
Modular Multipliers Using a Modified Residue
Addition Algorithm with Signed-Digit Number

Representation

Shugang Wei∗

Abstract— In this paper, we present multipliers us-
ing a modified addition algorithm modulo m with a
signed-digit(SD) number representation where m =
2n − 1, 2n or 2n + 1. To simplify an SD modular adder,
new addition rules are proposed for generating the in-
termediate sum and carry with a binary number rep-
resentation. By using the new codes for intermediate
sum and carry and the end-around carry architecture,
the proposed modulo m addition requires less hard-
ware and short delay time for the residue addition
than previous methods. A modulo m multiplier can
be implemented by a binary modulo m adder tree.
Compared to previous work, the circuit area and de-
lay time of the multiplier are improved by 21% and
30%, respectively.

Keywords: Residue number system, Signed-Digit Num-

ber, Residue arithmetic, modular addition, modular

multiplier

1 Introduction

A residue number system(RNS) features ith residue digit
of sum, difference and product is exclusively dependent
on the ith digits of the operands [1],[2]. In general, to
compute a remainder, it is usually to use read-only mem-
ories to do residue arithmetic [3]. However, to store all
residue arithmetic tables, many read-only memories are
required. Moduli 2n, 2n − 1, 2n + 1 have been widely
used to simplify the residue arithmetic without memory.
When a binary number system is used to perform the
residue arithmetic, the carry propagation will arise in-
side the residue digits and the speed of arithmetic oper-
ation will be limited. For example, the residue addition
time is proportional to log(n) even for the improved adder
architectures[4].

Signed-digit(SD) number system [5] offers a carry-free
addition. We have presented a novel residue arithmetic
hardware algorithm using the SD number representation
to implement the residue addition in a constant time and

∗Supported by Grant-in-Aid Research(C)(19500039) from Japan
Society for the Promotion of Science(JSPS). Manuscript submitted
November 27 2008. The author is with the faculty of Engineering,
Gunma University, Japan 376-8515. Tel/Fax:81-277-30-1824/1826
Email:wei@ja4.cs.gunma-u.ac.jp

the residue multiplication using a residue SD adder tree
architecture for the symmetric RNS [6]. High speed con-
version algorithms between weighted and residue num-
bers also have been proposed by using the presented
residue SD additions [7]. For moduli 2n, 2n−1, 2n+1, the
modular addition can be performed with an end-around-
carry SD adder[6]. However, in the residue SD adder, a
2-bit code was used to represent an SD number and this
leads to that the circuits is very larger than the binary
architecture. To simplify an SD adder, in this paper, a
binary number representation is used to express the in-
termediate sum and carry of SD addition, such that the
performance of residue SD adder can be improved. We
propose a modified modulo m signed-digit addition algo-
rithm which is designed by generating the residue inter-
mediate sum and carry with the binary number repre-
sentation. By using the modified modulo m SD addition
algorithm, a high speed multiplier with a residue adder
tree can be implemented. Compared with our previous
work [6], the evaluation results of hardware performance
show that the area and delay time of the multipliers are
improved by 21% and 30%, respectively.

2 Preliminaries

A residue number with respect to an odd modulus m is
represented by the symmetric set:

lm = {−(m− 1)/2, · · · , 0, · · · , (m− 1)/2}. (1)

A residue number X can be represented by an n-digit
radix-two SD number representation as follows:

x = xn−12n−1 + xn−22n−2 + · · ·+ x0, (2)

where xi ∈ {−1, 0, 1}, and X can be denoted as
(xn−1, xn−2, · · · , x0)SD. To simplify the manipulation of
the modular operation in the SD number representation,
we enlarge lm to the following redundant residue number
set:

Lm = {−(2n − 1), · · · ,−(m− 1)/2, · · · 0,

· · · , (m− 1), · · · , (2n − 1)}. (3)

Thus, x must be in Lm when it is expressed in an n-digit
SD number representation. Obviously,

−x = −(xn−1, xn−2, · · · , x0)SD

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table 1: Rules for adding SD numbers
abs(xi) 6= abs(yi)

abs(xi) = abs(yi) xpyi × xpyi−1 < 0 or xpyi × xpyi−1 > 0 or
(xpyi−1 = 0) and (xpyi < 0) ((xpyi−1 = 0) and (xpyi > 0))

wi 0 xpyi −xpyi

ci xpyi/2 0 xpyi

Note: xpyi = xi + yi.

Table 2: New rules for adding SD numbers
abs(xi) 6= abs(yi)

abs(xi) = abs(yi) xpyi × xpyi−1 < 0 or xpyi × xpyi−1 > 0 or
(xpyi−1 = 0) and (xpyi < 0) ((xpyi−1 = 0) and (xpyi > 0))

ui ti−1 ti−1 − xpyi ti−1 + xpyi

vi ti + xpyi/2 ti ti + xpyi

Note: xpyi = xi + yi.

= (−xn−1,−xn−2, · · · ,−x0)SD

is also in Lm.

[Definition 1] Let X be an SD number representation
and m be a modulus. Then x = 〈X〉m is defined as an
integer in Lm. When |X|m 6= 0, x has one of two possible
values given by equations

x = 〈Y 〉m = |X|m, (4)

and
x = 〈X〉m = |X|m − sign(|X|m)×m, (5)

where

sign(s) =
{ −1 s < 0

1 s ≥ 0 .

When |X|m = 0 and m = 2n− 1, there are three possible
values for x, that is, −m, 0 and m.

The numbers as the intermediate results calculated in
Lm are used for fast residue arithmetic. If necessary for
a final result, they can be converted into lm.

3 Modulo m Signed-Digit Addition

3.1 Previous Study

Consider addition x + y, where x, y are the SD numbers
in the n-digit SD representation shown in (2), can be
performed as follows: Let wi and ci be the intermediate
sum and the carry of ith digit position, respectively. The
values of them are determined by Table 1 with respect
to the values of xi, yi, xi−1, yi−1. In Table 1, abs(xi)
is the absolute value of xi and xpyi = xi + yi. Thus
the addition at each digit can be implemented by the

following two steps:

ADD1: Determine ci and wi using Table 1, and

2× ci + wi = xi + yi. (6)

ADD2:
si = wi + ci−1, (7)

where c−1 = 0 and x−1 = y−1 = 0. Then

S = x + y = (cn−1, sn−1, sn−2, · · · , s0). (8)

Let µ be a residue parameter and defined as
µ = m− 2n. (9)

In this cases of µ ∈ {0, 1,−1}, an end-around-carry SD
adder is constructed for the modulo m signed-digit addi-
tion:

c−1 = 〈cn−12n〉m = −cn−1 × µ (10)

and

x−1 = −µ× xn−1, (11)
y−1 = −µ× yn−1. (12)

Using the above values of c−1,x−1 and = y−1 instead of
c−1 = 0 and x−1 = y−1 = 0, we have

s = 〈x + y〉m = (sn−1, sn−2, · · · , s0). (13)

Figure 1 illustrates a circuit diagram of an n-digit Modulo
m Signed-Digit adder (MSDA) with n SD full adders (SD-
FAs). One SDFA consists of one ADD1 and one ADD2.
ADD1 generates the intermediate sum and the interme-
diate carry, and ADD2 sums the low intermediate carry
and the intermediate sum. We use ⊗ to denote an 1-by-
1 multiplier. The MSDA can be performed in parallel
without the carry propagation.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

ADD1

ADD2

ADD1

ADD2

ADD1

ADD2

ss1

x y

0

01

c c
01

x y 01

c
n-1

n-1
x y
n-1 n-2x yn-2

SDFA

sn-1

c
-1

w
0w

1
wn-1

x y-1-1

z
n

−µ

Figure 1: Modulo m Signed-Digit adder

3.2 Improved Signed-Digit Adder

For the circuit design, an SD digit d ∈ {−1, 0, 1} is en-
coded as a 2-bit binary code d = [d(s), d(a)], where d(s)
is the sign and d(a) is the absolute value. Thus, the area
of the addition circuit is larger than the binary number
architecture. To modify the area cost, a method using the
binary number representation for the intermediate carry
and sum for the SD addition can be considered.

We use ti ∈ {0, 1} to express the sign of xi + yi as

ti =
{

1 xi + yi < 0
0 xi + yi ≥ 0 .

Then, we modify Table 1 by

ui = ti−1 − wi (14)
vi = ti + ci (15)

and new rules for the SD addition are shown in Table 2.
We can show that ui ∈ {0, 1} and vi ∈ {0, 1} as follows:
In the case of abs(xi) = abs(yi), ui = ti−1 and vi =
ti +(xi +yi)/2 ∈ {0, 1}, because ti = 1 while xi +yi = −2
and ti = 0 while xi + yi = 2. When abs(xi) 6= abs(yi)
and (xi + yi) × (xi−1 + yi−1) < 0, we have ui = ti−1 −
(xi + yi) ∈ {0, 1} from the facts that ti−1 = 1 while
xi + yi = 1 and ti−1 = 0 while xi + yi = −1. When
abs(xi) 6= abs(yi) and (xi + yi) × (xi−1 + yi−1) > 0, we
also have ui = ti−1 + (xi + yi) ∈ {0, 1} from the facts
that ti−1 = 1 while xi + yi = −1 and ti−1 = 0 while
xi + yi = 0. When xi−1 + yi−1 = 0 and xi + yi = −1,
ui = ti−1 − (xi + yi) = 1, and when xi−1 + yi−1 = 0
and xi + yi = 1, ui = ti−1 + (xi + yi) = 0. Thus, it
is always true that ui ∈ {0, 1}. For vi = ti + ci, when
(xi + yi)/2 = 1 or xi + yi = 1, ti = 0 and vi = 1. When
(xi + yi)/2 = −1 or xi + yi = −1, ti = 1 and vi ∈ {0, 1}.
When xi + yi = 0, ti = 0 and vi = 0. Thus, ui ∈ {0, 1}.
Therefore, we can modify the signed-digit addition and
perform the following two steps at each SD digit position:

ADD1∗: Calculate ui and vi by Table 2 meeting

ui = ti−1 − wi (16)
vi−1 = ti−1 + ci−1. (17)

x
n-1

x
n-2

x
1

x
0

y
n-1

y
n-2

y
1

y
0

t
0

t
-1

-w
1

-w
0

t
n-2

t
n-3

-w
n-1

-w
n-2

t
n-3

t
0

+c
n-3

+c
0

t
n-1

t
n-2

+c
n-1

+c
n-2

U

V

t
n-1

+w
n-1

c
n-2

c
n-1

+w
1

c
0

w
0

t
-1

V-U +w
n-2

c
n-3

+

:

:

:

Figure 2: Improved signed-digit addition

ADD2∗: Add vi−1 to −ui that meets

si = ci−1 + wi = vi−1 − ui, (18)

Then we have

S = V − U

= (vn−1, vn−2, · · · , v0, v−1)
−(un, un−1, · · · , u1, u0)

= (tn−1 + cn−1, tn−2 + cn−2, · · · , t0 + c0, t−1)
−(tn−1, tn−2 − wn−1, · · · , t0 − w1, t−1 − w0)

= (cn−1, cn−2 + wn−1, · · · , c0 + w1, w0)
= (sn, sn−1, sn−2, · · · , s0)
= x + y, (19)

where v−1 = t−1 = 0 and the calculating diagram is
shown in Fig. 2. Note that a new carry is not generated
in ADD2∗ similar as ADD2, and the values of ui and vi

are decided directly from the values of xi, +yi,xi−1 and
yi−1.

In Table 1, wi and ci are in the SD number representation
such that we have to use 2-bit binary codes to represent
them. However, in Table 2, we use the binary number
representation to represent ui and vi, so that the perfor-
mance of the circuits implementing ADD1∗ and ADD2∗

can be improved.

3.3 New Modulo m Signed-Digit Adder

We now consider how to deal with the residue operation
modulo m, where m = 2n + µ and µ ∈ {−1, 0, 1}. By
using the relationships of x−1 = −µ× xn−1, y−1 = −µ×
yn−1 and tn−1, the value of t−1 is obtained from the sign
of −µ × (x−1 + y−1). Then, the modulo m signed-digit
addition can be expressed as follows.

〈S〉m = 〈X + Y 〉m = 〈〈V 〉m − 〈U〉m〉m
= (vn−2 − un−1, · · · , v0 − u1, v−1 − u0).(20)

In equation (20), the digits of U and V including v0 and
u−1 at 0-th digit position can be determinated by the
rules of Table 2. However, u0 and v−1 on the end-around-
carry path are generated by the following steps

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0(ADD1)
w : 0 1 0 -1 -1

c : 1 0 -1 1 1 1

(ADD2)

z : 0 0 1 0 0

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0(ADD1)
w : 0 1 0 -1 1

c : 1 0 -1 1 0

(ADD2)

z : 0 0 1 -1 1

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0(ADD1)
w : 0 1 0 -1 1

c : 1 0 -1 1 0 -1

(ADD2)

z : 0 0 1 -1 0

 m=31 m=32 m=33

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0

u : 0 0 0 1 1

v : 0 0 1 1 1

z : 0 0 1 0 0

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0

u : 0 0 0 1 1

v : 0 0 1 1

z : 0 0 1 0 -1

i : 4 3 2 1 0

a : 1 0 -1 1 1

b : 1 1 -1 0 0

u : 0 0 0 1 0

v : 0 0 1 0 0

z : 0 0 1 -1 0

(a) Addition using prevous algorithm

 m=31 m=32 m=33

(b) Addition using new algorithm

(ADD1*)

(ADD2*)

(ADD1*)

(ADD2*)

(ADD1*)

(ADD2*)

Figure 3: Example of Modulo m signed-digit addition. algorithm.

ADD1∗∗: Determine u0 and v−1 by Table 2, meeting

u0 = t−1 − w0 (21)
v−1 = t−1 − µ× cn−1, (22)

where

t−1 =
{

1 −µ(xn−1 + yn−1) < 0
0 −µ(xn−1 + yn−1) ≥ 0 .

Because we use the binary number representation instead
of the signed-digit number representation for the interme-
diate sums and carries, the new modulo m signed-digit
addition can achieve high speed and small circuits.

Example 1 : Let n = 5, a = (1, 0,−1, 1, 1)SD and
b = (1, 1,−1, 0, 0)SD. Thus, a = 15 and b = 20, and in
the case of µ = 1 m = 25 + 1 = 33. We have t0 = 0, t1 =
0, t2 = 1, t3 = 0, t4 = 0 and t−1 = 1. By the rules of
Table 2, ui and vi are determined. Fig.3(b) illustrates
the calculation of 〈x + y〉m using the new algorithm for
m = 31, 32 and m = 33. The results are 〈15 + 20〉31 = 4,
〈15 + 20〉32 = 3 and 〈15 + 20〉33 = 2. In Fig.3(a), the
residue addition process is also shown by the previous
algorithm.

4 Modulo m SD Multipliers

To calculate 〈x×y〉m, where x and y are integers in the n-
digit radix-2 SD number representation, x×y is expanded
as follows:

x× y = (xn−12n−1 + xn−22n−2 + · · ·+ x0)
×(yn−12n−1 + yn−22n−2 + · · ·+ y0)

=
n−1∑

i=0

yi2i × (xn−12n−1 + xn−22n−2

+ · · ·+ x0).

We have

〈x× y〉m = 〈
n−1∑

i=0

〈yi2i × (xn−12n−1 + xn−22n−2

+ · · ·+ x0)〉m〉m

= 〈
n−1∑

i=0

ppi〉m, (23)

where

ppi = 〈yi2i × (xn−12n−1 + xn−22n−2 + · · ·+ x0)〉m (24)

denotes as a partial product. Since yi ∈ {−1, 0, 1},

ppi = yi〈2i × (xn−12n−1 + xn−22n−2 + · · ·+ x0)〉m
= yi × sxi, (25)

where

sxi = 〈2i(xn−12n−1 + xn−22n−2 + · · ·+ x0)〉m. (26)

Therefore, a modulo m multiplication can be imple-
mented by calculating Eqs.(26).(25) and (23) to obtain
partial products and the sum of the partial products.

In the cases of µ = 0 and µ = ±1,

sxi = (xn−i−1, xn−i−2, · · · , x0,

−µxn−1, · · · ,−µxn−i+1,−µxn−i)SD.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

xn-i-1 x n-i-2 xn-1x0 xn-i

y i

pp i

−µ −µ

Figure 4: A partial product generating unit

Partial Product Generator

MSDA MSDA MSDA MSDA

MSDA MSDA

MSDA

x y

 x y m

:n digits

Figure 5: Modulo m SD multiplier with an MSDA tree.

Thus, a partial product is simply obtained by an i-digit
end-around-shift and an n-by-1 digit multiplication. The
i-digit end-around-shift by directly wiring correspond in-
put and output signals can performed in a constant time.

A binary tree of the modulo m SD adders can be con-
structed for the modulo m sum of the partial products
as shown in Fig.5. The modulo m circuit for the shifted
number may be constructed by the AND-OR two-stage
logical network which has a constant delay time. How-
ever, the circuit may be very complicated for a large n.
the modulo m multiplications can be performed in a time
proportional to log2n.

5 Hardware Realization and Perfor-
mance Evaluation

We use a hardware description language, VHDL, to de-
sign the residue arithmetic circuits, for the implementa-
tion of the proposed algorithm.

ADD1**

ADD2*

ADD1*

ADD2*

ADD1*

ADD2*

ss1

x y

0

01

v v
01

x y 01

v
n-1

n-1
x y
n-1 n-2x yn-2

SDFA

sn-1

v
n-1u

0u
1

un-1

x y-1-1
�

Figure 6: New Modulo m Signed-Digit adder

Table 3: Binary representation for a radix-two signed
digit.

ai ai(1) ai(0)

-1 1 1

0 0 0

1 0 1

We specify a binary representation for a radix-two signed-
digit ai as Table 3, where ai(1) is the sign and ai(0) is the
absolute value of ai. Thus, a p-digit radix-2 SD number
a is represented by a vector with 2p-bit length.

a = (an−1, an−2, · · · , a0)SD

= [an−1(1)an−1(0) an−2(1)an−2(0)
· · · a0(1)a0(0)] (27)

For example, (1, 0, 0,−1)SD = [01000011]. Figure 6 il-
lustrates a circuit diagram of the new MSDA, where
µ ∈ {−1, 0, 1}. One SDFA consists of sub-circuits,
ADD1∗ and ADD2∗, and in the most significant position
ADD1∗∗ is designed for the end-around-carry generation.
ui and vi generated by ADD1∗ or ADD1∗∗ are in the bi-
nary number representation. si = vi−1 − ui is performed
in ADD2∗ and si ∈ {−1, 0, 1}. The whole design has been
verified by 1-µm CMOS gate level simulation. The delay
times and gates of the design results are aummarized in
Tables 4 and 5. Because the proposed MSDA is designed
with binary number representation except input and out-
put, we have small circuits and speed-up of computation
time.

Compared to our previous work, the circuits are im-
proved by 21% and the computation times are shorten
by 30%. The new residue SD adder can be applied to a
residue multiplier and the delay time and hardware cost
of the multiplier can be also improved by about 30% and
20%, respectively. We also designed fast binary residue
adders[8] for the performance comparison with the pre-
sented SD adders. The proposed addition is high-speed
for large wordlength residue additions.

The delay time for a 16-bit binary modulo m multiplier is
about 95ns, so that the proposed modulo m SD multiplier
constructed with a binary tree of the improved modulo

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table 4: Performance of modulo 2n + 1 adders
area (gates) delay (ns)

n [6] [8] this study [6] [8] this study
8 274 213 215 7.47 6.34 5.22
16 530 612 415 7.47 9.03 5.22
32 1,016 1,744 823 7.47 12.86 5.22

Table 5: Performance of modulo 2n + 1 multipliers
area (gates) delay (ns)

n [6] this study [6] this study
8 2,052 1,653 31.88 21.63
16 4,781 3,562 39.03 27.85
32 9,853 7,164 46.64 33.03

m SD adders is very high speed. For the design of RNS
chips, the modulo m SD adders and multipliers may be
pre-designed with VHDL and are used as functional cells.

6 Conclusion

A new algorithm of modulo m SD adder has been pre-
sented. The binary number coding is used for achieving
the high speed residue SD addition. A high speed residue
multiplier can be constructed with a binary MSDA tree
for the high speed calculations or only with one MSDA
for a compact structure. Thus the modulo m multiplica-
tion is performed in a time proportional to log2p by using
the binary adder tree.

High-speed computations can be performed based on the
assumption that input and output data of the residue
arithmetic circuits are in the residue SD number form,
because some computing system applications, such as
digital filtering, require repeated calculations of sums of
products before the final results are obtained. For in-
tegration with conventional binary systems, efficient cir-
cuits are required to convert into and out of the residue
SD systems. Our studies also focus on the evaluation of
the presented residue arithmetic circuits, and the appli-
cation to the computation systems, such as digital signal
processing and digital control systems.

References

[1] N.S.Szabo and R.I.Tanaka ,Residue Arithmetic and
Its Applications to Computer Technology, New York:
McGraw-Hill,1967.

[2] Vassilis Paliouras and Thanos Stouraitis, “Novel
High-Radix Residue Number System Architectures,”
IEEE Tran.on circuits and systems II., vol.47,no.10,
pp.1059-1073, Oct. 2000.

[3] G.A. Jullien, “Residue number scaling and other op-
erations using ROM arrays,” IEEE Trans. Comput.,
vol.C-27, no.4, pp.325-336, April 1978.

[4] L.Kalampoukas, D.nikolos, C.Efstathiou, H.T.Vegos
and J. Kakamatianos, “High-Speed Parallel-Prefix
Modulo 22−1 Adders,” IEEE Trans. Comp., vol.49,
no.7, pp.673-680, 2000.

[5] A.Avizienis, “Signed-digit number representations
for fast parallel arithmetic,” IRE Trans. Elect. Com-
put., EC-10, pp.389-400, 1961.

[6] S.Wei and K.Shimizu,” Residue Arithmetic Circuits
Using a Signed-Digit Number Representation”, Pro-
ceedings of the IEEE 2000 International Symposium
on Circuits and Systems, Vol.-I, pp.24-27, 2000.

[7] S. Wei and K. Shimizu: A New RNS to Mixed-Radix
Number Converter Using Modulo (2p − 1) Signed-
Digit Arithmetic, Proceedings of 2004 IEEE Asia-
Pacific Conference On Circuits and Systems, vol. 1,
pp.377-380, 2004.

[8] C.Efstathiou, H.T. Vergos and D.Nikolos, “ Modulo
2n ± 1 Adder Design Using Select Prefix Blocks”,
IEEE Trans. on comput. vol.52, no.11, pp.1399-1406,
2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

