
 
 

 

  
Abstract— Computer recognition of sign language is an 

important research problem for enabling communication with 
hearing impaired people. This paper introduces an efficient and 
fast algorithm for identification of the number of fingers opened 
in a gesture representing an alphabet of the American Sign 
Language. Finger Detection is accomplished based on the 
concept of Boundary Tracing and Finger Tip Detection. The 
system does not require the hand to be perfectly aligned to the 
camera or use any special markers or input gloves on the hand. 
 

Index Terms—Boundary Tracing, computer access for 
disabled, finger detection, image processing, sign language 
recognition. 
 

I. INTRODUCTION 

  The long-term goal of our research is to enable 
communication between visually impaired (i.e., blind) people 
on the one hand and hearing and speech impaired (i.e, deaf 
and dumb) people on the other. Since the former cannot see 
and the latter use sign language, there is currently no means 
of communication between such people who are 
unfortunately in significantly large numbers in a country such 
as India.  
 
       Our project aims to bridge this gap by introducing an 
inexpensive computer in the communication path so that the 
sign language can be automatically captured, recognized and 
translated to speech for the benefit of blind people. In the 
other direction, speech must be analyzed and converted to 
either sign or textual display on the screen for the benefit of 
the hearing impaired. An important research problem in such 
a solution is the automatic recognition of sign language 
through image processing. 
 
     This paper presents a special-purpose image processing 
algorithm that we have developed to recognize signs from the 
American Sign Language with high accuracy. A significant 
contribution of this result is that it does not require the person 
making the signs to use any artificial gloves or markers. 
 
      In recent years, there has been a tremendous amount of 
research on hand gesture recognition. Some of the earlier 
gesture recognition systems attempted to identify gestures 
using glove-based devices that would measure the position 
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and joint angles of the hand [5]. However, these devices are 
very cumbersome and usually have many cables connected to 
a computer. This has brought forth the motivation of using 
non-intrusive, vision-based approaches for recognizing 
gestures. 
.   

This work has focused primarily on identifying the 
number of fingers opened in a gesture representing an 
alphabet of the American Sign Language. Knowing the 
number of fingers open, it is possible to identify reliably the 
gesture as an alphabet belonging to a class of gestures which 
have fingers open (see Fig. 6 below). 
 

We have been working with the added constraints of 
minimal calibration of the system between different users.  
Many previous gesture based systems have the common 
element of markers on the hand [1, 2], data gloves or colored 
gloves worn by the user [3] to allow the gesture and pose to 
be derived. 
 

      This system achieves the objective of detecting the 
number of open fingers using the concept of boundary 
tracing combined with finger tip detection. It handles breaks, 
if any, during boundary tracing by rejoining the trace at an 
appropriate position. 

 

II. RELATED WORK 
There have been many previous works which extracted 
certain features of the hand for finger detection.  
Some common features extracted include hand silhouettes 
[6], [7], contours [8], key points distributed along hand 
(fingertips, joints) [9], [10], [11], [12], [18], [21], and 
distance-transformed images [13]. 
 
      There have also been works where finger detection has 
been accomplished via color segmentation and contour 
extraction [12, 14]. But this technique requires fine-tuning 
every time the system switches to a new user as the color 
complexion varies from person to person. 
 

      In  view  of  the  limitations  posed  by  the  schemes 
discussed  above  there  is  a  need  to  devise  an efficient  and 
robust technique for finger detection.  The next section 
discusses our solution to this problem. 

III. PROPOSED METHODOLOGY 
In this paper we present a robust and efficient technique 

for finger detection. Our method has three main phases of 
processing viz., Edge Detection, Clipping and Boundary 
Tracing.  
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The first phase employs Canny edge operator and 
produces an edge detected image which reduces the number 
of pixels to be processed at runtime. The next phase clips the 
undesirable portion of the edge detected image for further 
processing. The final phase traces the boundary of the image 
and in the process detects finger tips which aid in finger 
detection. 

 

 
Figure 1: Finger Detection Flowchart 

 

A. Canny Edge Detection 
Edge detection is a phenomenon of identifying points in a 

digital image at which the image brightness changes sharply 
or, more formally, has discontinuities. 

 
The Canny algorithm uses an optimal edge detector based 

on a set of criteria which include finding the most edges by 
minimizing the error rate, marking edges as closely as 
possible to the actual edges to maximize localization, and 
marking edges only once when a single edge exists for 
minimal response [4].  According to Canny, the optimal filter 
that meets all three criteria above can be efficiently 
approximated using the first derivative of a Gaussian 
function. 

 

 
 
The first stage involves smoothing the image by 

convolving with a Gaussian filter.  This is followed by 
finding the gradient of the image by feeding the smoothed 
image through a convolution operation with the derivative of 
the Gaussian in both the vertical and horizontal directions.   

 

 
 

      The non-maximal suppression stage finds the local  
maxima in the direction of the gradient, and suppresses all 

others, minimizing false edges.  The local maxima is found 
by comparing the pixel with its neighbors along the 
direction of the gradient.  This helps to maintain the single 
pixel thin edges before the final thresholding stage.  
  
      Instead of using a single static threshold value for the  
entire image, the Canny algorithm introduced hysteresis 
thresholding, which has some adaptivity to the local content 
of the image.  There are two threshold levels, th, high and tl, 
low where th > tl. Pixel values above the th value are 
immediately classified as edges.  By tracing the edge 
contour, neighboring pixels with gradient magnitude values 
less than th can still be marked as edges as long as they are 
above tl. This process alleviates problems associated with 
edge discontinuities by identifying strong edges, and 
preserving the relevant weak edges, in addition to 
maintaining some level of noise suppression.  While the 
results are desirable, the hysteresis stage slows the overall 
algorithm down considerably.  
 
      The performance of the Canny algorithm depends 
heavily on the adjustable parameters, σ, which is the 
standard deviation for the Gaussian filter, and the threshold 
values, th and tl.  σ also controls the size of the Gaussian 
filter. 
 

 
 

Figure 2: Image of a Hand Gesture Before and After Edge 
Detection. 

 
      The bigger the value for σ, the larger the size of the 
Gaussian filter becomes.  This implies more blurring, 
necessary for noisy images, as well as detecting larger 
edges. As expected, however, the larger the scale of the 
Gaussian, the less accurate is the localization of the edge. 
Smaller values of σ imply a smaller Gaussian filter which 
limits the amount of blurring, maintaining finer edges in the 
image.  The user can tailor the algorithm by adjusting these 
parameters to adapt to different environments with different 
noise levels. The threshold values and the standard 
deviation for the Gaussian filter are specified as 4.5, 4.7 and 
1.9 for the above used input source and background 
environment. 
 

B. Clipping 
Clipping is used to cut a section through the data (image) 

currently being rendered. The image contents that pertain to 
the area of interest are retained after clipping. 

 
The edge detected image contains portions which are 

unnecessary for further analysis. Hence we eliminate them by 
adopting two techniques discussed below. 
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The first technique examines pixels from the bottommost 

y level and at each level checks if there are three or more 
consecutive white pixels. If the above condition is satisfied 
we mark this y-level as “y1”. 

 
The second technique exploits the fact that most of the 

edge detected images of hand gestures have the wrist portion 
which has a constant difference between the either ends on 
the same y-level. When it approaches the palm and region of 
the hand above it, this difference increases drastically. We 
make use of this fact and find the y-level where this event 
occurs and mark this y-level as “y2”. 

 
 

 
        

Figure 3: Edge-Detected Image of a Hand Gesture Before 
and After Clipping. 

 
Now we choose the maximum of (y1, y2) as the clipping 

y-level. All the pixels below this y-level are now cleared by 
overwriting them with a black pixel. 
 

C. Boundary Tracing 
This phase of the algorithm is the heart of processing. The 

edge detected image which is clipped serves as the input to 
this phase. The output is the traced image where the 
trace-points are highlighted in blue and the points where the 
finger tip is detected are highlighted in red. 

 
This phase consists of the following steps: identifying the 

optimal y-level, identifying the initial trace direction, tracing 
with appropriate switch of direction, rejoining the trace on 
encountering breaks, finger tip detection. 

 
In the explanation of the above steps, the following are 

assumed: 
 

 
 
 

1) Identifying the Optimal y-level 
This step involves identifying the y-level to start the trace 

of the image. By experimenting with different y-levels for 
various image samples, we fixed the optimal y-level as 
30-35% of dy from the top of the edge detected clipped 
image. Hence the starting pixel for trace is the first white 
pixel found as a result of scanning from minx to maxx on the 
optimal y-level. 
 

2) Identifying the initial trace direction 
From the initial trace point, we proceed towards miny 
without changing the current x-coordinate, until there is no 
pixel to proceed. Then we examine the neighboring white 
pixels and set the “left” or “right” flags appropriately. 
 

3) Tracing with appropriate switch of direction 
After identifying the trace direction, the system proceeds by 
tracing pixels. For every five pixels traced, we write the fifth 
pixel with blue color. Also whenever we find no pixels in the 
current direction, we check if there is a pixel in the other 
direction. If present, we toggle the direction of trace, else it is 
a break. 
 

4) Rejoining the trace on encountering breaks 
A break can be encountered while tracing upwards or 
downwards a finger. They are handled separately based on 
the flag “UD” which indicates whether we are travelling 
up(+1) or down(-1).  
 
     Varying the x-coordinate from current value to maxx, we 
scan from the current y-level towards the upper or lower 
boundary of the image based on the value of “UD” for a 
white pixel. If found, we then start the trace again from this 
pixel re-initializing the count to 0.  
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Figure 4: Rejoining the Trace after Encountering a Break. 
 
5) Finger Tip Detection 

Whenever the flag “UD” switches from +1 to -1, it indicates 
the change in trace direction from up to down. This event 
signifies the detection of a finger tip and hence we write this 
pixel with red. After finding a finger tip there are two 
techniques to find the starting point of the next finger. 
 
      In the first technique we trace downwards from the finger 
tip position to the optimal y-level, then from that position we 
increment the x-coordinate until we find a white pixel, this 
serves as the starting point for processing the next finger.  
 
      The second technique is employed when the fingers are 
adjoined. In this technique we check if a white pixel exists 
towards the right/left of the current downward trace pixel, if 
found, this serves as the starting point of processing next 
finger. 

 

 
Figure 5: Finger Tip Detection. 

 
The algorithm iterates through the above process until the 
x-coordinate has not reached maxx. The count of the finger 
tips at this stage is the count of the number of fingers. 
 

IV. IMPLEMENTATION AND RESULTS 
In this section we describe the accuracy of our algorithm. The 
application has been implemented in Java 1.6 (Update 7) 
using the ImageIO libraries. The application has been tested 
on a Pentium IV running at 3.00 GHz. The images have been 
captured using a 6 Mega Pixel Canon PowerShot S3 IS. 
The captured images are of resolution 640x480. For the 
performance evaluation of the finger detection, the system 
has been tested multiple times on samples authored by a set of 
5 different users. 
 
      Figure 6 shows a subset of American Sign Language 
gestures which have fingers open. Figure 7 shows the 
performance evaluation results. These results are plotted on a 
graph, where the y-axis represents number of tests and the 
x-axis represents the gestures of the American Sign 
Language corresponding to alphabets. The columns are 
paired for each gesture: the first column is the number of 
times the fingers are correctly identified in the gesture; the 
second column is the total number of times that the test on the 
gesture has been carried out. As it can be seen in Fig. 7, the 
finger recognition works accurately for 95% of the cases. 

 
Figure 6: American Sign Language Gestures 

              

 
 
 Figure 7: System Performance Evaluation Results. 
 

V. CONCLUSION AND FUTURE WORK 
A boundary-trace based finger detection technique is 
presented and cusp detection analysis is done to locate the 
finger tip. This algorithm designed is a simple, efficient and 
robust method to locate finger tips and enables us to identify 
a class of hand gestures belonging to the American Sign 
Language which have fingers open.  
 
       The accuracy obtained in this work is sufficient for the 
purposes of converting sign language to text and speech since 
a dictionary can be used to correct any spelling errors 
resulting from the 5% error in our gesture recognition 
algorithm. 
 
       In future work, sensor based contour analysis can be 
employed to detect which fingers in particular are open. This 
will give more flexibility to interpret the gestures. 
Furthermore, hand detection method using texture and shape 
information can be used to maximize the accuracy of 
detection in cluttered background.  
 
     More importantly, we need to develop algorithms to cover 
other signs in the American Sign Language that have all the 
fingers closed. An even bigger challenge will be to recognize 
signs that involve motion (i.e, where various parts of the hand 
move in specific ways). 
 
      In our future work, we plan to complete other modules of 
the overall solution needed to enable communication 
between blind and deaf people. In particular, we will focus on 
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translating the recognized sequences of signs to continuous 
text (i.e., words and sentences) and then to render the text in 
speech that can be heard by blind people. 
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