

Abstract— Computer recognition of sign language is an

important research problem for enabling communication with
hearing impaired people. This paper introduces an efficient and
fast algorithm for identification of the number of fingers opened
in a gesture representing an alphabet of the American Sign
Language. Finger Detection is accomplished based on the
concept of Boundary Tracing and Finger Tip Detection. The
system does not require the hand to be perfectly aligned to the
camera or use any special markers or input gloves on the hand.

Index Terms—Boundary Tracing, computer access for
disabled, finger detection, image processing, sign language
recognition.

I. INTRODUCTION

 The long-term goal of our research is to enable
communication between visually impaired (i.e., blind) people
on the one hand and hearing and speech impaired (i.e, deaf
and dumb) people on the other. Since the former cannot see
and the latter use sign language, there is currently no means
of communication between such people who are
unfortunately in significantly large numbers in a country such
as India.

 Our project aims to bridge this gap by introducing an
inexpensive computer in the communication path so that the
sign language can be automatically captured, recognized and
translated to speech for the benefit of blind people. In the
other direction, speech must be analyzed and converted to
either sign or textual display on the screen for the benefit of
the hearing impaired. An important research problem in such
a solution is the automatic recognition of sign language
through image processing.

 This paper presents a special-purpose image processing
algorithm that we have developed to recognize signs from the
American Sign Language with high accuracy. A significant
contribution of this result is that it does not require the person
making the signs to use any artificial gloves or markers.

 In recent years, there has been a tremendous amount of
research on hand gesture recognition. Some of the earlier
gesture recognition systems attempted to identify gestures
using glove-based devices that would measure the position

Manuscript received December 8, 2008. This work was supported in part

by a research grant under the Research Promotion Scheme from the All India
Council for Technical Education.

Authors are with the Department of Computer Science, PES Institute of

Technology, Ring Road, BSK 3rd Stage, Bangalore, 560085 India. Kavi
Mahesh and Nitin V Pujari are professors in the department and the other
authors are undergraduate students (+919845290073,
ravikiran.j.127@gmail.com, DrKaviMahesh@GMail.com).

and joint angles of the hand [5]. However, these devices are
very cumbersome and usually have many cables connected to
a computer. This has brought forth the motivation of using
non-intrusive, vision-based approaches for recognizing
gestures.
.

This work has focused primarily on identifying the
number of fingers opened in a gesture representing an
alphabet of the American Sign Language. Knowing the
number of fingers open, it is possible to identify reliably the
gesture as an alphabet belonging to a class of gestures which
have fingers open (see Fig. 6 below).

We have been working with the added constraints of
minimal calibration of the system between different users.
Many previous gesture based systems have the common
element of markers on the hand [1, 2], data gloves or colored
gloves worn by the user [3] to allow the gesture and pose to
be derived.

 This system achieves the objective of detecting the
number of open fingers using the concept of boundary
tracing combined with finger tip detection. It handles breaks,
if any, during boundary tracing by rejoining the trace at an
appropriate position.

II. RELATED WORK
There have been many previous works which extracted
certain features of the hand for finger detection.
Some common features extracted include hand silhouettes
[6], [7], contours [8], key points distributed along hand
(fingertips, joints) [9], [10], [11], [12], [18], [21], and
distance-transformed images [13].

 There have also been works where finger detection has
been accomplished via color segmentation and contour
extraction [12, 14]. But this technique requires fine-tuning
every time the system switches to a new user as the color
complexion varies from person to person.

 In view of the limitations posed by the schemes
discussed above there is a need to devise an efficient and
robust technique for finger detection. The next section
discusses our solution to this problem.

III. PROPOSED METHODOLOGY
In this paper we present a robust and efficient technique

for finger detection. Our method has three main phases of
processing viz., Edge Detection, Clipping and Boundary
Tracing.

Finger Detection for Sign Language Recognition
Ravikiran J, Kavi Mahesh, Suhas Mahishi, Dheeraj R, Sudheender S, Nitin V Pujari

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

The first phase employs Canny edge operator and
produces an edge detected image which reduces the number
of pixels to be processed at runtime. The next phase clips the
undesirable portion of the edge detected image for further
processing. The final phase traces the boundary of the image
and in the process detects finger tips which aid in finger
detection.

Figure 1: Finger Detection Flowchart

A. Canny Edge Detection
Edge detection is a phenomenon of identifying points in a

digital image at which the image brightness changes sharply
or, more formally, has discontinuities.

The Canny algorithm uses an optimal edge detector based

on a set of criteria which include finding the most edges by
minimizing the error rate, marking edges as closely as
possible to the actual edges to maximize localization, and
marking edges only once when a single edge exists for
minimal response [4]. According to Canny, the optimal filter
that meets all three criteria above can be efficiently
approximated using the first derivative of a Gaussian
function.

The first stage involves smoothing the image by

convolving with a Gaussian filter. This is followed by
finding the gradient of the image by feeding the smoothed
image through a convolution operation with the derivative of
the Gaussian in both the vertical and horizontal directions.

 The non-maximal suppression stage finds the local
maxima in the direction of the gradient, and suppresses all

others, minimizing false edges. The local maxima is found
by comparing the pixel with its neighbors along the
direction of the gradient. This helps to maintain the single
pixel thin edges before the final thresholding stage.

 Instead of using a single static threshold value for the
entire image, the Canny algorithm introduced hysteresis
thresholding, which has some adaptivity to the local content
of the image. There are two threshold levels, th, high and tl,
low where th > tl. Pixel values above the th value are
immediately classified as edges. By tracing the edge
contour, neighboring pixels with gradient magnitude values
less than th can still be marked as edges as long as they are
above tl. This process alleviates problems associated with
edge discontinuities by identifying strong edges, and
preserving the relevant weak edges, in addition to
maintaining some level of noise suppression. While the
results are desirable, the hysteresis stage slows the overall
algorithm down considerably.

 The performance of the Canny algorithm depends
heavily on the adjustable parameters, σ, which is the
standard deviation for the Gaussian filter, and the threshold
values, th and tl. σ also controls the size of the Gaussian
filter.

Figure 2: Image of a Hand Gesture Before and After Edge
Detection.

 The bigger the value for σ, the larger the size of the
Gaussian filter becomes. This implies more blurring,
necessary for noisy images, as well as detecting larger
edges. As expected, however, the larger the scale of the
Gaussian, the less accurate is the localization of the edge.
Smaller values of σ imply a smaller Gaussian filter which
limits the amount of blurring, maintaining finer edges in the
image. The user can tailor the algorithm by adjusting these
parameters to adapt to different environments with different
noise levels. The threshold values and the standard
deviation for the Gaussian filter are specified as 4.5, 4.7 and
1.9 for the above used input source and background
environment.

B. Clipping
Clipping is used to cut a section through the data (image)

currently being rendered. The image contents that pertain to
the area of interest are retained after clipping.

The edge detected image contains portions which are

unnecessary for further analysis. Hence we eliminate them by
adopting two techniques discussed below.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

The first technique examines pixels from the bottommost

y level and at each level checks if there are three or more
consecutive white pixels. If the above condition is satisfied
we mark this y-level as “y1”.

The second technique exploits the fact that most of the

edge detected images of hand gestures have the wrist portion
which has a constant difference between the either ends on
the same y-level. When it approaches the palm and region of
the hand above it, this difference increases drastically. We
make use of this fact and find the y-level where this event
occurs and mark this y-level as “y2”.

Figure 3: Edge-Detected Image of a Hand Gesture Before
and After Clipping.

Now we choose the maximum of (y1, y2) as the clipping

y-level. All the pixels below this y-level are now cleared by
overwriting them with a black pixel.

C. Boundary Tracing
This phase of the algorithm is the heart of processing. The

edge detected image which is clipped serves as the input to
this phase. The output is the traced image where the
trace-points are highlighted in blue and the points where the
finger tip is detected are highlighted in red.

This phase consists of the following steps: identifying the

optimal y-level, identifying the initial trace direction, tracing
with appropriate switch of direction, rejoining the trace on
encountering breaks, finger tip detection.

In the explanation of the above steps, the following are

assumed:

1) Identifying the Optimal y-level
This step involves identifying the y-level to start the trace

of the image. By experimenting with different y-levels for
various image samples, we fixed the optimal y-level as
30-35% of dy from the top of the edge detected clipped
image. Hence the starting pixel for trace is the first white
pixel found as a result of scanning from minx to maxx on the
optimal y-level.

2) Identifying the initial trace direction
From the initial trace point, we proceed towards miny
without changing the current x-coordinate, until there is no
pixel to proceed. Then we examine the neighboring white
pixels and set the “left” or “right” flags appropriately.

3) Tracing with appropriate switch of direction
After identifying the trace direction, the system proceeds by
tracing pixels. For every five pixels traced, we write the fifth
pixel with blue color. Also whenever we find no pixels in the
current direction, we check if there is a pixel in the other
direction. If present, we toggle the direction of trace, else it is
a break.

4) Rejoining the trace on encountering breaks
A break can be encountered while tracing upwards or
downwards a finger. They are handled separately based on
the flag “UD” which indicates whether we are travelling
up(+1) or down(-1).

 Varying the x-coordinate from current value to maxx, we
scan from the current y-level towards the upper or lower
boundary of the image based on the value of “UD” for a
white pixel. If found, we then start the trace again from this
pixel re-initializing the count to 0.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Figure 4: Rejoining the Trace after Encountering a Break.

5) Finger Tip Detection

Whenever the flag “UD” switches from +1 to -1, it indicates
the change in trace direction from up to down. This event
signifies the detection of a finger tip and hence we write this
pixel with red. After finding a finger tip there are two
techniques to find the starting point of the next finger.

 In the first technique we trace downwards from the finger
tip position to the optimal y-level, then from that position we
increment the x-coordinate until we find a white pixel, this
serves as the starting point for processing the next finger.

 The second technique is employed when the fingers are
adjoined. In this technique we check if a white pixel exists
towards the right/left of the current downward trace pixel, if
found, this serves as the starting point of processing next
finger.

Figure 5: Finger Tip Detection.

The algorithm iterates through the above process until the
x-coordinate has not reached maxx. The count of the finger
tips at this stage is the count of the number of fingers.

IV. IMPLEMENTATION AND RESULTS
In this section we describe the accuracy of our algorithm. The
application has been implemented in Java 1.6 (Update 7)
using the ImageIO libraries. The application has been tested
on a Pentium IV running at 3.00 GHz. The images have been
captured using a 6 Mega Pixel Canon PowerShot S3 IS.
The captured images are of resolution 640x480. For the
performance evaluation of the finger detection, the system
has been tested multiple times on samples authored by a set of
5 different users.

 Figure 6 shows a subset of American Sign Language
gestures which have fingers open. Figure 7 shows the
performance evaluation results. These results are plotted on a
graph, where the y-axis represents number of tests and the
x-axis represents the gestures of the American Sign
Language corresponding to alphabets. The columns are
paired for each gesture: the first column is the number of
times the fingers are correctly identified in the gesture; the
second column is the total number of times that the test on the
gesture has been carried out. As it can be seen in Fig. 7, the
finger recognition works accurately for 95% of the cases.

Figure 6: American Sign Language Gestures

 Figure 7: System Performance Evaluation Results.

V. CONCLUSION AND FUTURE WORK
A boundary-trace based finger detection technique is
presented and cusp detection analysis is done to locate the
finger tip. This algorithm designed is a simple, efficient and
robust method to locate finger tips and enables us to identify
a class of hand gestures belonging to the American Sign
Language which have fingers open.

 The accuracy obtained in this work is sufficient for the
purposes of converting sign language to text and speech since
a dictionary can be used to correct any spelling errors
resulting from the 5% error in our gesture recognition
algorithm.

 In future work, sensor based contour analysis can be
employed to detect which fingers in particular are open. This
will give more flexibility to interpret the gestures.
Furthermore, hand detection method using texture and shape
information can be used to maximize the accuracy of
detection in cluttered background.

 More importantly, we need to develop algorithms to cover
other signs in the American Sign Language that have all the
fingers closed. An even bigger challenge will be to recognize
signs that involve motion (i.e, where various parts of the hand
move in specific ways).

 In our future work, we plan to complete other modules of
the overall solution needed to enable communication
between blind and deaf people. In particular, we will focus on

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

translating the recognized sequences of signs to continuous
text (i.e., words and sentences) and then to render the text in
speech that can be heard by blind people.

ACKNOWLEDGMENT
The authors would like to thank the Principal and the

management of the PES Institute of Technology for their
continued support in carrying out this research and in
publishing this paper at the conference.

REFERENCES
 [1] V. Buchmann, S. Violich, M. Billinghurst A. Cockburn: FingARtips:

Gesture based direct manipulation in Augmented Reality, In Proc. of
the 2nd international conf. on Computer graphics and interactive
techniques in Australasia and South East Asia (Graphite 2004).
15-18th June Singapore, 2004, ACM Press, New York, New York,
pp. 212-221.

[2] Y. Kojima, Y. Yasumuro, H. Sasaki, I. Kanaya, O. Oshiro, T.

Kuroda, Y. Manabe and K. Chihara: Hand Manipulation of Virtual
Object in Wearable Augmented Reality, In Proc. 7th International
Conf. on Virtual Systems and Multimedia (VSMM’01), pp 463-470,
October 2001

[3] Y. Iwai, K. Watanabe, Y. Yagi, M. Yachida: Gesture Recognition by

Using Colored Gloves, IEEE International Conference on Systems,
Man and Cybernetics (SMC'96),Vol. 1, pp. 76-81, Beijing, China,
Aug. 1996.

[4] Canny, J., “A Computational Approach to Edge Detection”, IEEE Trans.

Pattern Analysis and Machine Intelligence, 8:679-714, November 1986.

[5] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of

hand gestures for human-computer interaction: A review.”IEEE Trans.
on PatternRecognition and Machine Intelligence, vol. 19 issue 7, pp
677-695, July 1997.

[6] N. Shimada et al., “Hand gesture estimation and model refinement using

monocular camera—Ambiguity limitation by inequality constraints,” in
Proc. 3rd Conf. Face and Gesture Recognition, pp. 268-273, 1998.

[7] M. Sonka, V. Hlavac, and R. Boyle, Image processing, Analysis, and

Machine Vision, Brooks/Cole Publishing Company, 1999.

[8] T. Starner and A. Pentland, “Real-time American Sign Language

recognition from video using hidden Markov models,” in Proc.of
International Symposium on Computer Vision, pp. 265–270, 21-23 Nov.
1995.

[9] J. Lee and T. Kunii, “Model-based analysis of hand posture,” IEEE

Comput. Graph. Appl., vol. 15, no. 5, pp. 77-86, Sept. 1995.

[10] H. Fillbrandt, S. Akyol, K. F. Kraiss, “ Extraction of 3D Hand Shape

and Posture from Image Sequences for Sign Language Recognition.”
IEEE International Workshop on Analysis and Modeling of Faces and
Gestures, vol. 17, pp. 181-186, October 2003.

[11] T. Starner, A. Pentland , J. Weaver, “Real-Time American Sign

Language Recognition Using Desk and Wearable Computer Based
Video,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20 issue 12, pp. 1371-1375, December 1998.

[12] K. Imagawa, S. Lu, and S. Igi, “Color-based hands tracking system for

sign language recognition” , in Proc. Third IEEE International
Conference on Automatic Face and Gesture Recognition, pp. 462 – 467,
April 14-16, 1998.

[13] C.H. Teh and R. T. Chin, “On image analysis by the methods of

moments” , IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 10, no. 4, pp. 496 – 513, July 1988.

[14] Sung Kwan Kang, Mi Young Nam, Phill Kyu Rhee, “Color Based Hand

and Finger Detection Technology for User Interaction”, International
Conference on Convergence and Hybrid Information Technology, Aug
2008.

[15] J.J. Kuch and T.S. Huang, “Vision-based hand modeling and tracking

for virtual teleconferencing and telecollaboration,” in Proc. IEEE Int.
Conf. Computer Vision, Cambridge, MA, pp. 666-671. June 1995.

[16] J. Davis and M. Shah, “Visual gesture recognition,” Vision, Image, and

Signal Processing, vol. 141, pp. 101-106, Apr. 1994.

[17] J. Rehg and T. Kanade, “DigitEyes: vision-based human hand tracking,”

School of Computer Science Technical Paper CMU-CS-93-220,
Carnegie Mellon Univ., Dec.1993.

[18] Y. Shirai, N. Tanibata, N. Shimada, “Extraction of hand features for

recognition of sign language words,” VI'2002,Computer-Controlled
Mechanical Systems, Graduate School of Engineering, Osaka
University, 2002.

[19] C. Nölker, H. Ritter, “Detection of Fingertips in Human Hand

Movement Sequences,” Gesture and Sign Language in
Human-Computer Interaction, I. Wachsmuth and M. FroÈhlich, eds., pp.
209-218, 1997.

[20] B. Bauer and H. Hienz, “Relevant features for video-based continuous

sign language recognition,” in Proc. of Fourth IEEE International
Conference on Automatic Face and Gesture Recognition, pp. 440-445,
March 2000.

[21] Y. Hamada, N. Shimada and Y. Shirai, “Hand Shape Estimation under

Complex Backgrounds for Sign Language Recognition” , in Proc. of 6th
Int. Conf. on Automatic Face and Gesture Recognition, pp. 589-594,
May 2004.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

