
An Architecture for the Development of

Context-aware Services based on MDA and

Ontologies

Abstract - Most ubiquitous or pervasive applications

focus on the development of legacy or ad hoc architectures

to capture and adapt context. There is no consensus or

standards for context definition, representation and

reasoning. These architectures join business logic with

context-aware statements into the same artifact and do not

provide context interoperability and reuse. In this work

we present an interoperable architecture for the

development of context-aware services based on Model

Driven Engineering and ontologies. Founded on the

concerns separation in individual and independent models

we provide interoperability and reuse to context-aware

development. We also present our well defined context

metamodel based on the OMG’s ODM (Ontology

Definition Metamodel) and supported by OMG’s MDA

(Model Driven Architecture).

Index Terms - Ubiquitous, Context-awareness, MDA,

Ontologies.

I. INTRODUCTION

The IT community is waking up to the need for the

development of ubiquitous or pervasive applications

due to the emergence of advanced mobile devices with

Internet access. In order, distributed and Internet

supported applications have reached the top of the

podium of the most developed applications nowadays.

Internet based applications increase business activities

by the everywhere access terminals.

 Web Services have been spread over Internet due to

their interoperability and low-coupled characteristics.

They have also been presented as the best middleware

architecture in use.

Ubiquitous applications development is the pledge to

the next tendency in software development. Ubiquitous

(also named pervasive applications) was idealized by

Weiser [1]. By the use of sensors he intended to help

users in their daily activities in a transparent way.

Context-awareness tailors pervasive applications by the

use of user's current situation.

Manuscript received January 7, 2009. This work was supported in

part by FAPEMA (Foundation for the Support of the Research in

Maranhão).

 Samyr Vale is with LERIA-UFR Sciences, Université d’Angers, 2

Bd Lavoisier, 49000, Angers - France (samyr.vale@gmail.com)

 S. Hammoudi is with ESEO, 4 rue Merlet de la Boulaye, 49009,

Angers - France.

Context information can be supplied by a specific

device, ontology, data base or an XML archive and it

can refers to device characteristics, or a user profile and

preferences, or a location and time. The most used

definition of context is “any relevant information about

the user-application interaction, including the user and

the application themselves”[2]. Context-aware

applications use context information to provide relevant

computational solutions and information to users

without their interaction. The development of context-

aware applications is an arduous task. Context is

dynamic and services must be adaptable to contextual

changes. In others words, applications must change

their behavior according to changes in each element in

the computational environment specified as context.

Behavior changes can be realized by a new process

start, a new service invocation, a new message format

adaptation or a new interface creation.

As a rule, context definition and adaptation are

developed on the execution level. This solution can be

applied to very strict domains where developers know

context source, message format, and in cases where

change in input context performs as a switch-case

statement. Nevertheless, context is dynamic and

context-aware applications have to adapt themselves for

each context change. Problems of capture,

interpretation, representation and reasoning are current

in context-aware applications. There exist many

researches into context-aware software development.

The majority are about how to capture and provide

context information and others about context

adaptation. In most cases, contextual logic and business

logic are joined into the same application artifact and

context-aware activities are limited to context data

request. Due to this, context identification,

representation, reasoning and reuse are arduous works.

Most context-aware applications are based on legacy or

ad hoc architectures and are no-standard based

applications.

Our work focuses on context-aware mobile

distributed applications. We promote the development

of context-aware statements, context information

definition and business logic in independent and

individual models and in different abstraction levels.

We have investigated the application of model driven

Samyr Vale, Slimane Hammoudi

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

approach for context-aware applications development

[3][4][5].

In this paper we propose the use of the Model

Driven Engineering approach to develop distributed

context-aware applications by the separation of

concerns in different models. Business logic,

architectural details and context information can be

modeled in an independent way providing adaptability,

interoperability, reuse and transformation possibility

through different languages and to different platforms.

OMG's (Object Management Group) Model Driven

Architecture (MDA) [6] standard has been adopted for

Model Driven Development by the development of

PIM (Platform Independent Models) and PSM

(Platform Specific Models) models.

Some works have proposed the use of the MDA

approach to context-aware applications. But until now

there is neither a pattern for the context metadata

representation nor a consensus about the best formalism

to model context-aware applications. We also use

ontology concepts to represent our context metamodel.

Ontologies and models together are now supported by

ODM (Ontology Definition Metamodel) [7]. ODM is

the OMG (Object Management Group) newest

proposition for providing representation, management

and interoperability based on MDA (Model Driven

Architecture) to business semantic. Ontologies have

been widely used as the best solution for context

reasoning [8].

We use Web Services as the target platform

technology because of their interoperability and Internet

support characteristics. There are also some works

using Web Services for the development of Context-

aware applications, but most focus on the use of

message parameters to transmit context information by

the SOAP protocol. These solutions do not show how

applications can adapt new activities by context

changing and how these activities are implemented.

 The remainder of this paper is organized as follows:

Section 2 provides the general description of the

ARCAMODE architecture. Section 3 presents the

context metamodel and model into the Context View

description. Section 4 presents the Component

Composition View. Section 5 depicts the Service View

of ARCAMODE. Section 6 presents the Adaptation

View followed by our conclusions.

II. ARCAMODE (AN ARCHITECTURE FOR

CONTEXT-AWARE SERVICES DEVELOPMENT

BASED ON MDA AND ONTOLOGIES)

The Model Driven Architecture (MDA) [6] predicts

that everything can be modeled. The different

abstraction levels provided by MDA are relevant for

systems design because different systems requirements

are treated by different levels.

For each level there are some representation

formalism standards. MOF (Meta-object Facility) is the

OMG’s formalism used for meta-metamodel

representation, the top of the abstraction layer also

named M3 layer. For M2 or metamodel layer, UML is

the OMG most used solution for the development of

general purpose metamodels. The M1 abstraction layer

defines models of the real world. M0, the bottom layer,

is reserved for instances of software application or

code. Different representation languages can be created

and applied in these abstraction levels to represent

concepts.

There are some transformation languages (e.g.

OMG's QVT, ATL, YATL, BOTL) also used to

transform models from more abstract level until the

application code.

As presented in Figure 1 our ODM and MDA based

architecture owns different models which represent the

architectural views. The architecture named as

ARCAMODE provides a Service, Context, Adaptation,

Composition and Business Views.

Business

View

Context

View

Composition

View

Adaptation

View

Service

View

PIM

PSM

Business

View

Context

View

Composition

View

Adaptation

View

Service

View

PIM

PSM

The Business, Context and Composition Views are

expressed by PIM models, i.e., these models abstract

platforms details. The Context View is responsible for

context information definition, capture, representation

and interpretation. This view is also responsible for

defining context-aware elements, i.e., software elements

that realize activities based on context information

(components and operations).

The Composition View establishes the link between

business logic and contextual logic, i.e., how business

statements and contextual activities will be executed

harmoniously to provide relevant results for user needs.

The Adaptation and Service Views are expressed in

PSM models, i.e., they specify target platforms details,

middleware technologies, connectors, protocols and

others platform specific requirements. The details of

each model of the ARCAMODE architecture are

described in the next sections.

Figure 1. ARCAMODE Views

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

III. THE CONTEXT VIEW

Context information and context-aware activities are

defined and represented in the ARCAMODE’s Context

View.

To represent context information we use ontology

concepts. “An ontology defines the common terms and

concepts (meaning) used to describe and represent an

area of knowledge” [7].

Ontologies have been used to represent complex

knowledge and to improve semantic and consistence in

web applications. There exist some works using

ontologies to represent context information due to the

variety of their meanings and sources.

Figure 2 presents our context metamodel represented

by the UML formalism. The UML is the model

language used by the ODM to represent ontology

models based on the Model Driven Architecture

(MDA). The context metamodel represents the context

domain and definitions.

We use W3C`s RDF (Resource Description

Framework) to represent context data at model level

[9].

RDF Schema (RDFS) is MOF supported and permits

definitions of vocabularies to represent context at

metamodel level. A class in RDFSchema is a defined

term and its collection members, defined using rdf:type.

Classes in RDFSchema have no pre-defined definition

or constraints on their membership. Each class in our

Context Metamodel represents an RDFSchema. A

property in RDFSchema is a defined term and its

domain and range which indicate which resource class

this property applies (domain) and to which resource

class this property leads (range).

The RDFS ContextElement is an RDF Resource that

represents context elements. Resource is a semantic

concept used to represent context at meta-metamodel

level [7]. The ContextElement is any element that

represents context. We employ Dey’s context definition

as aforementioned [2].

In Figure 3 we represent a context model based on

the context metamodel depicted in Figure 2. We have

defined in our Context Model the principal context

Figure 2. The Context Metamodel

ContextDomain

+dName: String

Context

+ Ctxname: String
+ description: String

ContextPreferences ContextPackage

+ namePck: String

CtxConstraints

+ oclRules: String

Ctx-aware Activity

+ ActivName: String

+ CA_activity (): void

ContextElement

+ CtxElmt: String

+ description: String

+ datatype:DataType

+ CtxType: String

+ contents: Content[0..1]

+ instances: Instance

CtxElmtRelationShip

+ ruleRelation: String

+ ruleExpLang: String

Static

+ srcName: String

Dynamic

- when: Date

- srcName: String

- probability: Int=0
Profile

+ Pdescription: String

+ Pname: String

getName::
getContext::

Atomic

Composite

+ compCtx: String

ContextDataType

- ctxdataType: Type

<<ContextDataType>>

Type

-Integer:

-Float:

-Boolean:

-String:

-Enumeration:

-DefinedType:

ContextProperty

- name: String

- type: String

- value: Value

- cardinality: String

<<ContextProperty>>

Value

-Constant:

-Function:

TaggedValue

-value: String

TagDefinition

-tag: String

-type: String

+domain1

1..*
+contextTemplate

+context

1

1..*

validContext

+context

+ctxActivity

1

1..*

+context

+contextElement

1

1..*

+uses

1..*

1..*

+constraints

1..*

1..*

+ CTXrelation(:String)

+contextElement

+ctxElmtRelationship

1..*

1..*

+validRelation

+contextComposite

0..1

+datatype

+contextElement

+property1..*

+uses

1

1..*

1..*

+ ctxPreference: String
1..* 1

+preference

+ atmContext: String

+ getContext(): float
+ setContext(:float)

URIReference

+ URIaddress: String

0..1

+localname

1

+URIreference

1..*

1..*

CWService

+ activates

1..*

Ontology

+ axiom: String

+ language: String

+ RDF_Elmt: String

+refersTo

1..*

1..*

ContextDomain

+dName: String

Context

+ Ctxname: String
+ description: String

ContextPreferencesContextPreferences ContextPackage

+ namePck: String

ContextPackage

+ namePck: String

CtxConstraints

+ oclRules: String

Ctx-aware Activity

+ ActivName: String

+ CA_activity (): void

ContextElement

+ CtxElmt: String

+ description: String

+ datatype:DataType

+ CtxType: String

+ contents: Content[0..1]

+ instances: Instance

CtxElmtRelationShip

+ ruleRelation: String

+ ruleExpLang: String

Static

+ srcName: String

Dynamic

- when: Date

- srcName: String

- probability: Int=0
Profile

+ Pdescription: String

+ Pname: String

getName::
getContext::

Atomic

Composite

+ compCtx: String

ContextDataType

- ctxdataType: Type

<<ContextDataType>>

Type

-Integer:

-Float:

-Boolean:

-String:

-Enumeration:

-DefinedType:

<<ContextDataType>>

Type

-Integer:

-Float:

-Boolean:

-String:

-Enumeration:

-DefinedType:

ContextProperty

- name: String

- type: String

- value: Value

- cardinality: String

<<ContextProperty>>

Value

-Constant:

-Function:

<<ContextProperty>>

Value

-Constant:

-Function:

TaggedValue

-value: String

TagDefinition

-tag: String

-type: String

+domain1

1..*
+contextTemplate

+context

1

1..*

validContext

+context

+ctxActivity

1

1..*

+context

+contextElement

1

1..*

+uses

1..*

1..*

+constraints

1..*

1..*

+ CTXrelation(:String)

+contextElement

+ctxElmtRelationship

1..*

1..*

+validRelation

+contextComposite

0..1

+datatype

+contextElement

+property1..*

+uses

1

1..*

1..*

+ ctxPreference: String
1..* 1

+preference

+ atmContext: String

+ getContext(): float
+ setContext(:float)

URIReference

+ URIaddress: String

0..1

+localname

1

+URIreference

1..*

1..*

CWService

+ activates

1..*

Ontology

+ axiom: String

+ language: String

+ RDF_Elmt: String

+refersTo

1..*

1..*

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

elements used in most of context-aware mobile

applications. We have defined three primary context

elements: person, computational artifact and

environment. Usually mobile applications refer to a

user that owns a device with some specific

characteristics like display, keyboard, battery, memory,

GPS functions, mini-browser and voice. This user is

situated in an environment with some specific

characteristics also specified in the model, like location,

space, time and weather. This specific device works

over a network with specific details like protocol,

message and QoS.

The context model conforms to the Context

Metamodel and this is based on the ODM metamodel

and conforms to the MOF meta-metamodel.

The RDFS Preferences class represents URI

references or external context sources like an external

ontology model.

The RDFS ContextProperty class represents context

element attributes and associations. The advantage of

comparing with UML attributes and associations is the

independence provided by Properties. Property can be

defined without associations as the opposite of UML

traditional classes.

The RDFS ContextDataType class groups context

data. Context data type can be one of the defined

context elements in our context model or another type

defined by the engineer. Any context element can be

represented at context model level as soon as it

conforms to the context metamodel.

Applications cannot adapt themselves to any context

information due to their variability of meaning. So

specification of context scope is necessary to provide

context reasoning for applications.

Since properties can represent many domains,

several associations could be needed. Relations could

be Static (properties that do not change on the time) or

Dynamic (properties with no persistent values).

Properties can be updated or modified based on the

newest context references defined in the ontology

represented in a URI reference.

A specific Context owns its context-aware tasks,

represented by the Ctx-awareActivity class. A context-

aware activity uses a specific context element and

stores the user contextual activities in a Profile. These

activities are realized by Web services and they can be

Static or Composite with the coordination of multiple

services to provide the required context-aware activity.

A specific context can represent a specific domain

and can be defined in an individual and independent

ContextPackage.

IV. THE COMPONENT COMPOSITION VIEW

In this section we present the Contextual Component

Composition View.

Providing a well-detailed definition of context is not

sufficient to adapt context and to change applications

behavior by the information provided. Business logic

must implement activities to be executed in context

changes. For each context provided applications must

adapt themselves providing the solution required. This

is the principle of context-awareness.

Many solutions presented in the literature focus on

context data and middleware, but how to manipulate

and process this information is overlooked in many

cases.

We separate business logic and contextual logic into

individual components. Business Process Components

are responsible for business logic implementation and

Contextual Process Components are responsible for

providing changes in application behavior by the

context provided.

Component

Manager

+setCmpnt: void

+requiresInterface::

+update:void

Business

Process

Component

+ operation: void

+isComposit ion

1..*

+initiates

Protocol Port

+operation: void

+setPort: void

+port: Integer

+responds

+parameter: String

Composition

Protocol

Adaptation

+call

Context

Process

Component

+ ctxoperat: void

+ ctxparam: String

+ ctxElemt: Context

+isComposit ion

+protocol

1..*

1..*

+call

1..*

1..*

Component

Realization

Context
from Context

Metamodel

+context

1..*

1..*

Context

Binding

Component

Model

+conformsTo

+binding

+binding

Component

Manager

+setCmpnt: void

+requiresInterface::

+update:void

Business

Process

Component

+ operation: void

+isComposit ion

1..*

+initiates

Protocol Port

+operation: void

+setPort: void

+port: Integer

+responds

+parameter: String

Composition

Protocol

Adaptation

+call

Context

Process

Component

+ ctxoperat: void

+ ctxparam: String

+ ctxElemt: Context

+isComposit ion

+protocol

1..*

1..*

+call

1..*

1..*

Component

Realization

Context
from Context

Metamodel

+context

1..*

1..*

Context

Binding

Component

Model

+conformsTo

+binding

+binding

Figure 4 presents the component composition model of

the ARCAMODE Architecture. It implements new

functionalities for application and in complex context-

aware systems each Contextual Process Component can

treat some context domain. These components will be

integrated in a middleware infrastructure. Composition

Process components implement roles in a process. An

EJB (Enterprise Java Bean) or a CORBA Component

can be a process component implementation.

Figure 4. Component Composition Model.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Context Element

Computational
Artifact

+ name: String

+ artifactType: Type

Person

+ userId: Integer

+ userName: String

+ birthDate: Date

+ phoneNb: String

+ address: String

Environment

+ name: String

+ local: Local

+ light: String

Device Network Sensor

Location

Time

Space

Weather Temperature

Display

Keyboard

Voice

Memory

Position

Protocol Message QoS
Operating

System

+ OSname:Bool

+ total: Integer

+ available: Integer

+ address: String

+ from: String

+ to: String

+ currentPos: String

+ lastKwnPos: String

+ timeStamp: String

+ devName: String

+ devType: String

+ IdAddress: Integer

+ speakerPh: Bool

+ SMS: Bool

+ MMS: Bool

+ message: String

+ keybType: String

+ language: String

+ alphanum: Bool

+ touchScreen: Bool

+tmpCelsius:Integer

+ max: Integer

+ min: Integer

+ ntwkType: String

+ range: Type

+ idHost: String

+ port: Integer

+ screenDim: String

+ dispSize: Integer

+ backlight: Bool

+ humidity: String

+ isHarshWthr: Bool

+ rainLikelihood: Float

+ snrSource: String

+ snrType: Type

+ dataCapt: String

+ room: String

+ area: String

+ time: Time

+ date: Date

<<enumeration>>

Time

+ hour:

+ minute:

+ second:

+ uses

+ PtclType: Protocol

+ interface: String

+ protPort: Integer

GPS

+ gpsType: String

+ coordX: Integer

+ coordY: Integer

<<enumeration>>

Format

+ XHTML:

+ HTML:

+ WML:

+ WAP:

+ QoSProtcl: QoS

+ bandWidth: Float

+ throughput: Float

<<enumeration>>

QoS

+ RSVP:

+ DiffServ:

+ MPLS:

+ SBM:

<<enumeration>>

Protocol

+ GSM:

+ WCDMA:

+ Bluetooth:

+ WLAN 802.x

MiniBrowser

+ HTTP/TCP/IP: Bool

+ javaScript: Bool

+ ajax: Bool

+ playformat: Format

<<enumeration>>

Date

+ day:

+ month:

+ year:

<<Invariant>>
{year>=2008}

<<Invariant>>

{month>=1 and month<=12}

<<Invariant>>
{hour>=0 and hour<=23}

<<Invariant>>

{minute>=0 and minute<=59}

<<Invariant>>
{second>=0 and second<=59}

<<Invariant>>
{day>=1 and ((day<=28 and month=2) or (day<=31 and month in (1,3,5,7,8,10,12)) or

(day<=30 and month in (4,6,9,11)) or (day<=29 and month=2 and (year mod 4=0)))}

Battery

+ btType: String

+ btLevel: String

+ opMode: String

+uses

1 1. .*

+located_at

1. .* 1. .*

+located_at1

1..*

Context Element

Computational
Artifact

+ name: String

+ artifactType: Type

Person

+ userId: Integer

+ userName: String

+ birthDate: Date

+ phoneNb: String

+ address: String

Environment

+ name: String

+ local: Local

+ light: String

Device Network Sensor

Location

Time

Space

Weather Temperature

Display

Keyboard

Voice

Memory

Position

Protocol Message QoS
Operating

System

+ OSname:Bool

+ total: Integer

+ available: Integer

+ address: String

+ from: String

+ to: String

+ currentPos: String

+ lastKwnPos: String

+ timeStamp: String

+ devName: String

+ devType: String

+ IdAddress: Integer

+ speakerPh: Bool

+ SMS: Bool

+ MMS: Bool

+ message: String

+ keybType: String

+ language: String

+ alphanum: Bool

+ touchScreen: Bool

+tmpCelsius:Integer

+ max: Integer

+ min: Integer

+ ntwkType: String

+ range: Type

+ idHost: String

+ port: Integer

+ screenDim: String

+ dispSize: Integer

+ backlight: Bool

+ humidity: String

+ isHarshWthr: Bool

+ rainLikelihood: Float

+ snrSource: String

+ snrType: Type

+ dataCapt: String

+ room: String

+ area: String

+ time: Time

+ date: Date

<<enumeration>>

Time

+ hour:

+ minute:

+ second:

+ uses

+ PtclType: Protocol

+ interface: String

+ protPort: Integer

GPS

+ gpsType: String

+ coordX: Integer

+ coordY: Integer

<<enumeration>>

Format

+ XHTML:

+ HTML:

+ WML:

+ WAP:

+ QoSProtcl: QoS

+ bandWidth: Float

+ throughput: Float

<<enumeration>>

QoS

+ RSVP:

+ DiffServ:

+ MPLS:

+ SBM:

<<enumeration>>

Protocol

+ GSM:

+ WCDMA:

+ Bluetooth:

+ WLAN 802.x

MiniBrowser

+ HTTP/TCP/IP: Bool

+ javaScript: Bool

+ ajax: Bool

+ playformat: Format

<<enumeration>>

Date

+ day:

+ month:

+ year:

<<Invariant>>
{year>=2008}

<<Invariant>>

{month>=1 and month<=12}

<<Invariant>>
{hour>=0 and hour<=23}

<<Invariant>>

{minute>=0 and minute<=59}

<<Invariant>>
{second>=0 and second<=59}

<<Invariant>>
{day>=1 and ((day<=28 and month=2) or (day<=31 and month in (1,3,5,7,8,10,12)) or

(day<=30 and month in (4,6,9,11)) or (day<=29 and month=2 and (year mod 4=0)))}

Battery

+ btType: String

+ btLevel: String

+ opMode: String

+uses

1 1. .*

+located_at

1. .* 1. .*

+located_at1

1..*

Figure 3. Context Model

Process components represent active processing

units. They can interact by the use of ports represented

by the Protocol Port element and by the use of a

communication protocol (represented by Protocol class)

they can be composed and make communication.
Composition specifies how components work

together and how they can be connected. In our

Composition Component View we present a particular

element to bind Contextual and Business components.

This is the role implemented by the Component

Manager element.

The Component Manager is also responsible for

adapting external components and communication

protocol definition. Context Process Component

implements contextual logic, i.e., activities realized

through a specific context. It binds context information

provided by the Context Element. The Context Element

is defined in the Context Metamodel.

V. THE SERVICE VIEW

This section depicts the architectural Service View.

The Service View is based on the WSDL [10]

metamodel and is represented by the UML formalism in

Figure 5.

Services are the base of ARCAMODE architecture

due to their interoperability benefits. Context Service

represents Contextual Services, i.e., services which

provide context information between clients and

components.

Services can also be composed of services

represented by the Context Service Composition class.

Context Service owns an interface represented by

Context Service Interface class. Context Service

Interface aggregates operations (represented by the

Operation class) and operations aggregate messages

(represented by the Message class).

The Message class is responsible for transmitting

context data as message part represented by the Part

class. Message refers to the Context Metadata Element

which supplies Context data format and semantic

details.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Protocol Port

+operation: void

+setPort: void

+port: Integer

Context
Service

Interface

+protocol

Protocol

Context

Service

Operation

- name: String

- msg: Message

Context

Service

Composition

Message

- name: String

Composition

Component

Context
from Context

Metamodel

+protName: String

Component
Interface

Part

-name: String

-ctxElmt: Context

-ctxDataType:Type

+uses

+operat ion

Protocol Port

+operation: void

+setPort: void

+port: Integer

Context
Service

Interface

+protocol

Protocol

Context

Service

Operation

- name: String

- msg: Message

Context

Service

Composition

Message

- name: String

Composition

Component

Context
from Context

Metamodel

+protName: String

Component
Interface

Part

-name: String

-ctxElmt: Context

-ctxDataType:Type

+uses

+operat ion

OMG (Object Management Group) and W3C

(World Wide Web Consortium) have presented and

have been working in MDA and Web Services patterns,

respectively. This approach leads to a loosely coupled

development of distributed components based on Model

Driven Engineering.

VI. ADAPTATION VIEW

The Adaptation View provides a composition

component formed by one or more business

components, one or more context components and a

connector component. As shown in Figure 6 this

composition component is named CC Manager

(Composite Component Manager).

Composition is an abstraction of process component

and describes how instances of process components are

configured and connected to implement the

composition process component.

The CC Manager is composed of components and

other software artifacts which will make

communication among themselves or with other

business components. The components in CC Manager

are logically independent but own specific interfaces to

interact. CC Manager can have the same interface as

Business Components and Context Components or not.

It can implement interfaces for new external

components or services.

The connector component is responsible for putting

context and business components in communication.

Figure 6 presents the component interaction

provided by the CC Manager. The Connector

component provides a common protocol for

components and services. Its main role is the adaptation

of the different architectural elements by the use of the

provided protocol.

Business
Component

Context
Component

Context Service
Interface

Context
Data

Context
Element

Connector

ReceiveReceive

ResponderResponder

SendSend

InitiatorInitiator

CC Manager

ProtocolProtocol

Communication among elements is realized by ports

whose concept is inherent from UML2.0 components.

Connector realizes middleware activities, bindings and

implements interfaces. The protocol provides SOAP

[11] communication to support Web Services.

The Context component is responsible for contextual

activities implementation of the context acquired. It is

also responsible for managing context information and

to implement interface between itself and the context

element.

Each component model provides an interface and

protocol. Context component and Business component

protocols are not represented in Figure 6 once they are

inherent for each component.

Business component can be modeled in an

independent way and business logic developers do not

have to know contextual details. Interfaces and

protocols are the bridge among all architectural

elements. Communication is realized by the Connector

component.

The connector component can provide multiple

protocols and realize parser activities. It can use SOAP

protocol for web services communication and other

protocol for communication between components (e.g.

CORBA components). Figure 7 presents the Context

Protocol Component activities.

Context Protocol is also a Composition Component

of the set of components responsible for all the

necessary details to make components communication.

The CC Protocol (Composition Component

Protocol) establishes and switches messages received

from one component to its specific destination (other

component or service).

Figure 5. Service Model.

Figure 6. Component Manager.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

CC Protocol

Ports

Messages

Business Data

Interfaces

Contracts

ContextData

Interpreting

Transforming

Intergration

Parsing

CC Protocol

Ports

Messages

Business Data

Interfaces

Contracts

ContextData

Interpreting

Transforming

Intergration

Parsing

Ports Component provides a well defined interaction

point between the others components. It identifies

which are the components ports and services ports and

sets which component port intends to make

conversation. Ports element also specifies temporal

details of connections.

Interfaces element specifies interfaces, constraints

and mapping methods. It contains operation and

controls information flows.

Messages are the elements transmitted when a

component initiates communication. Messages flow

between ports and own parameters and values.

Contracts specify messages format and description

of actions realized by the component. The Interpreting

element is responsible for messages parameters

interpretation.

By transformation techniques messages are adapted

according to contract specification. Messages must be

conformed to a contract to be communicable.

The Integration element manages business and

context data, their semantic and representation formats.

This element is also responsible for avoiding data

redundancy.

The Parsing element provides more flexibility in

communication. It is used when business component

protocol and context component protocol are

compatible. So it receives input and produces output

messages.

VII. CONCLUSION

In this paper, we have presented ARCAMODE

(Context-aware Service Architecture based on MDA

and Ontologies). Our architecture proposes a well

defined context metamodel and model and five

architectural views. It provides many advantages to

context-aware software development:

- context definition and representation in a

standard formalism,

- concerns separation of context, context-aware

logic, and business logic in different and

individual models and in different abstraction

levels,

- reasoning of context elements by RDF schemas

which supports ontologies development,

- representation of context and context-aware

elements in UML based on the ODM (Ontology

Definition Metamodel) and supported by MDA

(Model Driven Architecture),

- models transformation possibilities by

traditional transformation languages,

- context reuse and interoperability,

- web services as target platform and

interoperable middleware.

REFERENCES

[1] Weiser, M. The Computer for the 21s century,

Scientific American, 1991. 94-104.

[2] A.K. Dey, D. Salber, and G. D. Abowd. A

conceptual framework and a toolkit for supporting the

rapid prototyping of context-aware applications,

Human-Computer Interaction Journal, pp. 97–166,

2001.

[3] Vale S., Hammoudi S., Towards Context

Independence in Distributed Context-aware

Applications by the Model Driven Approach. ACM

SIPE’08, July 7, 2008, Sorrento, Italy.

[4] Vale S., Hammoudi S., Context-aware Model

Driven Development by Parameterized Transformation.

MDISIS held with CAISE’08.pp. 121-133, June 2008,

Montpellier-France.

[5] Vale S., Hammoudi S., Model Driven

Development of Context-aware Service Oriented

Architecture. Pergrid’08 held with 11th IEEE

Conference on Computational Science and Engineering,

2008, Sao Paulo-Brazil.

[6] OMG. Model Driven Architecture (MDA),

document number ormsc/2001-07-01, 2001.

[7] OMG. Ontology Definition Metamodel (ODM).

OMG document OMG/ RFP ad/2006-05-01, 2006.

[8] Gu Tao. Pung H.K., Zhang D.Q., A Service-

Oriented Middleware for Building context-aware

Services, Journal of Network and Computer

Applications, Elsevier, 2005. pp. 1-18.

[9] W3C. Resource Description Framework (RDF),

2004-02-10

[10] W3C. Web Services Description Language

(WSDL)1.1, 2001.

 [11] W3C. Simple Object Access Protocol (SOAP)

1.1, 2001.

Figure 7. Component Composition Protocol.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

