCS05), pp 488-497, 2005.

[14] J. S. Dong, et al., Timed Patterns: TCOZ to Timed Automata, The 6th
International Conference on Formal Engineering Methods
(ICFEM'04), LNCS, pp 483-498, 2004.

[15] R. L. Constable, P. B. Jackson, Naumov, P., Uribe, J.: Formalizing
Automata II: Decidable Properties, Cornell University, 1997.

[16] R. L. Constable, P. B. Jackson, P. Naumov, J. Uribe,: Constructively
Formalizing Automata Theory, Foundations Of Computing Series,
MIT Press, ISBN:0-262-16188-5, 2000.

[17] R. Bussow, and W. Grieskamp, A Modular Framework for the
Integration of Heterogeneous Notations and Tools, Integrated Formal
Methods (IFM 99), York, UK, Springer-Verlag, 211–230, 1999.

[18] M. Heiner, and M. Heisel, Modeling Safety Critical Systems with Z
and Petri nets, International Conference on Computer Safety,
Reliability and Security, LNCS, Springer, pages 361–374, 1999.

[19] X. He, Pz nets a Formal Method Integrating Petri nets with Z,
Information & Software Technology, 43(1):1–18, 2001.

[20] H. Leading, J. Souquieres,: Integration of UML and B Specification
Techniques: Systematic Transformation from OCL Expressions into B,
Proceedings of Asia-Pacific Software Engineering Conference
(APSEC02), Australia, 2002.

[21] H. Leading, J. Souquieres,: Integration of UML Views using B
Notation, Proceedings of Workshop on Integration and Transformation
of UML models (WITUML02), Spain, 2002.

[22] W. Wechler, The Concept of Fuzziness in Automata and Language
Theory, Akademic-Verlag, Berlin, 1978.

[23] N. M. John, and S. M. Davender, Fuzzy Automata and Languages:
Theory and Applications, Chapman & HALL, CRC, United States of
America, ISBN: 1-58488-225-5, 2002.

[24] M. Ito, Algebraic Theory of Automata and Languages, World
Scientific Publishing Co., ISBN: 981-02-4727-3, 2004.

[25] D. K. Kaynar, and N. Lynchn, The Theory of Timed I/O Automata,
Morgan & Claypool Publishers, 2006.

[26] C. Godsil, and G. Royle, Algebraic Graph Theory, Springer-Verlag,
ISBN 0-387-95220-9, 2001.

[27] D. Conrad, B. Hotzer, Selective Integration of Formal Methods in the
Development of Electronic Control Units, Research Institute for
Automotive Engineering and Vehicle Engines, 1998.

[28] M. Brendan, and J. S. Dong, Blending Object-Z and Timed CSP: An
Introduction to TCOZ, 1998.

[29] J. M. Spivey, The Z notation: A Reference Manual, Englewood
Cliffs, NJ, Printice-Hall, 1989.

[30] J. M. Wing, A Specifier, Introduction to Formal Methods, IEEE
Computer, Vol.23, No.9, pp.8-24, 1990.

[31] J. A. Anderson, Automata Theory with Modern Applications,
Cambridge University Press. ISBN: 9780511223013, 2006

[32] L. L. Claudio, et al., Applications of Finite Automata Representing
Large Vocabularies, John Wiley & Sons, ISBN:0038-0644, (1993)

[33] Y. V. Moshe, Nontraditional Applications of Automata Theory,
Theoretical Aspects of Computer Software, ISBN: 3540578870, 1994.

[34] D. I. A. Cohen, Introduction to Computer Theory, 2ns Edition, City
University of New York, pp. 149-152, 2000.

[35] C. T. Chou, A Formal Theory of Undirected Graphs in Higher Order
Logic, 7th Int’l Workshop on Higher Order Logic Theorem Proving
and Application, pp.144-157, 1994.

[36] D. P. Tuan, Computing with Words in Formal Methods, University of
Canberra, ACT 2601, Australie, 2000.

[37] J. P. Bowen, Formal Specification and Documentation Using Z: A
Case Study Approach, International Thomson Computer Press, 1996.

[38] S. A. Vilkomir, J. P. Bowen, Formalization of Software Testing
Criterion, South Bank University, London, ISBN: 0-7695-1372-7,
2001.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

http://www.springerlink.com/content/g4q348/?p=96308bd95c9a438cab11a89460363ac0&pi=0
http://www.springerlink.com/content/g4q348/?p=96308bd95c9a438cab11a89460363ac0&pi=0
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boiten:Eerke_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Derrick:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Smith:Graeme.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Davies:Jim.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gibbons:Jeremy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Romijn:Judi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Smith:Graeme.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pol:Jaco_van_de.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Araki:Keijiro.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Galloway:Andy.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Taguchi:Kenji.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Butler:Michael_J=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Petre:Luigia.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sere:Kaisa.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Grieskamp:Wolfgang.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Santen:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stoddart:Bill.html
http://www.apsec2002.acs.org.au/
http://ctp.di.fct.unl.pt/~ja/wituml02.htm

