
Time-Optimal Algorithm for
Computing the Diameter of a Point Set
on a Completely Overlapping Network

Abstract- Given a finite set P of n points in d-dimensional

Euclidean space, the diameter is defined as the maximum
Euclidean distance between any two points in the set P. In this
paper, we illustrate a time-optimal algorithm to compute the
diameter of a point set on a theoretical network called a
completely overlapping network (CON). This network model has
an applicable potential in real-life applications because it is an
extension of LANs that are widely used at present.

Index Terms- computational geometry, diameter, overlapping

network, time-optimal algorithm.

I. INTRODUCTION

Parallel computation has been around for decades. Several
parallel applications and architectures are available for use.
However, parallel architectures such as hypercube and mesh
are generally expensive [18] and hence their use is limited to
only those who can afford them. Some attempts have been
made to find an alternative to these expensive parallel
machines. One alternative is called a cluster of workstations
and personal computers. A typical cluster of workstations is
essentially a group of numerous workstations and personal
computers connected through a single communication line.
Each computer can send a message, bit by bit, when the
communication line is free. If the communication line is
currently occupied, the computer must wait before it is allowed
to send its message.

One significant problem with this model of communication
via a single communication line is the line can only serve one
computer at any time. To lessen this problem, during the recent
decade or so, a group of computer scientists in the United
States has developed an experimental network called an
overlapping network [2]-[3], [10]. They have worked on the
concept of using multiple Ethernet lines in some certain
configurations. These configurations are in the general classifi-

 Computing the diameter of a point set has a long history. On
a sequential machine, computing the diameter of n points in d
dimensions requires Ω(n log n) operations [8] while a trivial
O(n2) upper bound is provided by the brute force algorithm that
compares the distance between all pairs of points. In the
dimensions 2 and 3, this problem can be solved optimally in
O(n log n) [5] but in the higher dimensions it becomes non-
trivial.

Manuscript received December 30, 2008.

P. Techa-angkoon is with The Theory of Computation Group,
Computer Science Department, Faculty of Science, Chiang Mai
University, Chiang Mai, 50200, Thailand. Phone: 6653943409,
Fax: 6653943433 (e-mail: prapapon@chiangmai.ac.th).

S. Rattanaudomsawat is with The Theory of Computation Group,
Computer Science Department, Faculty of Science, Chiang Mai
University, Chiang Mai, 50200, Thailand (e-mail:
saowaluk.r@gmail.com).

cation of overlapping connectivity networks. Overlapping
connectivity networks have the characteristic that regions of
connectivity are provided and the regions overlap so as to
provide parallelism. The overlapping connectivity scheme is
suitable for processors having local memory and can be
applied to both fine-grained and coarse-grained processors.

 Recently, Kantabutra et al. [15]-[17] extended the network
model of Wilkinson one step further to provide complete
overlapping of communication. This theoretical network model
called a completely overlapping network (CON) is more
general than but similar to the experimental overlapping
network. Since Wilkinson’s multiple bus network model yields
a good result [2], it is worth studying properties of CON and
investigating its potential. Therefore, in this paper we will refer
to this network as CON and demonstrate the use of CON and
its usefulness by solving problem of computing the diameter of
a point set.

Computing the diameter of a point set is one of the classical
problems in computational geometry [1], [6]-[8], [12]. Given a
finite set P of n points in d-dimensional Euclidean space, the
diameter of P is defined as the maximum Euclidean distance
between any two points of P. This problem is actually known
as the diameter problem or the farthest pair problem. There are
several interesting applications of computing the diameter such
as image databases, visualization, clustering, and data mining
[5]. Additionally, the diameter is quite useful as it provides a
reliable estimate of the point-set extent and it can be used in
computing a tight fitting bounding box for the point set.

 We now discuss a little bit about parallel computation of the
diameter of a point set. Computing the diameter of a point set
is a basic problem. Several parallel algorithms for computing
the diameter of a point set exist in computer science literature
depending on the kinds of network architectures they use. Most
existing parallel algorithms are described in the context of
networks such as mesh [9], [11], [16], hypercube [11], tree
[14], etc. The rest are mostly in the environment of cluster of

Prapaporn Techa-angkoon and Saowaluk Rattanaudomsawat

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

workstations with on communication bus, i.e., LANS [13].
Nowadays, we are not aware of any algorithm for computing
the diameter of a point set on the architecture like CON.

 In following sections, the definition and rules of operations
of a completely overlapping network is firstly given. Secondly,
the algorithm for computing the diameter of a point set on a
completely overlapping network is presented. Also, we show a
rigorous proof that our diameter computing algorithm is
optimal. Lastly, we conclude our paper and propose a
transformation method of our fine-grained model into a course-
grain model.

II. COMPLETELY OVERLAPPING NETWORK

In this section, we give a review of a completely overlapping
network as shown in [15], [17]. A completely overlapping
network is composed of several overlapped communication
lines that connect among several nodes (or processors) to
provide parallelism. There are vertical and horizontal
communication lines as shown in Fig. 1.

Fig. 1. Four-node completely overlapping network.

The number of vertical lines is equal to the number of nodes

n and the number of horizontal lines is equal to
2

)1(−nn
.

Additionally, one straight line segment equates one step
horizontally and vertically. For instance, Fig. 2 shows a
communication of 5 steps between the leftmost node and the
rightmost node.

Fig. 2. Five-step communication between nodes.

Like any other networks, there are rules of operations which

our proposed algorithm runs follow them. The rules are as
follows.

- Horizontal and vertical line segments cannot be shared.
That is, any line segment can be used only one at a time.

- Each line segment is bidirectional.
- Each node has a constant memory size.
- A same message can be concurrently sent from one

source node to several destination nodes as long as there
is no collision of messages.

- If there exists contention for a communication line
segment, some kind of priority can be applied.

In order to enable readers to understand our communication

method, a numbering of both nodes and communication lines is
necessary. Our numbering scheme is illustrated in Fig. 3. This
figure shows a four-node completely overlapping network with
node and line identification numbers, myID and lineID,
respectively. It is easy to generalize this numbering scheme
for a n-node completely overlapping network. Hereafter, we
will regularly refer to this numbering scheme when explaining
our algorithm.

0 1 2 3myID

lineID

0
1
2
3
4
5

Fig. 3. Numbering scheme for a four-node completely overlapping network.

III. TIME- OPTIMAL ALGORITHM FOR
COMPUTING THE DIAMETER OF A POINT SET

ON A COMPLETELY OVERLAPPING NETWORK

In this section, we will describe a time-optimal algorithm
that solves the diameter problem of a point set on a completely
overlapping network. The definition of this problem and our
algorithm are given respectively. Then we present a rigorous
proof that our diameter computing algorithm is optimal.

Definition 1 (Diameter Problem) Given a finite set P of
n distinct points pi in d dimensions where n ≥ 2, 0 ≤ i ≤ n-1.
Let d(pi,pj) be a Euclidean distance between two points
pi(x1,x2,…,xd) and pj(y1,y2,…,yd) when i ≠ j, and 2 3 4 51

ed(pi,pj) = ∑ −
=

d

m mm yx
1

2
)(

The diameter of the set P is the maximum Euclidean distance
between any two points in the set P, or that is, any pair of
points of the set P that is farthest away from each other.

Our Diameter Computing Algorithm is specifically designed

to suit the completely overlapping network. The following are
our assumptions and the description of some variables in the
algorithm.

- Each processor (or node) has a point stored in it initially.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

- There is a total of n ≥ 2 processors in the completely
overlapping network where n is the number of points to
be computed the diameter.

- One point per one processor and myID is its own point
identification number.

- All processors are fine-grained.
- A variable S is a finite set of any pair of points that

represents the diameter of the set P.
- A variable max is the diameter of the set P.

 There are two communication subroutines in the algorithm:
send(data, destination process, communication line number)
and receive(data, source process). One of the arguments in
subroutine send() indicates the communication lines to use.
(There is no such argument in receive().) These subroutines
require identification numbers for both lines and nodes. These
identification numbers, myID and lineID, were described in the
previous section. Also note that pack(item1, item2,…, itemN)
is a subroutine that packs all stated items together as one larger
item and the subroutine unpack(packedItems, item1, item2,…,
itemN) does just the opposite.

The description of our algorithm called Diameter Computing

Algorithm for any processor in CON is given as follows. Some
of pseudocode conventions are borrowed from [4].

Diameter Computing Algorithm for Processor Pi
1. S = ∅, max = -∞
2. for i = 0 to n-1 and i ≠ myID
3. send(myPoint, Pi, myID)
4. for i = 0 to n-2
5. receive(point, PANY)
6. dist = ed(myPoint, point)
7. if (dist > max)
8. S = ∅
9. max = dist
10. S = {(myPoint, point)}
11. else if (dist = max)
12. S = S ∪ {(myPoint, point)}
13. twoItems = pack(max, S)
14. for i = 0 to n-1 and i ≠ myID
15. send(twoItems, Pi, myID)
16. for i = 0 to n-2
17. receive(packedItems, PANY)
18. unpack(packedItems, max_dist, SS)
19. if (max_dist > max)
20. S = ∅
21. max = max_dist
22. S = SS
23. else if (max_dist = max)
24. S = S ∪ SS

Like any communication scheme, it is essential that there be
no collision of messages on any of these communication lines
(or any line segment) at any point in the algorithm.
Kantabutra et al. [15], [17] showed that this communication
scheme produces no collision.

Theorem 1 (Algorithm’s Correctness). The Diameter
Computing Algorithm is correct.
Proof. Let Pi be an arbitrary processor i, 0 ≤ i ≤ n-1, in a
completely overlapping network. In the algorithm, two
variables, S and max, are initially set to ∅ and -∞, respectively
(line 1). Then, each processor Pi sends out its own point
myPoint to the other processors Pj where j ≠ i (lines 2-3). Upon
receiving these points, each processor Pi computes the
Euclidean distance between its own point myPoint and the just-
received point point, and then keeps this distance in dist. Each
processor Pi compares dist and max that if dist is greater than
max, it replaces max with the new maximum distance dist and
also replaces any pair of points in the set S with the new pair of
points, myPoint and point, that is just computed. If dist is equal
to max, each processor Pi collects that pair of points which also
has the maximum distance in the set S (lines 4-12). Presently,
each processor Pi knows that which point is the farthest away
from its own point and also their corresponding distance.
However, it still does not know the exact pair(s) of points
which is the farthest away from each other. Therefore, it sends
the set S of pairs of points and the maximum distance max
between its own point and the other points as a variable
twoItems to the other processors Pj when j ≠ i (lines 13-15).
Upon receiving the set S and the maximum distance max as SS
and max_dist, respectively, each processor Pi compares
max_dist to max, if max_dist is greater than max then the
processor Pi replaces max with the new maximum distance
max_dist and also replaces any pair of points in the set S with
any pair of points in the set SS. If max_dist is equal to max, the
processor Pi includes the set SS in the set S (lines 16-24).
Eventually, each processor Pi knows the diameter or the
maximum distance of the set P, and any pair of points that
gives the diameter. Thus, the Time-Optimal Diameter
Computing Algorithm on a completely overlapping network is
correct.

In addition, the algorithm should be also efficient in terms of

time complexity. The following theorem shows that our
algorithm has a running time of O(n).

Theorem 2 (Time Complexity). The Diameter Computing
Algorithm on a completely overlapping network has a running
time of O(n) when n is the number of the distinct points in the
set P.
Proof. In any parallel algorithm, running time is divided into
communication time and computation time . For
simplicity, assume that one step in communication is equal to
one step in computation. There are four phases in our
algorithm.

comm
T

comp
T

Phase 1 (Communication): Each processor sends its own
point myPoint to the other processors (lines 2-3). Since this
sending is done in parallel, the time of the longest
communication path dominates the whole communication.

comm
1T = 3n - 1

Phase 2 (Computation): Each processor computes the
Euclidean distances between its own point myPoint and the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

other points point that receives from the other processors. By
comparing, the maximum distance is eventually kept in max,
and any pair of points corresponding to the maximum distance
is also kept in the set S. (lines 6-12).

comp
1T = n - 1

Phase 3 (Communication): Each processor sends a variable
twoItems consisting of the set S and the maximum distance
max between its own point and the other points to the other
processors (lines 14-15) for finding other pairs of points that
have the distance greater than or equal to max. For simplicity,
assuming that time of sending one item and two items are the
same, we therefore have

comm
2T = 3n - 1

Phase 4 (Computation): Each processor checks for whether
the distance that receives from the other processors max_dist is
greater than or equal to the maximum distance max that it
keeps (lines 19-24). There are in the worst case n-1 times to
check. Therefore, we have

comp
2T = n - 1

Hence, the total time complexity is totalT

totalT = + + + = O(n). comm
1T

comm
2T

comp
1T

comp
2T

Theorem 3 (Optimality). The Diameter Computing Algorithm
is time-optimal on CON.
Proof. In order to solve any diameter computing problem on
CON, the parallel diameter computing algorithm must at least
communicate between the two farthest nodes 0 and n-1. Let us
call the shortest distance between the two farthest nodes a
diameter. In CON, the diameter is n + 1 steps. This establishes
the lower bound Ω(n) for the diameter computing problem on
CON. Theorem 2 states that the Diameter Computing
Algorithm has a time complexity of O(n). Hence, theorem 3
holds.

IV. CONCLUSION

In this paper, we proposed a time-optimal algorithm called
Diameter Computing Algorithm for calculating the diameter of
a finite set of n points on a completely overlapping network.
Our algorithm not only gives the diameter of the point set but
also outputs the set of pair(s) of points that produce(s) the
diameter. This algorithm optimally works in O(n) time. We can
also take satisfaction in knowing that there is no faster
algorithm for solving the diameter computing problem on CON.
Additionally, our algorithm has a speedup of O(log n) over the
fastest sequential algorithm of this problem.

A theoretical network CON is an extension of Wilkinson’s
model. One may ask about practicality of our theoretical CON
network. We believe that CON can be implemented cost-
effectively since it is similar to Wilkinson’s experimental
networks that are known to be cheaper than most parallel
machines.

Throughout this paper, we only discussed the case in which
all processors are fine-grained. However, like the multiple bus
network with overlapping connectivity model, the concept of
our theoretical network can also be applied to coarse-grained
processors with larger memory. This is the case particularly
worth attention because it can be applied to existing, widely-
used local area networks. Fig. 4 shows an example of
embedding a 16-node CON into a 8-node CON.

Fig. 4. 16-node CON embedded in a 8-node CON

ACKNOWLEDGMENT
The authors would like to thank Assistant Professor Dr.

Sanpawat Kantabutra and the reviewers for their suggestions
and significant comments on this paper.

REFERENCES
[1] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir, “Diameter,

Width, Closest Line Pair, and Parametric Searching,” Proceeding of the
Eighth Annual Symposium on Computational Geometry, Berlin, Germany,
ACM Press, June 1992, pp. 120-129.

[2] B. Wilkinson, “On Crossbar Switch and Multiple Bus Interconnection
Networks with Overlapping Connectivity,” IEEE Trans. Computers, vol.
41, 1992, pp. 738-746.

[3] B. Wilkinson and J.M. Farmer. “Reflective Interconnection Networks”,
Computer and Electrical Engineering, vol.20, pp. 289-308, 1994.

[4] Cormen T.H., Leiserson C.E., and Rivest R.L., Introduction to
Algorithms. New York: McGraw-Hill Book Company, 1992.

[5] D. V. Finocchiaro and M. Pellegrini, “On Computing the Diameter of a
Point Set in High Dimension Euclidean Space,” Theoretical Computer
Science, vol. 287 (2), pp. 501-514, September 2000.

[6] E. A. Ramos, “An Optimal Deterministic Algorithm for Computing the
Diameter of a Three-Dimensional Point Set,” Discrete and
Computational Geometry, vol. 26 (2), Springer New York, pp. 233-244,
May 2001.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, Springer Verlag, October 1990, 3rd edition.

[8] G. Maladian and J.-D. Boissonnat, “Computing the Diameter of a Point
Set,” DGCI: Lecture Notes in Computer Science, vol. 2301, Springer
Berlin/Heidelberg, pp. 197-208, 2002.

[9] I. Stojmenović, L. Jerinić, “Finding the diameter of a point set on mesh-
connected computers”, NSJOM, Vol.17 No.1, pp.251-259, 1987.

[10] K. Hoganson, B. Wilkinson, and W.H. Carsile, “Applications of Rhombic
Multiprocessors”, Proceeding of the International Conference on Parallel
and Distributed Processing Techniques and Applications, 1997.

[11] L. Boxer, R. Miller, “Dynamic Computational Geometry on Meshes and
Hypercubes”, Hypercube Concurrent Computers and Applications,
Proceedings of the third conference on Hypercube concurrent computers
and applications , Vol. 2, pp.1212 – 1219,1989.

[12] M.I. Shamos, “Geometry complexity,” Proceedings 7th Annual ACM
Symposium on the Theory of Computing, 1975, pp.224-233.

[13] M. Pal and G. P. Bhattacharjee, “Optimal sequential and parallel
algorithms for computing the diameter and the center of an interval
graph”, Intern. J. Computer Maths., vol. 59, pp. 1-13, 1995.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

[14] N. Deo and A. Abdalla, “Computing a Diameter-Constrained Minimum
Spanning Tree in Parallel”, Lecture Notes in Computer Science, vol.
1767, Springer-Verlag Berlin Heidelberg, pp. 17-31, 2000.

[15] P. Techa-angkoon, “The Closest Pair of Points Finding Algorithm on a
Completely overlapping Network,” Proceeding of JCSSE, November
2005.

[16] R. Miller, Q. F. Stout, “Geometric Algorithms for Digitized Pictures on a
Mesh-Connected Computer”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.7, pp. 216-228, 1985.

[17] S. Kantabutra, W. Jindaluang, and P. Techa-angkoon, “It’s Elementary,
My Dear Watson: Time-optimal Sorting Algorithms on a Completely
Overlapping Network,” Lecture Notes in Computer Science, vol. 3758,
Springer Berlin/Heidelberg, pp. 252-262, 2005.

[18] T. E. Anderson, D. E. Culler, D. Patterson, “A case for NOW (Networks
of Workstations)”, IEEE Micro. . 15, No. 1 (Feb.) 54-64, 1995.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

