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Abstract- Given a finite set P of n points in d-dimensional 

Euclidean space, the diameter is defined as the maximum 
Euclidean distance between any two points in the set P. In this 
paper, we illustrate a time-optimal algorithm to compute the 
diameter of a point set on a theoretical network called a 
completely overlapping network (CON).  This network model has 
an applicable potential in real-life applications because it is an 
extension of LANs that are widely used at present.  

 
Index Terms- computational geometry, diameter, overlapping 

network, time-optimal algorithm.  
  

I. INTRODUCTION 

Parallel computation has been around for decades. Several 
parallel applications and architectures are available for use. 
However, parallel architectures such as hypercube and mesh 
are generally expensive [18] and hence their use is limited to 
only those who can afford them. Some attempts have been 
made to find an alternative to these expensive parallel 
machines. One alternative is called a cluster of workstations 
and personal computers. A typical cluster of workstations is 
essentially a group of numerous workstations and personal 
computers connected through a single communication line. 
Each computer can send a message, bit by bit, when the 
communication line is free. If the communication line is 
currently occupied, the computer must wait before it is allowed 
to send its message. 

One significant problem with this model of communication 
via a single communication line is the line can only serve one 
computer at any time. To lessen this problem, during the recent 
decade or so, a group of computer scientists in the United 
States has developed an experimental network called an 
overlapping network [2]-[3], [10]. They have worked on the 
concept of using multiple Ethernet lines in some certain 
configurations. These configurations are in the general classifi-                                                                   

 Computing the diameter of a point set has a long history. On 
a sequential machine, computing the diameter of n points in d 
dimensions requires Ω(n log n) operations [8] while a trivial 
O(n2) upper bound is provided by the brute force algorithm that 
compares the distance between all pairs of points. In the 
dimensions 2 and 3, this problem can be solved optimally in 
O(n log n) [5] but in the higher dimensions it becomes non-
trivial. 
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cation of overlapping connectivity networks. Overlapping 
connectivity networks have the characteristic that regions of 
connectivity are provided and the regions overlap so as to 
provide parallelism. The overlapping connectivity scheme is 
suitable for processors having local memory and can be 
applied to both fine-grained and coarse-grained processors. 

 Recently, Kantabutra et al. [15]-[17] extended the network 
model of Wilkinson one step further to provide complete 
overlapping of communication. This theoretical network model 
called a completely overlapping network (CON) is more 
general than but similar to the experimental overlapping 
network. Since Wilkinson’s multiple bus network model yields 
a good result [2], it is worth studying properties of CON and 
investigating its potential. Therefore, in this paper we will refer 
to this network as CON and demonstrate the use of CON and 
its usefulness by solving problem of computing the diameter of 
a point set. 

Computing the diameter of a point set is one of the classical 
problems in computational geometry [1], [6]-[8], [12]. Given a 
finite set P of n points in d-dimensional Euclidean space, the 
diameter of P is defined as the maximum Euclidean distance 
between any two points of P. This problem is actually known 
as the diameter problem or the farthest pair problem. There are 
several interesting applications of computing the diameter such 
as image databases, visualization, clustering, and data mining 
[5]. Additionally, the diameter is quite useful as it provides a 
reliable estimate of the point-set extent and it can be used in 
computing a tight fitting bounding box for the point set.  

 We now discuss a little bit about parallel computation of the 
diameter of a point set. Computing the diameter of a point set 
is a basic problem. Several parallel algorithms for computing 
the diameter of a point set exist in computer science literature 
depending on the kinds of network architectures they use. Most 
existing parallel algorithms are described in the context of 
networks such as mesh [9], [11], [16], hypercube [11], tree 
[14], etc. The rest are mostly in the environment of cluster of 
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workstations with on communication bus, i.e., LANS [13]. 
Nowadays, we are not aware of any algorithm for computing 
the diameter of a point set on the architecture like CON. 

 In following sections, the definition and rules of operations 
of a completely overlapping network is firstly given. Secondly, 
the algorithm for computing the diameter of a point set on a 
completely overlapping network is presented. Also, we show a 
rigorous proof that our diameter computing algorithm is 
optimal. Lastly, we conclude our paper and propose a 
transformation method of our fine-grained model into a course-
grain model. 

II. COMPLETELY OVERLAPPING NETWORK 

In this section, we give a review of a completely overlapping 
network as shown in [15], [17]. A completely overlapping 
network is composed of several overlapped communication 
lines that connect among several nodes (or processors) to 
provide parallelism. There are vertical and horizontal 
communication lines as shown in Fig. 1.     

 
 
 
 
 
 

 
 
 

 
Fig. 1. Four-node completely overlapping network. 

 
The number of vertical lines is equal to the number of nodes 

n and the number of horizontal lines is equal to 
2

)1( −nn
. 

Additionally, one straight line segment equates one step 
horizontally and vertically. For instance, Fig. 2 shows a 
communication of 5 steps between the leftmost node and the 
rightmost node. 

 
 
 
 
           
     
 
 
 

 
Fig. 2. Five-step communication between nodes. 

 
Like any other networks, there are rules of operations which 

our proposed algorithm runs follow them. The rules are as 
follows. 

- Horizontal and vertical line segments cannot be shared.  
That is, any line segment can be used only one at a time. 

- Each line segment is bidirectional. 
- Each node has a constant memory size. 
- A same message can be concurrently sent from one 

source node to several destination nodes as long as there 
is no collision of messages. 

- If there exists contention for a communication line 
segment, some kind of priority can be applied. 

 
In order to enable readers to understand our communication 

method, a numbering of both nodes and communication lines is 
necessary. Our numbering scheme is illustrated in Fig. 3. This 
figure shows a four-node completely overlapping network with 
node and line identification numbers, myID and lineID, 
respectively.  It is easy to generalize this numbering scheme 
for a n-node completely overlapping network. Hereafter, we 
will regularly refer to this numbering scheme when explaining 
our algorithm. 
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Fig. 3. Numbering scheme for a four-node completely overlapping network. 
 

III. TIME- OPTIMAL ALGORITHM FOR  
COMPUTING THE DIAMETER OF A POINT SET  

ON A COMPLETELY OVERLAPPING NETWORK 

In this section, we will describe a time-optimal algorithm 
that solves the diameter problem of a point set on a completely 
overlapping network.  The definition of this problem and our 
algorithm are given respectively. Then we present a rigorous 
proof that our diameter computing algorithm is optimal.   
 
Definition 1 (Diameter Problem) Given a finite set P of         
n distinct points pi in d dimensions where n ≥ 2, 0 ≤ i ≤ n-1.  
Let d(pi,pj) be a Euclidean distance between two points 
pi(x1,x2,…,xd) and pj(y1,y2,…,yd) when i ≠ j, and  2 3 4 51 

ed(pi,pj) = ∑ −
=

d

m mm yx
1

2
)(  

The diameter of the set P is the maximum Euclidean distance 
between any two points in the set P, or that is, any pair of 
points of the set P that is farthest away from each other.      

 
Our Diameter Computing Algorithm is specifically designed 

to suit the completely overlapping network.  The following are 
our assumptions and the description of some variables in the 
algorithm. 

- Each processor (or node) has a point stored in it initially. 
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- There is a total of n ≥ 2 processors in the completely 
overlapping network where n is the number of points to 
be computed the diameter. 

- One point per one processor and myID is its own point 
identification number. 

- All processors are fine-grained. 
- A variable S is a finite set of any pair of points that 

represents the diameter of the set P. 
- A variable max is the diameter of the set P. 

   There are two communication subroutines in the algorithm: 
send(data, destination process, communication line number) 
and receive(data, source process). One of the arguments in 
subroutine send() indicates the communication lines to use. 
(There is no such argument in receive().) These subroutines 
require identification numbers for both lines and nodes. These 
identification numbers, myID and lineID, were described in the 
previous section. Also note that pack(item1, item2,…, itemN) 
is a subroutine that packs all stated items together as one larger 
item and the subroutine unpack(packedItems, item1, item2,…, 
itemN ) does just the opposite. 

 
The description of our algorithm called Diameter Computing 

Algorithm for any processor in CON is given as follows. Some 
of pseudocode conventions are borrowed from [4]. 

 
Diameter Computing Algorithm for Processor Pi 
1.  S = ∅, max = -∞ 
2.  for i = 0 to n-1 and i ≠ myID 
3.  send(myPoint, Pi, myID) 
4.  for i = 0 to n-2 
5.  receive(point, PANY) 
6. dist = ed(myPoint, point)  
7. if (dist > max) 
8.  S = ∅ 
9.  max = dist 
10.  S = {(myPoint, point)} 
11. else if (dist = max) 
12.  S = S ∪ {(myPoint, point)} 
13.  twoItems = pack(max, S) 
14. for i = 0 to n-1 and i ≠ myID 
15. send(twoItems, Pi, myID) 
16. for i = 0 to n-2 
17.  receive(packedItems, PANY) 
18. unpack(packedItems, max_dist, SS) 
19. if (max_dist > max) 
20.  S = ∅ 
21.  max = max_dist 
22.  S = SS 
23. else if (max_dist = max) 
24.  S = S ∪ SS 
 

Like any communication scheme, it is essential that there be 
no collision of messages on any of these communication lines 
(or any line segment) at any point in the algorithm.                   
Kantabutra et al. [15], [17] showed that this communication 
scheme produces no collision. 

Theorem 1 (Algorithm’s Correctness). The Diameter 
Computing Algorithm is correct. 
Proof. Let Pi be an arbitrary processor i, 0 ≤ i ≤ n-1, in a 
completely overlapping network. In the algorithm, two 
variables, S and max, are initially set to ∅ and -∞, respectively 
(line 1). Then, each processor Pi sends out its own point 
myPoint to the other processors Pj where j ≠ i (lines 2-3). Upon 
receiving these points, each processor Pi computes the 
Euclidean distance between its own point myPoint and the just-
received point point, and then keeps this distance in dist. Each 
processor Pi compares dist and max that if dist is greater than 
max, it replaces max with the new maximum distance dist and 
also replaces any pair of points in the set S with the new pair of 
points, myPoint and point, that is just computed. If dist is equal 
to max, each processor Pi collects that pair of points which also 
has the maximum distance in the set S (lines 4-12). Presently, 
each processor Pi knows that which point is the farthest away 
from its own point and also their corresponding distance. 
However, it still does not know the exact pair(s) of points 
which is the farthest away from each other.  Therefore, it sends 
the set S of pairs of points and the maximum distance max 
between its own point and the other points as a variable 
twoItems to the other processors Pj when  j ≠ i (lines 13-15). 
Upon receiving the set S and the maximum distance max as SS 
and max_dist, respectively, each processor Pi compares 
max_dist to max, if max_dist is greater than max then the 
processor Pi replaces max with the new maximum distance 
max_dist and also replaces any pair of points in the set S with 
any pair of points in the set SS. If max_dist is equal to max, the 
processor Pi includes the set SS in the set S (lines 16-24).  
Eventually, each processor Pi knows the diameter or the 
maximum distance of the set P, and any pair of points that 
gives the diameter. Thus, the Time-Optimal Diameter 
Computing Algorithm on a completely overlapping network is 
correct.  

 
In addition, the algorithm should be also efficient in terms of 

time complexity. The following theorem shows that our 
algorithm has a running time of O(n). 

 
Theorem 2 (Time Complexity). The Diameter Computing 
Algorithm on a completely overlapping network has a running 
time of O(n) when n is the number of the distinct points in the 
set P. 
Proof. In any parallel algorithm, running time is divided into 
communication time and computation time . For 
simplicity, assume that one step in communication is equal to 
one step in computation. There are four phases in our 
algorithm. 

comm
T

comp
T

Phase 1 (Communication): Each processor sends its own 
point myPoint to the other processors (lines 2-3). Since this 
sending is done in parallel, the time of the longest 
communication path dominates the whole communication. 

comm
1T = 3n - 1 

Phase 2 (Computation): Each processor computes the 
Euclidean distances between its own point myPoint and the 
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other points point that receives from the other processors.  By 
comparing, the maximum distance is eventually kept in max, 
and any pair of points corresponding to the maximum distance 
is also kept in the set S. (lines 6-12). 

comp
1T = n - 1 

Phase 3 (Communication): Each processor sends a variable 
twoItems consisting of the set S and the maximum distance 
max between its own point and the other points to the other 
processors (lines 14-15) for finding other pairs of points that 
have the distance greater than or equal to max. For simplicity, 
assuming that time of sending one item and two items are the 
same, we therefore have 

comm
2T = 3n - 1 

Phase 4 (Computation): Each processor checks for whether 
the distance that receives from the other processors max_dist is 
greater than or equal to the maximum distance max that it 
keeps (lines 19-24). There are in the worst case n-1 times to 
check. Therefore, we have 

comp
2T = n - 1 

Hence, the total time complexity is  totalT

totalT  =  + + + = O(n).  comm
1T

comm
2T

comp
1T

comp
2T

 
Theorem 3 (Optimality). The Diameter Computing Algorithm 
is time-optimal on CON. 
Proof. In order to solve any diameter computing problem on 
CON, the parallel diameter computing algorithm must at least 
communicate between the two farthest nodes 0 and n-1. Let us 
call the shortest distance between the two farthest nodes a 
diameter. In CON, the diameter is n + 1 steps. This establishes 
the lower bound Ω(n) for the diameter computing problem on 
CON. Theorem 2 states that the Diameter Computing 
Algorithm has a time complexity of O(n). Hence, theorem 3 
holds.  
 

IV. CONCLUSION 

In this paper, we proposed a time-optimal algorithm called 
Diameter Computing Algorithm for calculating the diameter of 
a finite set of n points on a completely overlapping network. 
Our algorithm not only gives the diameter of the point set but 
also outputs the set of pair(s) of points that produce(s) the 
diameter. This algorithm optimally works in O(n) time. We can 
also take satisfaction in knowing that there is no faster 
algorithm for solving the diameter computing problem on CON. 
Additionally, our algorithm has a speedup of O(log n) over the 
fastest sequential algorithm of this problem.  

A theoretical network CON is an extension of Wilkinson’s 
model. One may ask about practicality of our theoretical CON 
network. We believe that CON can be implemented cost-
effectively since it is similar to Wilkinson’s experimental 
networks that are known to be cheaper than most parallel 
machines. 

Throughout this paper, we only discussed the case in which 
all processors are fine-grained. However, like the multiple bus 
network with overlapping connectivity model, the concept of 
our theoretical network can also be applied to coarse-grained 
processors with larger memory. This is the case particularly 
worth attention because it can be applied to existing, widely-
used local area networks. Fig. 4 shows an example of 
embedding a 16-node CON into a 8-node CON. 

 
 

 
Fig. 4. 16-node CON embedded in a 8-node CON 
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