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Abstract—Novelty detection involves modeling the normal 

patterns for detecting any divergence from this behavior. Our 
recently proposed algorithm, Glabal&Local One Class 
Classifier (GLocal OCC), can solve this problem by maximizing 
the margin between the hyperplane and the origin through 
embedding the global information into the OCSVM framework. 
In this paper, we propose Linear Programming (LP) GLocal 
OCC (lpGLocal OCC) instead of the Quadratic Programming 
optimization to speed up GLocal OCC. By minimizing the 
average functional distance of the overall samples to the 
hyperplane, the lpGLocal OCC can attract the optimal 
hyperplane towards the centre of the data without using the 
origin anymore. Borrow off-the-shelf LP solver, this novel 
algorithm can be implemented easily and process solve large 
datasets rapidly. Results on benchmark datasets show that 
lpGLocal OCC not only has the comparable generalization 
power compared with the GLocal OCC besides its efficiency, 
but also has better generalization than (lp)OCSVM due to its 
structured learning approach. 
 

Index Terms—Linear Programming, Novelty Detection, 
Quadratic Programming, Structured Learning 
 

I. INTRODUCTION 
 Novelty detection [1] can be implemented by one class 

classification which usually differentiates the normal patterns 
from the outliers. These detection tasks can be found in many 
real-world scenarios like machine faulty diagnosis, network 
intrusion detection and document classification etc. 
Traditionally, novel patterns are detected by either estimating 
the probability density function of the normal patterns or by 
quantile estimation. However, these approaches both depend 
critically on the parametric form of the density function and 
can fail miserably when this assumption is incorrect. 

Instead of estimating the density or quantile, a simpler task 
is to model the support of the data distribution directly. 
Through finding the boundary to enclose the normal patterns 
appropriately, this approach minimizes the domain of the 
normal patterns by geometric shapes such as hypersphere or 
hyperplane. The philosophy behind this derived from Vapnik 
who advocates that never solve a more general problem as the 
intermediate process. [2] 
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As the typical algorithm of hypersphere model, Support 
vector data description (SVDD) [3] uses a small ball to 
enclose most of the data. Making use of the kernel trick, 
SVDD also works well on high-dimensional data by replacing 
the dot products between patterns with the corresponding 
kernel functions. In order to get much tighter domain, some 
ellipsoid algorithms are proposed to surround the overall data 
instead of using the hypersphere. Among them, Minimum 
Volume Enclosing Ellipsoid (MVEE) [4] uses the unit 
ellipsoid to cover most of the normal patterns, while the 
Mahalanobis Ellipsoidal Learning Machine (MELM) [5] 
optimizes the ellipsoid by using the M-metric radius. As for 
the Minimum Volume Covering Ellipsoid (MVCE) [6], it 
optimizes the covariance matrix and the ellipsoid’s radius 
simultaneously. 

Beside balls, hyperplane is usually employed to detect the 
outlier. As the state-of-the-art SVM applied on one class 
classification, One-Class SVM (OCSVM)[7] finds the 
optimal hyperplane by separating the normal patterns from the 
origin with maximal margin. Further analyses the OCSVM, 
we have found this algorithm has the local learning property 
since it neglects the whole data’s distribution due to the use of 
the Euclidian metric margin. In contrast, Single-Class 
Minimax Probability Machine (SCMPM) [8], another 
approach based on hyperplane model, seeks the smallest half 
space for normal patterns through the global learning way by 
using mean and covariance of the data. While in fact, global 
and local learning from the data are both very important for 
the classifier design.  

Motivated by unifying the global and local information 
into an integrated framework, we recently proposed a Global 
& Local One Class Classifier (GLocal OCC) [9] through 
embedding the distribution issues into OCSVM framework. 
In this way, the GLocal OCC not only incorporates the global 
and local learning into a unified classifier, but also provides a 
general way to extend the classical SVM algorithms for 
considering the global issues of the data. Here we call the 
global and local learning as structured learning briefly. 
Moreover, the optimization of the GLocal OCC is also 
Quadratic Programming (QP) alike the OCSVM so that can 
be solved by the standard SVM implementation such as the 
SMO optimization.  

In this paper, we propose the Linear Programming (LP) 
GLocal OCC (lpGLocal hereafter) for further reducing the 
computational cost of GLocal OCC. Through minimizing the 
mean functional distance of the whole samples to the 
hyperplane, the lpGLocal OCC can automatically attract the 
optimal hyperplane toward the centre of the data. In this way, 
the lpGLocal OCC possesses performs the following 
advantages compared with the above algorithms: 

 Needn’t compel the origin to act as the representative 
of the outliers anymore  
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 Easy to implement by the LP solver or other 
optimization approaches, such as interior-point 
method 

 Computationally more efficient  

 has more powerful generalization ability for 
structured learning  

The rest of the paper is organized as following: Section 2 
outlines our GLocal OCC algorithms, including its linear and 
kernel form. Section 3 presents the novel lpGlocal OCC for 
speeding up Glocal OCC.  Section 4 shows the experimental 
results on benchmark datasets. Finally, some conclusions are 
drawn in Section 5. 

II. GLOCAL ONE-CLASS-CLASSIFIER 
In order to unify the global and local issues into an 

integrated framework, our GLocal OCC incorporates the 
covariance matrix into the original OCSVM for taking into 
account the normal patterns’ distribution when maximizing its 
margin. In the following, the linear and kernel formulation 
will be displayed respectively. 

A. Linear GLocal OCC 
Given a set of normal patterns { }1 2X , , , nx x x= " , GLocal 

OCC tries to find the hyperplane by maximizing the margin 
and minimizing given data’s scatter degree denote by 
covariance matrix in the objective function: 
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Where (0,1)ν ∈  is the parameter which characterizes the 
fraction of support vectors and outliers, named 
ν -property[7]. iξ is the slack variables used to penalize the 
normal samples lying on the negative half space. Both of them 
are the original parameters of the OCSVM. Here the Σ  
denotes the scatter-ness of the given samples which represent 
the global issue of the input data, while the other items are the 
same as those in OCSVM, which try to find support vectors 
referred to as the local manner of the normal patterns. The 
item λ  is the regularized factor that regulates the balance 
between the new term and the original in the 
OCSVM. Here the value of 

Tw Σw Tw w
λ  is no less than zero and the 

bigger of this value, the more emphasize on the global issue of 
the data.  

Transforming the primal style into the corresponding dual 
formulation: 
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Notice that the above dual does not work in the input space 
where defined by the inner product as the kernel trick 
usually does, but is replaced by which maps 
the samples into a new feature space for finding the optimal 
hyperplane. When this hyperplane is mapped back into the 

input space, it becomes a nonlinear boundary which 
undoubtedly has more separable ability than the linear 
hyperplane. 

TX X
( )λ 1TX Ι + Σ X−

From the dual form(2)， we know GLocal OCC is also a 
QP problem, which means the solving process is almost the 
same as the OCSVM. That is, off-the-shelf QP solver or some 
decomposition methods such as SMO [10] can be exploited 
even without much modification.  

Given an unseen data, the decision function is described 
as: 

1( ) sgn ( )
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1  outlier

Tf zα λ ρ−⎡ ⎤= + −⎣ ⎦
⎧

= ⎨−⎩

Tx X I Σ
              (3) 

From the above primal(1), the dual(2)  and the decision 
function(3), we notice if the factor λ is set to zero, GLocal 
OCC will reduce to the original OCSVM. We therefore 
conclude that GLocal OCC is the extended form of OCSVM 
by incorporating more consideration of the global 
information.  

A. Kernel GLocal OCC 
For utilizing the kernel trick in the dual form, all the terms 

of  are denoted by the inner product. So the 
 is described as:   

( )−1TX Ι + λΣ X
Σ

T T T
2
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Here = − T1H (I 11 )
n

, where I is identity matrix. So by 

using the following Woodbury formula [11]: 
1 1 1 1 1( 1− − − − −−A + BC) = A A B(I + CA B) CA−

 

And using the properties of and=HH H = TH H , we 
obtain: 

( ) 1 1( )
n n
λ λλ − −+ = − + T TI Σ I XH I HX XH HX      (5) 

By adopting the kernel trick, Equation (2) then becomes 
[12]: 
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where  is the kernel matrix. This is also a standard 
QP. Moreover, when K  is invertible, by using the Woodbury 
formula, 

TK = X X

(6) can be further simplified: 
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The decision function (3) is also changed to: 

n n
λ λ ρ⎡ ⎤= −⎢ ⎥⎣ ⎦

T -1F(x) Sgn α (K - KH(I + HKH) HK 1� �    (8) 

Where represents the kernel matrix between normal �K
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patterns and testing data points. Since it is not a square matrix, 
Equation (3) can not be further simplified as(7). Here 

and F(x) ( )iSgn are the vector representation of ( )f x and 

insgn( )i (3). 
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III. LINEAR PROGRAMMING GLOCAL OCC 

The above GLocal OCC is solved computational 
expensive. In order to further improve the efficiency of the 
computation, inspired by the LP version of OCSVM [13], we 
proposed the novel lpGLocal OCC to replace the QP solver  
of  GLocal OCC. Instead of directly maximize the margin 
between the hyperplane and the origin, the lpGLocal OCC 
minimizes the output of the whole samples to the hyperplane. 
In this way, the lpGLocal OCC not only avoids the drawback 
of arbitrary taking origin as the outlier, but also attracts the 
optimal hyperplane located on the place of the minimum 
positive half space by adopting structured learning which is 
the spirit of GLocal OCC.  

If is invertible, the above formula can be further 
simplified: 
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A. Linear lpGLocal OCC 
For the hard margin case, the target function finds a 

hyperplane in input space to separate the normal patterns 
from the abnormals. This hyperplane is pulled onto the input 
samples with the restriction that each data point should 
always be in the positive half space. By minimizing the mean 
value of the distance from each pattern to the hyperplane, the 
objective function can be achieved as following: 

The decision function is the same as(8). 
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C. Time complexity analysis of lpGLocal OCC  
Since lpGLocal OCC is the LP improvement of the 

original QP solving, here we omit the computation consume 
of the matrix in the (lp)GLocal OCC and only care about the  
computational complexity of LP and QP. Using the simplex 
method or interior-point method, the computational 
complexity of LP is approximately ( )nο , while that of the 
standard SVM QP solvers (MINOS, CPLEX, LOQO, 
MATLAB QP routines) is O(n3) . Therefore, the optimization 
advantage of LP algorithms is obvious.   In the(9), the added constraint implies that all the given 

patterns should be  in the positive half space.  
IV. EXPERIMENT For avoiding the bad effects of the noise and outliers, here 

we introduce the soft margin: 
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A. Criteria of evaluation 
In the following experiment, we mainly use the error 

rate to evaluate the generalization of the algorithms. 
 False Negative(FN): rate of the  normal patterns 

are misclassified as outliers, also called the first 
error； 

 False Positive (FP): rate of the outliers are 
misclassified as normal patterns. Also called the 
second error; Where 1, 2,[ , nξ ξ ξ= "ξ denotes the slack variables of all 

the given patterns. 
 Balance Loss (BL): the mean of the above 

errors, ( )FP+FNBL= 2  

Obviously,  the lower of the above criteria, the better 
performance of the algorithm. 

Since there is no any change applied to the decision 

function, we still use(3) to decide the unseen data 

belongings.  B. Effect of the regularized factor λ  
 In order to investigate the effect of the regularized factor λ  
on the classifier, we perform experiments on a toy problem 
with the normal data come from a banana-shaped set. 50 
normal points are used for training the lpGLocal OCC with a 
RBF kernel: 

B. Kernel form 
Similar to the kernel trick usually done, the linear lpGLocal 

OCC can work on high-dimensional data if the ( )λ −1Ι + Σ  is 
denoted by the dot products between the given data. Since 
this work has been fulfilled during the kernelized of GLocal 
OCC with(5) , we can use this result directly and derive the 
following nonlinear case: 
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TABLE I.  THE  FN/FP/BL RESULTS WITH DIFFERENT AMOUNTS OF COVARIANCE INFORMATON ON BANANA-SHAPED DATASET( 0.1ν = ) 

λ  0 10 100 1000 10000 
FN 0.1660  0.1705 0.1470 0.1375 0.0750 
FP 0.2445  0.2350 0.2095     0.1545     0.2820 
BL 0.2053 0.2027 0.1782     0.1460     0.1785 

TABLE II.  FP/ FN /BL RESULTS ON THE UCI DATA OF ( LP)OCSVM AND (LP)GLOCAL OCC 

Unstructured learning Structured learning        FP/ FN /BL 
Data Sets 
（Tr:TeT:TeO,D） OCSVM lpOCSVM GLocal OCC lpGLocal OCC 

Biomed 
(102:25:67,5) 0.1418/0.1520/0.1469 0.2881 /0.1240/0.2060 0.1313/0.1120/0.1217 0.1403/0.1240/0.1321

Breast Cancer 
( 367:9:241,9) 0.0228/0.0604/0.0416 0.0344 /0.0901/0.0623 0.0274/0.04730.0373 0.0257/0.1055/0.0656

Heart 
(123:41:139,13) 0.5424/0.2781/0.4103 0.4856 /0.4063/0.4459 0.5165/0.2531/0.3848 0.595/0.2000/0.3975 

Import 
(71:17:71,25) 0.177/0.3353/0.2564 0.1282/0.3765/0.2523 0.1817/0.2294/0.2056 0.2141/0.2294/0.2217

Ionosphere 
(80:45:126,34) 0.0317/0.1556/0.0937 0.0246 /0.2289/0.1267 0.0325/0.1156/0.0740 0.0349/0.1067/0.0708

Sonar 
(89:22:9,60) 0.1165/0.6591/0.3878 0.0299 /0.5545/0.2922 0.1351/0.5409/0.3380 0.0959/0.4545/0.2752

Arrhythmia 
(90:47:183,278) 0.4612/0.1191/0.2902 0.4475/0.1425/0.2950 0.3798/0.1596/0.2697 0.3923/0.1404/0.2664

2 /( , ) x yK x y e σ− −=                             (13) 

Here we set σ  the mean distance between pair-wise 
points. For testing, we use another 200 normal points and 200 
outliers outside the banana-shaped region. Table I shows the 
results on FP/ FN / BL (averaging over 10 repetitions) when 
different amounts of covariance information is used. 

From the results of Table I, we can see that the 
generalization ability of classifier gets improved with more 
distribution information obtained by enlarging λ . Of course, 
if this information is overestimated, the performance will 
slow the increasing trend or even worse than the original 
ones. 

C. Results on benchmark datasets 
Here we list the performances of (lp)GLocal OCC and 

(lp)OCSVM on seven binary classes from the UCI machine 
learning repository on the first column of Table II. These 
results are listed by dimension from low to high, the
（Tr:TeT:TeO,D）means the numbers of Training data, the 
Testing normal patterns and the Testing Outliers, D means the 
dimension of the datasets. Here we still follow the steps in 
[14] to take the larger class as normal data and the other as 
outliers, and then randomly sample 80% of the normal 
patterns for training, the remaining 20% of the normal 
patterns and all the outliers for testing. 

Here we also use the RBF kernel of the(13). In 
accordance with the experiment setup we have reported on 
GLocal OCC, here we still use the grid search for finding the 
optimal kernel parameter σ and the regularized factor λ in 
(lp)GLocal OCC. Set  0.1ν =  in all algorithms. 

Since the LP algorithms are obviously superior to QP in 
computational complexity, here we omit the runtime but only 
compare the performance of the 4 algorithms divided into 
two groups according to their learning way. To reduce 

statistical variability, average results of 10 repetitions are 
reported in Table II. The italic and bold font denotes the best 
result of each data set according to the Balance Loss.  From 
analyses, we can conclude the following results: 

 Comparing the structured learning algorithms 
(lp)GLocal OCC with unstructured learning 
(lp)OCSVM respectively,, we notice that BL of 
(lp)GLocal OCC is better than its original algorithm 
in all seven datasets except the comparable result of 
lpGLocal OCC and lpOCSVM on Breast Cancer 
dataset. These results sufficiently prove that 
considering both the global and local information is 
more reasonable than only considering the local 
information as (lp)OCSVM does. 

 Further analyses the reason for the better 
performance of the (lp)GLocal OCC, we found the 
small values of BL obtained are mainly ascribed to 
the lower values of FN compared with (lp)OCSVM. 
It is reasonable since (lp)GLocal OCC considers the 
target data’s distribution when finding their decision 
boundary. We also notice that (lp)GLocal OCC 
possibly leads to large FP since its enlarged 
boundary has the risk to include the space of the 
outliers. However, this increasing of FP is usually 
slower than the decreasing of FN, so we can get the 
improved results of BL. This further proves that it is 
reasonable to take into account data’s distribution 
for unstructured learning algorithms.  

 Comparing the results of two structured learning 
algorithms, we can see the performance of lpGLocal 
OCC is comparable to GLocal OCC since it works 
better than GLocal OCC on three dataset denoted by 
bold and italic character. Particularly, for the Sonar 
dataset, LP algorithm performs better than the QP 
solver even by 6 percents. 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 
 

 

V. CONCLUSION 
In this paper, we proposed a linear programming approach 
lpGLocal OCC for accelerating our former model GLocal 
OCC. Through minimizing the average functional distance 
of the whole samples to the hyperplane, the lpGLocal OCC 
can attract the optimal hyperplane towards the centre of the 
data distribution. So the lpGLocal OCC need not to repel the 
hyperplane away from any arbitrary point outside the data 
distribution as the GLocal OCC does. As the result of the 
linear programming, this novel algorithm is easy to 
implement and able to process the large datasets rapidly. 
Experimental results on benchmark have shown that the 
lpGLocal OCC has comparable generalization power 
compared with the GLocal OCC besides its computation 
efficiency. In future work, inspired by sTructure OCC 
(TOCC) [15] which further considers the data distribution in 
delicate granularity, we will extend lp(GLocal) OCC to 
work on finer clusters within the normal patterns. 
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