
 
 

 

Abstract —This paper proposes a study on the use of 
mel-frequency cepstral coefficients (MFCC) and support vector 
machine (SVM) for text-dependent speaker verification. The 
MFCCs used in this paper are extracted from the voiced 
password spoken by the user. These MFCCs will be normalized 
and then can be used as the speaker features for training a 
claimed speaker model via SVM. Finally one could make use of 
the claimed speaker model to discriminate between the speaker 
and other impostors. Experiments were conducted on the 
Aurora-2 database with various orders of MFCCs. It follows 
from the experimental results that the proposed text-dependent 
speaker verification system based on the 22th-order MFCCs 
and SVM gives an equal error rate (EER) of 0.0% and average 
accuracy rate of 95.1%.  

 
Keywords— Speaker recognition, speaker verification, MFCC, 
SVM. 

I. INTRODUCTION 
The speaker verification is regarded as a subcategory of 

automatic speaker recognition (ASR) system and can apply 
to determine whether a person is who he/she claims to be. 
Therefore, the problem of speaker verification is a true-false 
(accept-reject) question [1-6]. The speaker verification is 
desirable widely in many speech related applications, such as 
banking by telephone, voice dialing, and biometric security 
system [1-6]. Meanwhile, depended on the differences of 
recognition target, the systems of speaker verification fall 
into two types: text-dependent and text-independent. The 
former one requires that the speaker should provide 
keywords or sentences of the same text for both training and 
recognition, while the latter one dose not depend on the 
specific text being spoken [1-6]. For security consideration, 
this paper will focus on the problem of the text-dependent 
speaker verification. 

Several methods have been proposed for speaker 
verification. It follows from [1-6] that a typical speaker 
verification system consists of two tasks: enrollment and 
verification as shown in Fig. 1. Enrollment is the task to 
construct a speaker model. This step will capture the speaker 
characteristics or features. Most of the present-day systems 
use the speaker-specific vocal tract information like MFCCs 
or linear prediction coefficients (LPCs) as speaker features 
for speaker verification. Then these speaker features are used 
to build a model that could authenticate the speaker during 
the verification phase. In the speaker verification task, the 

speaker features of the input speech from test subject will be 
extracted and matched against the speaker model. A 
likelihood ratio will evaluate the similarity between the 
model and the measured observations. The general approach 
is based on a threshold set for the acoustic likelihood ratio to 
decide the test speaker is accepted or rejected. Conventional 
speaker verification systems use hidden Markov models 
(HMM) or Gaussian mixture model (GMM) to perform the 
likelihood ratio test [1-6]. These systems make use of a 
generative model for all speaker models. This will result in 
over-fitting and maybe cannot maximize the discrimination 
of speaker and impostors. 

 
Fig. 1. The typical speaker verification system. 

The choice of speaker features is another primary concern 
in the development of a speaker verification system. The 
ideal speaker features set should have higher inter-class 
variance and lower intra-class variability. In addition, the 
selected speaker features should be independent of each other 
as in order to minimize redundancy. Based on the above 
discussion, the goal of this paper is to develop a more 
efficient approach to the text-dependent speaker verification 
using MFCCs and SVM. Previous researches [4-6] have 
shown that MFCCs can represent detail characteristics of 
individual speakers and therefore are mostly usable features 
for speaker verification. On the other hand, SVM is a 
two-class classifier based on the principles of structural risk 
minimization. It is shown that SVM has well generalization 
ability when compared to hidden Markov model and neural 
network based classifier [7]. Furthermore, since speaker 
verification is basically a binary decision, SVM seems to be a 
promising candidate to perform this task. 

In this paper, various orders of MFCCs are used as speaker 
features to perform speaker verification. In the beginning, the 
user has to provide a voiced password and the corresponding 
MFCCs will be extracted from this spoken password. Then 
the proposed text-dependent speaker verification system will 
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make use of SVM to train the speaker features from these 
MFCCs and generate a speaker model to discriminate 
between the speaker and other impostors. Using speech 
signals selected from the Aurora-2 database, experimental 
results shown the performance of the proposed speaker 
verification algorithm yields an equal error rate (EER) of 0% 
and average accuracy rate of 95.1% with 22-order MFCCs. 

The remainder of this paper is organized as follows. The 
introductions to MFCCs and SVM are briefly reviewed in 
Sections II and III, respectively. Section IV will describe the 
proposed text-dependent speaker verification system. Section 
V illustrates the various experimental results with different 
orders of MFCCs. Finally, conclusions are given in Section 
VI. 

II.  MFCC 
It is shown that MFCC can capture the acoustic 

characteristics for speech recognition, speaker recognition, 
and other speech related applications [4-8]. According to 
psychophysical studies, human perception of the frequency 
content of sounds follow a subjectively defined nonlinear 
scale called the "mel" scale [9] defined as, 
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where f is the actual frequency in Hz. This leads to the 
definition of MFCC and its calculation process is given as 
follows.  

Let s(n), n = 1~N, be a speech frame that is pre-emphasized 
and Hamming-windowed [8, 9]. First, the time domain signal, 
s(n), is transferred into frequency domain by an M point 
discrete Fourier transform (DFT). The resulting energy 
spectrum can be represented as 
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where 1 ≤ k ≤ M. Then, the triangular filter banks, whose 
frequency bands are linearly spaced in the mel scale, are 
imposed on the spectrum obtained in (2). The outputs e(l), l = 
1~Q, of the mel-scaled band-pass filters can be calculated by 
a weighted summation between respective filter response 
Hi(k), i = 1~M, and the energy spectrum |S(k)|2 as  
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where Hi(k) is defined as 
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In (4), fb(i) are the boundary points of the filters and are 
depended on the sampling points Fs and the number of points 
N in DFT: 
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Here, fmel(low) and fmel(high) are respectively the low and high 

boundary frequencies for the entire filter bank. 1
mel
−f  is the 

inverse to (1) transformation, formulated as 
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Fig. 2 show the mel space filter bank with M=40 [10]. 

 
Fig. 2. Mel-space filter bank (M=40) [10]. 

Finally, discrete cosine transform (DCT) is taken on the 
log filter bank energies, log[e(l)], and the MFCC coefficients 
Cm can be written as, 
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where 0 ≤ m ≤ M-1. Fig. 3 shows the summary of MFCC 
calculation process. 

 
Fig. 3. The block diagram of MFCC calculation process. 

III. SUPPORT VECTOR MACHINE 
An SVM is a two-class classifier constructed from sums of 

a known kernel function K(⋅, ⋅) to define a hyperplane.  
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obtained from the training. This hyperplane will separate 
given points into two predefined classes. Suppose a training 
set ll

ill YXyxyxS )()},(,),,{( 111 ×⊆= =L  and a kernel 
function >=< )(),(),( jiji xxxxK φφ  on XX ×  is given, 

where >⋅⋅< ,  denotes the inner product and φ maps the input 
space X  to another high dimensional feature space F. With 
suitably chosen φ, the given nonlinearly separable samples S 
may be linearly separated in F, as shown in Fig. 4. An 
improved SVM called soft-margin SVM can tolerate minor 
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misclassifications [4] and use in this paper. 
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Fig. 4. A feature map simplifies the classification task. 

 
Many hyperplanes can achieve the above separation 

purpose but the SVM used in this paper is to find the one that 
maximizes the margin (the minimal distance from the 
hyperplane to each points). The soft-margin SVM, which 
includes slack variables 0≥iξ , is proposed to solve 
non-separable problems. Fig. 5 shows the slack variables, 
where iξ  is defined as 

)),(,0max( bxwy iii +><−= γξ .                         (9) 
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Fig. 5. The margin and the slack variable for a classification 

problem. 

In (9), the parameter iξ  can measure the amount by which 
the training set fails to have margin γ, and take into account 
any misclassification of the training data. Consequently, the 
training process tolerates some points misclassified and is 
suitable in most classification cases.  

There are three common kernel functions for the nonlinear 
feature mapping, shown in Fig. 3: (1) exponential radial basis 
function (ERBF) )2/||exp(),( 2σxxxxK −−= , (2) 
Gaussian function )2/||exp(),( 22 σxxxxK −−= , where 
parameter σ  is the width of the Gaussian function, and (3) 
polynomial function dxxxxK )1,(),( +><= , where 
parameter d is the degree of the polynomial. It is shown in [7] 
the ERBF has better results in speaker classification task. 
This paper will select ERBF as SVM kernel. 

IV. THE PROPOSED SPEAKER VERIFICATION SYSTEM 
Fig. 6 shows the block diagram of the text-dependent 

speaker verification system proposed in this paper. Before 
performing speaker verification, one has to build a claimed 
speaker model and an imposter model via SVM training. The 

training procedure is described as follows. Assume that nT is 
the number of the obtained MFCC vectors. The training set T 
is then defined to be the nT × p array with row vectors being 
these p-order MFCC vectors. In this paper, 13 different 
settings of p are evaluated, they are 2-, 4-, 6-, …, 22-, 24-, 
and 26-order MFCC. The next section will discuss the 
performances of these 13 settings of p. Let T(i, j)denote the (i, 
j)-position of T. Use this array T to construct another nT × p 
array T’ whose (i, j) position T’(i, j) is defined to be 

jjiTjiT μ−=′ ),(),( , where ∑= i Tj njiT /),(μ  is the mean of 

column j. Next, one can normalize T’ by computing 
j

N mjiTjiT /),(),( ′= , where jm  is the maximum of the 

absolute value of elements in column j. Thus, each MFCC 
feature will have similar weights after the normalization 
process.  

MFCCs 
Calculation

Voiced 
Password

Claimed
Speaker Model

Accept

SVM

Imposter
Model

Reject
User

Decision

 
Fig. 6. The block diagram of the proposed text-dependent 

speaker verification system. 

To train a model for a specific speaker, this paper utilizes a 
SVM classification method called one-against-all strategy. 
That is the speaker data are trained to an SVM target value of 
+1 whereas the imposter data are trained to an SVM target 
value of −1. Finally SVM will find a linear hyperplane that 
can separate speaker and imposter MFCCs features. The 
selection of MFCC orders will be discussed in the next 
section. 

V. EXPERIMENTAL RESULTS 
The experimental results of the proposed text-dependent 

speaker verification system are achieved by using 20 male 
and 20 female speakers selected from the Aurora 2 database 
[11]. All of the test speech signals are noisy-free and are 
sampled at 8000 Hz with 16-bit resolution. Each test speech 
signal consists of 2~8 English digital numbers or English 
alphabets. Speaker verification performance will be reported 
using the false acceptance rate (FAR), the false rejection rate 
(FRR), and the equal error rate (EER).  

The definitions of FAR and FRR are given as follows: 

%100
accessesimposter  #

claimsimposter  aceepted #FAR ×=             (10) 

%100
accesses genuine #

claims genuine rejected #FRR ×=               (11) 

Once the receiver operating characteristic (ROC) curve of 
FAR vs. FRR is obtained, one can determine the EER, which 
FAR and the FRR at this point is the same for both of them. 

In this paper, the different settings of MFCC order are 
studied experimentally for speaker verification. It follows 
from [8] that the higher-order MFCC does not further reduce 
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the error rate in comparison with the lower-order MFCC. 
Hence, this paper compared the results obtained on the SVM 
based speaker verification system with 13 settings of MFCC 
order, namely p= 2q, q = 1~13. An impostor model was 
trained on all the MFCCs in the impostor data set while the 
speaker model was built using the corresponding speaker 
data set. During speaker verification task, a likelihood ratio 
was computed between the speaker model and the impostor 
model. The likelihood ratio was defined as: 

)modelimpostor |(log         
)modelspeaker |(log

xP
xPLR

−
=

                         (12) 
where x is the input test MFCCs vector. Table 1 shows a 
summary of the experimental results of the proposed 
text-dependent speaker verification systems. It follows from 
Table 1 that the better performance could be obtained when 
MFCC order p = 22. An EER of 0% and average accuracy 
rate of 95.1% are achieved using the proposed system. The 
ROC plots of FRR and FAR with MFCC order = 10 and 22 
are shown in Figs. 7 and 8, respectively.  

Table 1. Comparison of SVM based text-dependent speaker 
verification system with different MFCC orders. 
MFCC order Average accuracy rate EER 

2 72.1% 12.2%
4 83.9% 5.8% 
6 86.7% 2.2% 
8 87.7% 2.7% 

10 90.7% 2.0% 
12 92.5% 0.7% 
14 93.1% 1.3% 
16 94.0% 0.4% 
18 94.4% 0.0% 
20 94.7% 0.2% 
22 95.1% 0.0% 
24 95.0% 0.0% 
26 94.8% 0.4% 

VI. VI. CONCLUSIONS 
In this paper, the mel-frequency cepstral coefficients 

(MFCC) and support vector machine (SVM) are applied to 
the task of text-dependent speaker verification system. First, 

the MFCCs will be extracted from the voiced password 
provided by user. Then the proposed algorithm will make use 
of SVM to train the speaker characteristics model from these 
MFCCs and result in a claimed speaker model that can 
discriminate between the speaker and other impostors. 
Various experiments were conducted on the Aurora-2 
database and shown the performance of the proposed 
algorithm yields an equal error rate (EER) of 0.0% and 
average accuracy rate of 95.1% with 22-order MFCCs.  
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Fig. 7. A ROC plot of FRR and FAR with MFCC order = 10 Fig. 8. A ROC plot of FRR and FAR with MFCC order = 22.
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