
 
Currently Committed Crypt Analysis Hash Function 

 
A.Arul Lawrence Selvakumar  ,C.Suresh Ganandhas ,Member, IAENG 

 
 
 
 
 

 
Abstract This paper describes the study of cryptographic 
hash functions, one of the most important classes of 
primitives used in recent techniques in cryptography. The 
main aim is the development of recent crypt analysis hash 
function. We present different approaches to defining security 
properties more formally and present basic attack on hash 
function. The Main aim of this paper is the development of 
recent techniques applicable to crypt Analysis hash function, 
mainly from SHA family. Recent proposed attacks an MD5 & 
SHA motivate a new hash function design. It is designed not 
only to have higher security but also to be faster than SHA-
256. The performance of the new hash function is at least 
30% better than that of SHA-256 in software. And it is secure 
against any known cryptographic attacks on hash functions. 
 
Key words: Crypt Analysis, Cryptographic 
 

I. INTRODUCTION 
For cryptographic hash function, the following 
properties are required: 
– Preimage resistance: it is computationally 

infeasible to find any input which hashes to any 
pre-specified output. 

– Second preimage resistance: it is computationally 
infeasible to find any second input which has the 
same output as any specified input. 

– Collision resistance: it is computationally 
infeasible to find a collision, i.e. two distinct inputs 
that hash to the same result. 

For an ideal hash function with an m-bit output, finding 
a preimage or a second preimage requires about 2m 

operations and the fastest way to find a collision is a 
birthday attack which needs approximately 2m/2 
operations. Most dedicated hash functions which have 
iterative process use the Merkle-Damgard construction 
[6, 10] in order to hash inputs of arbitrary length.  
 
 
Manuscript revised July 30, 2008. This paper was supported in part of 
our research thesis work. 
        A.Arul Lawrence selvakumar Author is with the Assistant 
professor in Department of Computer Science and Engineering, the 
Oxford College of Engineering, Bangalore, India.(e-
mail:aarul72@hotmail.com) 
         C.Suresh Ganadhas is with the Professor in department of 
Computer Science & Engineering, Velmultitech SRS Engineering 
College, Chennai, India (e-mail: sureshc_me @yahoo.com)  
 
 
 

They work as follows. Let HASH be a hash function. 
The message X is padded to a multiple of the block 
length and subsequently divided into t blocks X1,···, Xt. 
Then HASH can be described as follows: 
 
CV0= IV; CVi = COMP (CVi−1,

 Xi), 1 ≤ i ≤ t;   HASH 
(X) = CVt, where COMP is the compression function 
of HASH, CVi is the chaining variable between stage i 
and stage i + 1, and IV denotes the initial value. 
 
 The most popular method of designing compression 
functions of dedicated hash functions is a serial 
successive iteration of a small step function, as like 
round functions of block ciphers.  
 
Many hash functions such as MD4 [12], MD5 [13], 
HAVAL [19], SHA-family [11], etc., follow that idea. 
Attacks on hash func tions have been focused on 
vanishing the difference of intermediate values caused 
by the difference of messages. On the other hand, a 
hash function has been considered secure if it is 
computationally hard to vanish such difference in its 
compression function. Usually, the lower the 
probability of the differential characteristic is, the 
harder the attack is. 
 
Therefore a step function is regarded as a good 
candidate if it causes a good avalanche effect in the 
serial structure. A function which has a good diffusion 
property can not be so light in general. However, most 
step functions have been developed to be light for 
efficiency. This may be why MD4-type hash functions 
including SHA-1 are vulnerable to Wang et al.’s 
collision-finding attack [15–18].  
 
RIPEMD-family [9] has somewhat different approach 
for designing a secure hash function. The attacker who 
tries to break members of RIPEMD-family should aim 
simultaneously at two ways where the message 
difference passes. This design strategy is still successful 
because so far there is not any effective attack on 
RIPEMD-family except the first proposal of RIPEMD. 
However, RIPEMD-family have heavier compression 
functions than hash functions with serial structure. For 
example, the first proposal of RIPEMD consists of two 
lines of MD4. Total number of steps is twice as many 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



as that of MD4. Also, the number of steps of RIPEMD-
160 is almost twice as many as that of SHA-0. 
 
In this paper, we propose a new dedicated hash function 
FORK-256. According to the above observation, we 
determined the design goals as follows.  
– It should have a 256-bit output because the security of 

2128operations is recommended for symmetric key 
cryptography as the computing power increases. 

– Its structure should be resistant against known attacks 
including Wang et al.’s attack [1–5, 7, 8, 14–18]. 

- The performance should be as competitive as that of 
SHA-256 

 
II. DESCRIPTION OF FORK-256 

 
In this section, we will describe FORK-256. These are 
basic notations used in FORK-256. 

   : Addition mod 232 

⊕   : XOR (eXclusive OR) 
A<<<s  :  s-bit left rotation for a 32-bit string A 
 

A. Input Block Length and Padding 
 
An input message is processed by 512-bit block. 
FORK-256 pads a message by appending a single bit 1 
next to the least significant bit of the message, followed 
by zero or more bit 0’s until the length of the message 
is 448 modulo 512, and then appends to the message 
the 64-bit original message length modulo 264. 
 

B. Structure Of Fork-256 
Fig. 1 depicts the outline of the compression function of 
FORK-256. The name ‘FORK’ was originated from the 
figure. The compression function of FORK-256 hashes 
a 512-bit string to a 256-bit string. It consists of four 
parallel branch functions, BRANCH1, BRANCH2, 
BRANCH3, and BRANCH4. Let CVi = (A, B, C, D, E, 
F, G, H) be the chaining variable of the compression 
function. It is initialized to IV0which is: 
 

A=6a09e667x   B = bb67ae85x   C = 3c6ef372x 
D = a54ff53ax 

E=510e527fx F= 9b05688cx   G = 1f83d9abx 
H = 5be0cd19x 

 
Each successive 512-bit message block M is divided 
into sixteen 32-bit words M0, M1,···, M15 and the 
following computation is performed to update CVi   to 
CVi+1

: 

 

CVi+1 = CVi  {[BRANCH1 (CVi , Σ1(M))  
BRANCH2(CVi,Σ2(M ))] ⊕ [BRANCH3 (CVi, Σ3(M )) 

 BRANCH4(CVi,Σ4(M ))]}, 
where Σj(M ) = (Mσj (0),···, Mσj  (15)) is the re-ordering 
of message words for j = 1, 2, 3, 4, given by Table 1. 

   
C. Branch Functions: BRANCH j 

 
Each BRANCHj is computed as follows: 

1) The chaining variable CVi is copied to initial 
variables Vj,0   for j-th branch. 

2) At k-th step of each BRANCHj(0 ≤ k ≤ 7), the 
step function STEP j,k is computed as follows: 

     Vj,k+1 = STEPj,k(Vj,k, Mσj(2k) , Mσj(2k+1), αj,k, βj,k), 
where αj,k and βj,k are constants. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Outline of the FORK-256 compression function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Step function of FORK-256, STEPj, k 

 
Input Order of Message Words   This table shows the input 
order of message words M0~ M15applied to BRANCHj 

(1≤j≤4) functions 
 

Table 1: Ordering rule of message words 

 
 
 
 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(t) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ2(t) 14 1 1 11 9 8 10 3 4 2 13 0 5 6 7 12 1 

σ3(t) 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 

σ4(t) 5 1 1 8 15 0 11   1 3 10 9 2 7 14 4 6 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 
Constants The compression function of FORK-256 
uses sixteen constants given by the following table: 
        

δ0   = 428a2f98x δ1  = 71374491x  
δ2   = b5c0fbcfx δ3  = e9b5dba5x 
δ4   = 3956c25bx δ5  = 59f111f1x 
δ6   = 923f82a4x δ7  = ab1c5ed5x 
δ8   = d807aa98x δ9  = 12835b01x 
δ10 = 243185bex δ11 = 550c7dc3x 
δ12 = 72be5d74x δ13 = 80deb1fex 
δ14 = 9dbc06a7x δ15 = c19bf174x 

 
These constants are applied to each BRANCH j according to 
the ordering rule of them as follows: 
       

  Step 
k 

α1, k β1,k α2, k β2,k α3, k β3,k α4, k β4, k 

0 δ 0 δ1 δ15 Δ14 δ1 δ0 δ14 δ15 
1 δ2 δ3 δ13 δ12 δ3 δ2 δ12 δ13 
2 δ4 δ5 δ11 δ10 δ5 δ4 δ10 δ11 
3 δ6 δ7 δ9 δ8 δ7 δ6 δ8 δ9 
4 δ8 δ9 δ7 δ6 δ9 δ8 δ6 δ7 
5 δ10 δ11 δ5 δ4 δ11 δ10 δ4 δ5 
6 δ12 δ13 δ3 δ2 δ13 δ12 δ2 δ3 
7 δ14 δ15 δ1 δ0 δ15 δ14 δ0 δ1 
 
Step Functions: STEP j,k  The input register Vj,k of 
STEPj,,k is divided into eight 32-bit words: 
Vj,k= (Aj,k, Bj,k, Cj,k, Dj,k, Ej,k, Fj,k, Gj,k, Hj,k). 
STEPj,k takes Vj,k, Mσj(2k),

 Mσj(2k+1), αj,k and βj,k as 
inputs, and then provides  the output as follows  
(See Fig 2): 
Aj,k+1=Hj,k g (Ej,k  Mσj(2k+1)) <<<21 ⊕  f (Ej,k  Mσj 
(2k+1)  βj,k)<<<17

,
 

B j, k+1
 
= Aj,k  Mσj(2k)  α j,k, 

Cj,k+1 = Bj,k  f (Aj,k  Mσj(2k)) ⊕  g(Aj,kMσj (2k) 
αj,k), 

Dj,k+1 = Cj,k  f (Aj,kMσj(2k))<<<5⊕ g (Aj,k  Mσj(2k)  
αj,k)<<<9,

 

Ej,k+1  = Dj,k  f (Aj,kMσj(2k))<<<17 ⊕  g(Aj,kMσj(2k)   
αj,k)<<<21, 

Fj,k+1=Ej,k  Mσj (2k+1)  βj,k, 
Gj,k+1 = Fj,k g (Ej,k  Mσj(2k+1)) ⊕ f (Ej,k  Mσj 
(2k+1) βj,k), 
Hj,k+1=Gj,kg g(Ej,k Mσj(2k+1))<<<9⊕ f(Ej,k Mσj(2k+
1) βj,k)<<<5, 

 
Where f and g are nonlinear functions as follows: 
f (x) = x   (x<<<7 ⊕  x<<<22), 
g(x) = x ⊕  (x<<<13  x<<<27). 
 

III. DESIGN STRATEGY 
A. Motivation For Our Proposal 

In Wang et al.’s attacks on MD4, MD5, HAVAL, and 
RIPEMD [15, 16] and SHA-0/1 [17, 18] brought the 
big impact on the field of symmetric key cryptography 
including hash function. However, RIPEMD-128/160 

are the algorithms which are still secure against their 
attacks. No attacks on them are found so far. 
 
They were designed to have two parallel lines, which is 
different from MD4, MD5 and SHA-family. This 
makes an attacker take into account two lines 
simultaneously. However, since each line needs almost 
same operation of MD5 and SHA algorithms, its 
efficiency was degenerated almost half of them. This 
motivates our design. We use four lines instead of two. 
In order to overcome disadvantage of RIPEMD 
algorithms, we manage to reduce operations for step 
functions of each line. The message reordering of each 
branch is deliberately designed to be resistant against 
Wang et al.’s attack and differential attacks. The 
function f  and g in each step are chosen to have good 
avalanche effects. 
 

B. Design Principle 
Structure FORK-256 consists of 4 Branches. In the 
security aspect, we can give the security against known 
attacks with the different message-ordering in branches. 
For example, RIPEMD, which consists of 2 branches, 
was fully attacked by Wang et al. because RIPEMD has 
same message-ordering in 2 branches. On the other 
hand, in case of RIPEMD-128/160, there is no attack 
result because RIPEMD-128/160 have different 
message-ordering in branches. In the implementation 
aspect, FORK-256 can be implemented efficiently be 
cause the message-ordering is simpler than the message 
expansion such as that of SHA-256. 
 
Constants   Each BRANCHi uses 16 different constants 
αi,j   and βi,j for j = 0,···,7. By using constants we pursue 
the goal to disturb the attacker who tries to find a good 
differential characteristic with a relatively high 
probability. So, we prefer the constants which represent 
the first thirty-two bits of the fractional parts of the cube 
roots of the first sixteen four prime numbers. 
 
Nonlinear Functions Nonlinear functions f and g 
output one word with one input word. Almost dedicated 
hash functions use boolean functions which output one 
word with three words at least. The boolean functions 
make it easy to control the output one word by 
adjusting the input several words. The attacks on MD4, 
MD5, HAVAL, RIPEMD and SHA-0/1 are based on 
this weakness of Boolean functions. In addition, the 
output words of f and g functions are used to update 
other chaining variables. In almost dedicated hash 
functions output words of boolean functions are used to 
update only one chaining variable. This weakness is 
also used to analyze above hash functions. 
 
Shift Rotations in Nonlinear Functions If the addition 
is changed into the bitwise x or operation in f and g, 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



nonlinear functions are generalized as 
x⊕ (x<<<s1⊕ x<<<s2 ). We consider all 465 (=31C2) cases 
for s1and s2 and want to define shift rotations satisfying 
the following 7 conditions. HW(x) denotes the 
Hamming Weight of x. 
– The branch number of f and g is four. 
– If HW (input word) = 2, then HW(output word) ≥ 4. 
– If HW (input word) = 3, then HW (output word) ≥ 3. 
– If HW (input word) = 4, then HW (output word) ≥ 4. 
– If HW (output word)= 1, then HW (input word) ≥ 17. 
– If HW (output word)= 2, then HW (input word) ≥ 14. 

– The interval of shift rotations are greater than or 
equal to 4. 

By above all conditions, we have defined f and g 
functions. 
 
Ordering of Message Words We adopt the message 
word ordering instead of the message word extension. 
If an attacker constructs an intended differential 
characteristics for one branch function, the ordering of 
message words will cause unintended differential 
patterns in the other branch functions. This is the core 
part of the security in the compression function. When 
we define the ordering of message words, following 
four conditions are considered. 
– Balance of upper (step 0~3) and lower (step 4~7) 

parts: Each value is applied twice to upper and 
lower parts, respectively. 

– Balance of left and right parts: Each value is 
applied twice to left and right parts, respectively. 

– Balance of sums of input orders 
• Each word is applied four times and is indexed by        

0~15. 
• Total sum of indexes is 480. Therefore, the average   

of   sum of indexes applied to each word is 30. 
•  We search the ordering so that the sum of indexes  
    corresponding to each word is 25~35. 

– Conditions which do not have same 
differential patterns in all branches 

• Specific differential pattern used at a branch may be           
applied to other branches. 
• Therefore, except the case of giving a same difference         
to all  words, we try to find an ordering such that there 
is no same differential patterns in all branches. 
 
Shift Rotations and Rank In the step function, 5 and 
17, the values of shift rotation, are fixed. Then we 
search all the case and find candidate values 
(corresponding to 9 and 21) so that the rank of the 
linearly-changed step function is maximized. The 
maximum of the rank is 252. Finally we select 9 and 21 
among candidate values so that differences generated 
from the outputs of f and g functions do not overlap 
when a message word inputted at a step function has an 
one-bit difference. 
 

VI. SECURITY ANALYSIS OF FORK-256 
A. Collision-Finding Attack 
Assume that an attacker inserts the message difference. 
Let ∆I be the output difference of i-th branch 
BRANCHi. Then the attacker expects the following 
event for finding collisions: 

(∆1   ∆2) ⊕  (∆3  ∆4) = 0. 
For this, he can take several strategies: 
1. The attackers constructs a differential characteristic 

with a high probability for a branch function, say 
BRANCH1, and then expects that the operation of 
the output differences in the other branches, ∆3  
∆4  ∆2 is equal to ∆1. 

2. The attacker constructs two distinct differential 
characteristics, and expects that ∆1= −∆2and ∆3= 
−∆4. 

3. The attacker inserts the message difference which 
yields same message difference pattern in four 
branches, and expects that same differential 
characteristic occurs simultaneously in four 
branches. Then the output difference of the 
compression function vanishes if the hamming 
weight of the output difference of each branch is 
small. This is because the final output is generated 
with using ⊕ and  by turns. 

 
Let us see the first strategy. If we assume that the 
outputs of each branch function are random, the 
probability of the event is almost close to 2−256. It is 
also difficult for the attacker to mount any attack 
following the second strategy because he should find 
such differential pattern of the message words.  
 
Third strategy is relatively easy for the attacker to 
perform. For example, if he inserts the same difference 
to all the message words, then the same message 
difference pattern occurs in every branches. However, 
the message word reordering was designed so that the 
third strategy is satisfied only if the attacker inserts the 
same difference to all the message words. Under the 
assumption that every step is independent, we can 
compute the upper bound of the probability that such 
kind of differential characteristic occurs, which 
frustrates the attacker. 

B. Attacks Using Inner Collision Patterns 
When the attacker inserts the differences to the message 
words, the event that the difference of the intermediate 
value becomes zero often occurs. It is called inner 
collision. We call a differential characteristic which 
causes an inner collision with a probability, inner 
collision pattern. Note that an inner collision is not a 
real collision, but the notion of inner collision pattern is 
important in cryptanalysis of hash function because it 
can be repeatedly used to yield a real collision with a 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



high probability. The main idea of attacks on SHA-0 
and SHA-1 is also the repetition of an inner collision 
pattern. 
 
So, in hash functions with a serial structure it is related 
to the resistance against collision-finding attack how 
many times an inner collision can be repeated. Let us 
focus on only one branch function, say BRANCH1. We 
can construct 5-step inner collision pattern easily. Let 
∆A,∆B,··,∆H denote the differences of A1,k, B1,k,···,H1,k, 
respectively. ∆ML and ∆MR   denote the differences of 
Mσ1 (2k) and Mσ1 (2k+1), respectively. We found 5-
step inner collision patterns of FORK-256 with the 
probability 2−40 as listed in Table 2 and 3. If we apply 
these patterns to BRANCH1, the output difference 
∆1will be zero with the probability 2−40. 
 
As mentioned in the previous subsection, however, it is 
hard to use the pattern for the attack on FORK-256 
because the following events seldom occurs: either that 
the computation of the output differences of the other 
branches is zero or that the other branches have the 
same differential pattern in the message words as 
BRANCH1. 
 
Table 2: Case 1. 5-step inner collision pattern of FORK-256: The 
numbers in the entries of the table denotes the bits in which the 
difference is 1. 
 
Ste
p 

Δ
A 

Δ
B ΔC ΔD Δ E ΔF ΔG ΔH ΔML ΔMR Prob. 

0         31   

1  31  6,12 
 1,26 

3,4 
8,11 
21,26  

1,6 
15,16     

1,6 
15,16 
20,23 

2-16 

2   31  6,12 
21,26     

  3 , 4 
  8,11 

21,2
6 

2-10 

3      31     
  6,12 

21,2
6 

2-4 

4             31 1 
 
Table 3: Case 2. 5-step inner collision pattern of FORK-256: The 
numbers in the entries of the table denotes the bits in which the 
difference is 1. 
 
Ste

 
ΔA ΔB ΔC ΔD  ΔE ΔF ΔG ΔH ΔML ΔMR Prob 

0        31 2-10 
1 1,6 

15,1
6 
20,2
3 

  31 6,1
2 
21,
26 

3,4 
8,11 
21,2
6 

1,6 
15,1
6 
20,2
3 

2-16 

2 3,4 
8,11 
21,2
6 

    31 6,12 
21,2
6 

3,4 
8,11 
21.2
6 

 2-10 

3 6,12 
21,2
6 

     31 6,12 
21,2
6 

 2-4 

4 31       31  1 
 

V.  EFFICIENCY AND PERFORMANCE 
 
In this section we compare the total number of 
operations and the performance of FORK-256 and SHA-
256. The total number of operations is compared in the Table 
4, Implementations were written in C language. We denote 
the simulation environment as CPU/OS/Compiler. The 
performance is compared in the following 
environments: 
 
Table 4: Number of operations used in FORK-256 and SHA-256 
 

Operation Fork – 256 SHA-256 
Addition (+) 472 600 
Bitwise operation 
(⊕ ,∨ ∧ ) 

328 1024 

Shift (<<,>>)  96 
Shift rotation 
 (<<<, >>>) 

512 576 

 
– P3/WinXP/VC 
– P4/WinXP/VC  

Where the notations are as follows: 
 
P3: Pentium III, 801 MHz, 192MB RAM 
P4: Pentium IV, 2.0 GHz, 768MB RAM 
 
WinXP  : Microsoft Windows XP Professional ver 2002 
VC : Microsoft Visual C++ Ver 6.0 
 
Table 5: Performance of FORK-256 and SHA-256 on several 
environments 

FORK - 256 SHA - 256  
Environment Mbps Cycle/Byte Mbps Cycle/byte 
P3/WinXP/VC 192.101 31.413 132.469 44.581 
P4/WinXp/VC 521.111  28.755 318.721 46.372 
 
These implementations of FORK-256 are not 
optimized, so we expect performance can be improved 
for the optimized version. 

 
VI   CONCLUSION 

In this paper we have proposed a recent committed 
crypt analysis 256-bit hash function FORK 256, which 
is designed to be not only secure but also fast than 
SHA-256. The main features are the followings; 
– Four branches are used in parallel, where as SHA-

256 uses four serial rounds. This means that 
FORK-256 can be implemented in hardware and it 
is difficult to analyze all branches simultaneously.  

– Unlike other dedicated hash functions, FORK-256 
doesn’t use boolean functions but uses another 
nonlinear functions which output one word with 
one input word. 

– Especially, FORK-256 updates several words with 
using one word. 

These properties make it difficult to analyze FORK-256 
with known attack methods including Wang et al.’s 
attack. It is believed that FORK-256 is secure against 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



any known attacks on hash functions. However, the 
extensive analysis of our new hash function is required 
and also we believe that Fork-512 is highly secured 
attack are developed latter. We believe that new FORK 
512 hash function is launched in future with high 
security measures. 

 
REFERENCES 

 
[1].   E. Biham and R. Chen, “Near-Collisions of SHA-0,”Advances 

in Cryptology CRYPTO 2004, LNCS 3152, Springer-Verlag, 
pp. 290–305, 2004. 

[2].  E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. 
Jalby, “Collisions of SHA-0 and Reduced SHA-1,”Advances in 
Cryptology – EUROCRYPT 2005, LNCS 3494, Springer-
Verlag, pp. 36–57, 2005. 

[3].  B. den Boer and A. Bosselaers, “An Attack on the Last Two 
Rounds of MD4,” Advances in Cryptology – CRYPTO’91, 
LNCS 576, Springer-Verlag, pp. 194–203, 1992. 

[4].   B. den Boer and A. Bosselaers, “Collisions for the Compression 
Function of MD5,” Advances in Cryptology – CRYPTO’93, 
LNCS 765, Springer-Verlag, pp. 293–304, 1994. 

[5]  F. Chabaud and A. Joux, “Differential Collisions in SHA-0,” 
Advances in Cryptol ogy – CRYPTO’98, LNCS 1462, Springer-
Verlag, pp. 56–71, 1998. 

[6]    I. Damg˚ard, “A Design Priciple for Hash Functions,”Advances 
in Cryptology CRYPTO’89, LNCS 435, Springer-Verlag, pp. 
416–427, 1989. 

[7]   H. Dobbertin, “RIPEMD with Two-Round Compress Function    
is Not Collision- Free,” Journal of Cryptology 10:1, pp. 51–70, 
1997. 

[8]   H. Dobbertin, “Cryptanalysis of MD4,” Journal of Cryptology 
11:4, pp. 253–271, 1998. 

[9].  H. Dobbertin, A. Bosselaers and B. Preneel, “RIPEMD-160, a 
strengthened version of RIPEMD,” FSE’96, LNCS 1039, 
Springer-Verlag, pp. 71–82, 1996. 

[10]. R. C. Merkle, “One way hash functions and DES,” Advances in 
Cryptology CRYPTO’89, LNCS 435, Springer-Verlag, pages 
428–446, 1989. 

[11]. NIST/NSA, “FIPS 180-2: Secure Hash Standard (SHS)”, 
August 2002 (change notice: February 2004). 

[12].  R. L. Rivest, “The MD4 Message Digest Algorithm,”Advances   
in Cryptology CRYPTO’90, LNCS 537, Springer-Verlag, pp. 
303–311, 1991. 

[13]. R. L. Rivest, “The MD5 Message-Digest Algorithm,” IETF 
Request for Comments, RFC 1321, April 1992.  

[14]. B. Van Rompay, A. Biryukov, B. Preneel and J. Vandewalle, 
“Cryptanalysis of 3- pass HAVAL,” Advances in Cryptology – 
ASIACRYPT 2003, LNCS 2894, Springer- Verlag, pp. 228–
245, 2003. 

[15]. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, “Cryptanalysis 
of the Hash Func tions MD4 and RIPEMD,” Advances in 
Cryptology – EUROCRYPT 2005, LNCS 3494, Springer-
Verlag, pp. 1–18, 2005. 

[16]. X. Wang and H. Yu, “How to Break MD5 and Other Hash 
Functions,” Advances in Cryptology – EUROCRYPT 2005, 
LNCS 3494, Springer-Verlag, pp. 19–35, 2005. 

[17]. X. Wang, H. Yu and Y. L. Yin, “Efficient Collision Search 
Attacks on SHA-0,” Advances in Cryptology – CRYPTO 2005, 
LNCS 3621, Springer-Verlag, pp. 1–16, 2005. 

[18]. X. Wang, Y. L. Yin and H. Yu, “Finding Collisions in the Full 
SHA-1,” Advances in Cryptology – CRYPTO 2005, LNCS 
3621, Springer-Verlag, pp. 17-36, 2005. 

[19]. Y. Zheng, J. Pieprzyk and J. Seberry, “HAVAL – A One-Way 
Hashing Algorithm with Variable Length of Output,” Advances 
in Cryptology – AUSCRYPT’92, LNCS 718, Springer-Verlag, 
pp. 83–104, 1993.  

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009


