
Dictionary-Based Compression Algorithms for
Tree Structured Data

Yuko Itokawa∗ Koichiro Katoh† Tomoyuki Uchida‡ Takayoshi Shoudai§

Abstract— Electronic data like XML/HTML doc-
uments, called tree structured data, have been rapidly
increasing and have become larger day by day. In
this paper, we propose an efficient compression and
decompression algorithms based on the Lempel-Ziv
compression scheme by improving XMill and XDemill
(Liefke and Suciu, SIGMOD 2000) which is a com-
pressor and a decompressor for tree structured data,
respectively. Moreovre, in order to show the effec-
tiveness and efficiency of our algorithms, we report
experimental results of applying our algorithms to
randomly created artificial large trees and real-world
data.

Keywords: Tree Structured Data, Lempel-Ziv Compres-

sion Scheme, Dictionary Based Lossless Compression

1 Introduction
Due to the rapid growth of information technologies,

electronic data such as XML/HTML documents have
been rapidly increasing. Since such data have no rigid
structure but have tree structures, they are called tree
structured data and can be represented by a rooted tree
which has no vertex label but which has edge labels. A
rooted tree whose internal vertices have ordered children
is called an ordered tree. In Figure 1, we give a part of
HTML data Sample html as an example of tree struc-
tured data and an ordered tree T which represents Sam-
ple html. The number in the left side of a vertex in T
denotes the ordering on its siblings.

The purpose of this paper is to present an efficient com-
pression algorithm for an ordered tree and a decompres-
sion algorithm for a compressed tree. Firstly, we give a
Lempel-Ziv compression scheme for ordered trees. In a
Lempel-Ziv compression scheme for strings such as LZSS
[5], a previously seen text is used as a dictionary, and
phrases in the input text are replaced with pointers into
the dictionary to achieve compression. In our Lempel-
Ziv compression scheme for an ordered tree, a firstly oc-
curred tree f in postorder traversal of an ordered tree

∗Faculty of Psychological Science, Hiroshima International Uni-
versity, 555-36 Kurose-Gakuendai, Higashi-Hiroshima, Hiroshima
Japan Tel/Fax: 81-823-70-4880/4852 Email: y-itoka@he.hirokoku-
u.ac.jp

†Dep. of Computer and Media Technologies, Hiroshima City
University, Japan

‡Dep. of Intelligent Systems, Hiroshima City University, Japan
§Dep. of Informatics, Kyushu University, Japan

T is used as a dictionary and subgraphs in T which are
isomorphic to f are replaced by variables with pointers
into the dictionary to achieve compression. Matsumoto
et al. [4] gave a term tree as a tree pattern having inter-
nal structural variables. In this paper, a compression of
an ordered tree T is represented by a pair of a term tree t
and a substitution θ such that T is obtained by applying
θ to t. We give a term tree t in Figure 1 as an example of
a term tree and a substitution {x := [g, (u6, u1, u3)]} as
an example of a dictionary, where g is given in Figure 1.
The variables in a term tree are represented by squares
with lines to its elements. Letter in the square represents
the label of the variable.

Secondly, based on our Lempel-Ziv compression
scheme, we present efficient compression and decompres-
sion algorithms for an ordered tree. Next, using our com-
pression and decompression algorithms for ordered trees,
we give a compression algorithm for tree structured data
by improving XMill which is a compressor for tree struc-
tured data given by Liefke and Suciu[3]. Moreover, we
also give a decompression algorithm for tree structured
data by improving XDemill[3] which is a decompresser
for tree structured data.

Several compressors for tree structured data are al-
ready proposed, i.e. XMill[3], LZCS[1], XGrind[6] and
XMLPPM[2]. Liefke and Suciu[3] presented a compres-
sor (XMill) and a decompressor(XDemill) whose architec-
ture leverages existing compressing algorithms and tools
to XML data. XMill separates the tree structure which
obtains by parsing XML data with respect to XML tags
and attributes and the sequence of data items (strings)
which represent contents and attribute values from given
XML data. Then, XMill compresses a sequence describ-
ing its tree structure by a compressor over strings such
as gzip. Our compressor given in this paper can directly
treat a tree structure of given XML data and gives a
compression over ordered trees. Our compressor can be
used as a compressor employed in structure container of
XMill. As other related works, Adiego et al. [1] pro-
posed a compressor LZCS which obtained by replacing
frequently repeated subtrees by backward references to
their first occurrence, where a subtree having a vertex v
as a root consists of v and all of its descendants. Our
compression algorithm replaces frequently repeated con-
nected subgraphs by references to their first occurrence.
In [7], Yamagata et al. presented gave a grammar-based

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

〈table〉
〈tr〉
〈td〉
〈font〉 Text 1-A 〈/font〉

〈/td〉
〈td〉
〈font〉 Text 1-B 〈/font〉

〈/td〉
〈/tr〉
〈tr〉
〈td〉
〈font〉 Text 2-A 〈/font〉

〈/td〉
〈td〉
〈font〉 Text 2-B 〈/font〉

〈/td〉
〈/tr〉
〈tr〉
〈td〉
〈font〉 Text 3-A 〈/font〉

〈/td〉
〈td〉
〈font〉 Text 3-B 〈/font〉

〈/td〉
〈/tr〉
〈tr〉
〈td〉
〈font〉 Text 4-A 〈/font〉

〈/td〉
〈td〉
〈font〉 Text 4-B 〈/font〉

〈/td〉
〈/tr〉

〈/table〉

Sample html

T

t g

Figure 1: An HTML data Sample html, the ordered rooted tree T which represents Sample html, a term tree t and
an ordered rooted tree g.

lossless compression algorithm for a given ordered tree T .
This paper is organized as follows. In Section 2, we

formally define a term tree and its substitution which
leads us to dictionary-based compression for an ordered
tree without loss of information. In Section 3, we intro-
duce a Lempel-Ziv compression scheme for ordered trees
and propose compression and decompression algorithms
based on Lempel-Ziv compression schemes by improving
XMill and XDemill [3]. In Section 4, we evaluate the
performance of our algorithms by reporting experimental
results of applying our algorithms to both artificial large
trees and HTML data which are real-world data.

2 Ordered Term Trees and Substitutions
Let T = (VT , ET) be an ordered tree with a vertex

set VT and an edge set ET . Let ` ≥ 1 be an integer.
A list h = (u0, u1, . . . , u`) of vertices in VT is called a
variable if u1, . . . , u` is a sequence of consecutive children
of u0, i.e., u0 is the parent of u1, . . . , u` and uj+1 is the
next sibling of uj for j (1 ≤ j < `). Two variables h =
(u0, u1, . . . , u`) and h′ = (u′0, u

′
1, . . . , u

′
`′) are said to be

disjoint if {u1, . . . , u`} ∩ {u′1, . . . , u′`′} = ∅. Let HT be
a set of pairwise disjoint variables of T = (VT , ET). An
ordered term tree on T and HT is a triplet t = (Vt, Et,Ht)
where Vt = VT , Et = ET −

⋃
h=(u0,u1,...,u`)∈HT

{(u0, ui) ∈
ET | 1 ≤ i ≤ `} and Ht = HT . Because T and HT

are easily found from a triplet t = (Vt, Et,Ht), we do not

write T and HT explicitly. Below we call an ordered term
tree a term tree, simply. A term tree t = (Vt, Et,Ht) is
called a ground term tree if Ht = ∅. Let Λ and X be
finite alphabets such that Λ ∩ X = ∅. An element of Λ
(resp. X) is called an edge label (resp. a variable label).
Every variable label x ∈ X has a nonnegative integer
rank(x). Every variable h has a variable label x such
that rank(x) = |h|. A term tree over 〈Λ, X〉 is a term
tree t such that all edges and variables in t are labeled
with elements in Λ and X, respectively. If Λ and X are
clear from the context, we often omit them. We use the
same terminologies of ordered trees for term trees, for
example, parent, child, leaf, and so on. For a set or a list
D, the number of elements in D is denoted by |D|.

For three vertices u, u′, u′′ of a term tree t, we write
u′ <t

u u′′ if u′ and u′′ are two children of u and u′ is
smaller than u′′ in the order of the children of u. A
term tree t = (Vt, Et,Ht) is isomorphic to a term tree
g = (Vg, Eg,Hg), denoted by t ≡ g, if there is a bijec-
tion π : Vt → Vg, called an isomorphism between f and g,
such that for v0, v1, . . . ∈ Vt, (1) (v1, v2) ∈ Et if and only if
(π(v1), π(v2)) ∈ Eg, (2) (v1, v2) in Et and (π(v1), π(v2))
in Eg have the same edge label, (3) v1 <f

v0
v2 if and

only if π(v1) <g
π(v0)

π(v2), (4) (v0, . . . , v`) ∈ Ht if and
only if (π(v0), . . . , π(v`)) ∈ Hg, and (5) two variables
(v0, . . . , v`) ∈ Ht and (v′0, . . . , v

′
`) ∈ Ht have the same

variable label if and only if (π(v0), . . . , π(v`)) ∈ Hg and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

(π(v′0), . . . , π(v′`)) ∈ Hg have the same variable label.
Let t = (Vt, Et,Ht) be a term tree. A triplet f =

(Vf , Ef ,Hf) is called a term subtree of t if f is a term
tree such that Vf ⊆ Vt, Ef ⊆ Et and Hf ⊆ Ht. If f is
a ground term tree, we call f a subtree of t simply. Let
f and g be term trees over 〈Λ, X〉 having at least two
vertices. Let h = (v0, v1, . . . , v`) (` ≥ 1) be a variable
in f and σ = (u0, u1, . . . , u`) a list of ` + 1 distinct ver-
tices in g such that u0 is the root of g and u1, . . . , u` are
leaves of g. The pair [g, σ] is called an (` + 1)-hypertree
over 〈Λ, X〉. Below we often omit 〈Λ, X〉. For two
(` + 1)-hypertrees [g, (u0, . . . , u`)] and [f, (w0, . . . , w`)],
[g, (u0, . . . , u`)] is said to be equivalent to [f, (w0, . . . , w`)]
if there is an isomorphism π between g and f such that
for each i (0 ≤ i ≤ `), wi = π(ui). For a variable h,
a term tree g and a list σ of distinct vertices of g, the
form h ← [g, σ] is called a variable replacement for h. A
new term tree f ′ = f{h ← [g, σ]} is obtained by apply-
ing h ← [g, σ] to f in the following way. For the variable
h = (v0, . . . , v`) in f , we attach g to f by removing h
from f and identifying v0, . . . , v` of f with u0, . . . , u` of
g in this order. We define a new ordering <f ′

v on every
vertex v in f ′ so that for a vertex v in f ′ with at least two
children v′ and v′′ of v, (1) if v, v′, v′′ ∈ Vg and v′ <g

v v′′

then v′ <f ′
v v′′, (2) if v, v′, v′′ ∈ Vf and v′ <f

v v′′ then
v′ <f ′

v v′′, (3) if v = v0(= u0), v′ ∈ Vf − {v1, . . . , v`},
v′′ ∈ Vg, and v′ <f

v v1 then v′ <f ′
v v′′, and (4) if

v = v0(= u0), v′ ∈ Vf − {v1, . . . , v`}, v′′ ∈ Vg, and
v` <f

v v′ then v′′ <f ′
v v′. Let x be a variable label with

rank(x) = ` + 1 and [g, σ] an ` + 1-hypertree. Then, the
form x := [g, σ] is called a binding for x. A finite collec-
tion of bindings θ = {x1 := [g1, σ1], . . . , xn := [gn, σn]}
is called a substitution if xi’s are mutually distinct vari-
able labels in X and no variable in gi has a variable label
in {x1, . . . , xn}. Let t be a term tree and Ht(xi) the
set of all variables in Ht whose labels are xi for a vari-
able label xi in X. Then, for a subtitution θ = {x1 :=
[g1, σ1], . . . , xn := [gn, σn]}, we can obtain a new term
tree, denoted by tθ, by applying all variable replacements
in

⋃n
i=1{e ← [gi, σi] | e ∈ Ht(xi)} to t.

3 Lempel-Ziv Compression Algorithm
for Tree Structured Data

In a Lempel-Ziv compression scheme over strings such
as LZSS [5], a previously seen text is used as a dictionary,
and phrases in the input text are replaced with pointers
into the dictionary to achieve a compression. Using the
framework given in the previous section, we present a
Lempel-Ziv compression scheme for ordered trees by re-
garding a substitution as a dictionary.

Let T be a tree and t a term tree. If there is a
substitution θ for t such that T ≡ tθ and the sum of
the representation sizes (defined later) of t and θ is less
than that of T , the pair (t, θ) gives us a compression
of T by regarding θ as a dictionary. First we define
the representation of a binding in θ in order to store it

into a dictionary effectively. We assume that for each
binding x := [g, σ] in θ, t has a term subtree g′ such
that g ≡ g′. Let π be an isomorphism from g to g′.
Let u0 be the root of g and u1, . . . , un all leaves of g
which are listed in left-to-right order. Then the cor-
responding list of g in t, denoted by CLg

t , is the list
(π(u1), . . . , π(un), π(u0)). The corresponding dictionary
of θ in t, denoted by CDθ

t , is the list obtained by sorting
all elements of {CLg

t | x := [g, σ] ∈ θ} lexicographically.
For a binding x := [g, σ] in θ, the port index of σ in t, de-
noted by PIσ

t , is a list (k2, k3, . . . , k|σ|) of |σ| − 1 distinct
integers from 1 to n such that CLg

t [ki] = π(σ[i]) for any
i (2 ≤ i ≤ |σ|). We suppose that the corresponding list
CLg

t is the `g-th member in CDθ
t (1 ≤ `g ≤ |CDθ

t |). Then
a pair (`g, P Iσ

t) is called the corresponding variable label
of a binging x := [g, σ]. Below we identify a term tree g in
a binding x := [g, σ] with a term subtree g′ of t such that
g ≡ g′. For example, let T be a tree and t a term tree
described in in Figure 2. Let θ = {x := [g, (4, 2)]} be a
substitution where g is a term subtree of t shown in Fig-
ure 2. Obviously T ≡ tθ holds. Then, the corresponding
list of g in t is CLg

t = (1, 2, 4). The corresponding dictio-
nary of θ is the list ((1, 2, 4)). The port index of σ in t

is PI
(4,2)
t = (2). And the corresponding variable label of

the binding x := [g, (4, 2)] is (1, (2)). Finally, we define
a Lempel-Ziv compression for tree structure data. Let T
be a tree. A pair (t, θ) of a term tree t and a substitution
θ is called a Lempel-Ziv compression of T if the following
conditions (1)–(3) hold.

(1) T ≡ tθ.
(2) For each binding x := [g, σ], t has a term subtree

isomorphic to g.
(3) The sum of sizes of t and θ is less than that of T .

In Figuer 2, we show an example of Lempel-Ziv compres-
sions.

In Figure 3, we describe an algorithm Compress-
ing Ordered Tree for a given tree T and two integers
Min and Max with 0 < Min < Max, which outputs
a Lempel-Ziv compression (t, θ) of T . In this section, we
present compression algorithms for tree structured data
by improving XMill [3]

For a vertex v in a given tree, a function
Make Term Subtree at the line 3 of Compress-
ing Ordered Tree outputs the set of all hypertrees [f, σ]
satisfying the following conditions (1)–(6). Let f =
(Vf , Ef ,Hf) and σ = (u1, . . . , un).
(1) f is a subtree of t and v is the rightmost child of the

root of f .
(2) Min ≤ |Vf | ≤ Max.
(3) For a vertex u ∈ Vf , if there exists a vertex w in

VT − Vf such that w is adjacent to u in T then u is
the root of f or a leaf of f .

(4) The vertex u1 in σ is the root of f .
(5) If n > 2, all u2, . . . , un are adjacent to vertices in

VT − Vf .

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

T t

f1 f2 f3 f4 f5 f6

Figure 2: A tree T is an input tree-structured data and f1, f2, f3, f4, f5, and f6 are subtrees of T . Then
(t, {x := [g, (4, 2)]}) is a Lempel-Ziv compression of T . The tree f1 and the list (4, 2) in the binding are indicated by
the subtree of t in the circle and the four pointers from 9 to 4 and from 7 to 2, and from 13 to 4 and from 11 to 2.

(6) If n = 2, either u2 is adjacent to a vertex in VT −Vf

or u2 is the rightmost leaf of f .

By appropriately setting integers Min and Max, we
can bound the maximum number of hypertrees which
Make Term Subtree outputs. Since the probability that
a large subtree of t is occurred in t in several times is
low, in general, and the number of hypertrees in S affects
the time complexity of Compressing Ordered Tree,
Min and Max must be appropriately given for tree
structured data by users. For example, let T be a tree
in Figure 2 and f1, f2, f3, f4, f5 and f6 subtrees
of T in Figure 2. All subtrees f1, f2, f3, f4, f5,
and f6 satisfy the conditions (1) and (2) for a vertex
12, Min = 4 and Max = 7. However f6 does not
satisfy the condition (3) for the same parameters while
f1, f2, f3, f4, and f5 satisfy it. Let us consider two
hypertrees [f1, (13, 10)] and [f1, (13, 11)]. Since 11 is
the rightmost leaf of f1 but 10 is not, [f1, (13, 11)]
is constructed by Make Term Subtree(T, 12, 4, 7) but
[f1, (13, 10)] is not. Hence, it outputs the set S =
{[f1, (13, 10, 11)], [f2, (13, 9, 10, 11)], [f3, (13, 5, 8, 12)],
[f4, (13, 5, 8, 10, 11)], [f5, (13, 5, 6, 7, 12)]}.

Compressing Ordered Tree repeats the following pro-
cesses. Let g be one of term subtrees generated by
Make Term Subtree for a vertex v ∈ Vt. If there is a
vertex v′ which is visited before v in postorder such that
Make Term Subtree for v′ outputs a term subtree g′ iso-
morphic to g, we revise the term tree t by replacing g with
a new variable having a new variable label x and add a
new binding x := [g′, σ] to θ. We introduce a new pointer
from g into a firstly occurred subtree g′ = (V ′

g , E′
g) in

t = (Vt, Et,Ht) such that g′ is isomorphic to g and for
any vertex v ∈ V ′

g , v is not adjacent to any vertex in
Vt − V ′

g in t if v is neither the root of g′ nor a leaf of g′.

Such a pointer consists of the list of pointers into the root
of g′ and into some of the leaves of g′.

Next we present an algorithm for decompressing a
Lempel-Ziv compression (t, θ) by applying repeatedly the
following variable replacement process to t = (Vt, Et,Ht)
until t has no variable:
(1) choose a variable h in t which firstly appears in

depth-first search,

(2) find a binding x := [g, σ] such that x is a variable
label of h,

(3) apply the variable replacement h ← [g, σ] to t.

The structure of an HTML file is encoded as fol-
lows. Start-tags are assigned positive integers while all
end-tags are replaced by the token “/”. Tags, such as
<table>, <tr>, . . . in Sample html in Fig. 1 are en-
coded to positive integers T1, T2, In XMill[3], to
obtain a higher compression ratio by gzip, PCDATAs
whose parents have the same tag label are stored in same
container. PCDATAs whose parent tags are assigned a
positive integer a are assigned a negative integer value
−a. For example, for Sample html in Fig. 1, we assigned
<table> = 1, <tr> = 2, <td> = 3, = 4, respec-
tively. Then we obtain the following sequence which rep-
resents T :
1 2 3 4 -4//3 4 -4///2 3 4 -4//3 4 -4///2 3

4 -4//3 4 -4///2 3 4 -4//3 4 -4////
A term tree t = (Vt, Et,Ht) and a substitution θ =

{xi := [gi, σi] | 1 ≤ i ≤ |θ|} are encoded as follows. Let
h ∈ Ht be a variable which has a corresponding variable
label (d, (p1, · · · , pN)) and a a decimal integer. We en-
code a port index (p1, · · · , pN) into a decimal integer a
such that the q-th bit (1 ≤ q ≤ pN) of the binary repre-
sentation of a is 1 if and only if q is in (p1, · · · , pN). Then

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Algorithm Compressing Ordered Tree

Input: A tree T = (VT , ET), integers Min and Max (0 < Min < Max).
Output:A Lempel-Ziv compression (t, θ) of T .
1. t := T , θ := ∅, δ := ∅;
2. for each vertex v in T , in postorder do
3. S := Make Term Subtree(t, v, Min,Max);
4. if θ = ∅ and δ = ∅ then δ := S;
5. else
6. for each hypertree [f, σ] ∈ S in decreasing order of the size of f do
7. if there exists a binding x := [f ′, σ′] in θ such that [f ′, σ′] is equivalent to [f, σ] then
8. replace a term subtree f in t with a new variable labeled with x;
9. else if there exists a hypertree [f ′, σ′] in δ such that [f ′, σ′] is equivalent to [f, σ] then
10. replace a term subtree f in t with a new variable having a new variable label y;
11. θ := θ ∪ {y := [f ′, σ′]}; δ := δ − {[f ′, σ′]};
12. else δ := δ ∪ {[f, σ]};
13. end do
14. end do
15. return the pair (t, θ).

Figure 3: Sequential algorithm Compressing Ordered Tree

we encode a variable h into “d(a)”. The child ports of h
are surrounded by a delimiter “$”. The code of binding
xi := [gi, σi] ∈ θ is represented by a corresponding list
of gi. So the substitution θ is encoded by a sequence of
codes of binding delimited by “#”. We describe a Lempel-
Ziv compression (t, θ) as the sequence of the description
of θ, a delimiter “%”, and the description of t. For exam-
ple, we obtain the following sequence which represents a
Lempel-Ziv compression (t, θ) in Fig. 1:
6 1 3%1 2 3 4 -4//3 4 -4///1(40)$-4/

$-4/1(40)$-4/$-4/1(40)$-4/$-4//
Let |T | be the description length of a tree T and |(t, θ)|

the description length of a Lempel-Ziv compression of a
tree T , then (|(t, θ)|/|T |) × 100 is defined as the com-
pression ratio of T w.r.t. (t, θ). The smaller this ratio,
the better the compression scheme. We count integer
object tokens like start-tags as 4 bytes and delimiter to-
kens like / or white space as 1 byte. For the tree T in
Fig. 1, |T | = 158 and for the Lempel-Ziv compression
(t, θ), |(t, θ)| = 125. Then, the compression ratio of T
w.r.t. (t, θ) is (125/158)× 100 ≈ 79.

4 Implementation and Experimental Re-
sults

In order to evaluate our sequential lossless compression
and decompression algorithm presented in the previous
sections, we implemented them on a PC with 3.4GHz
CPU (XEON) and 1.00GB main memory.

At first we implemented a data generator to randomly
produce an artificial large tree satisfying that the degree
of each vertex is less than or equal to 4 and the num-
ber of edge labels is less than or equal to 3. For each
N ∈ {20, 000, 40, 000, 60, 000, 80, 000, 100, 000}, we

Figure 4: Compression Time vs Number of Vertices

generated a set D(N) by using the data generator. Under
the following settings, we applied our algorithms to the
set D(20, 000), D(40, 000), D(60, 000), D(80, 000), and
D(100, 000). (a) Min = 4 and Max = 7. (b) A tempo-
rary dictionary can store 10,000 candidate subtrees. We
report experimental results in Figure 4.

Let TC(N) and TD(N) be the average running times
of compressions and decompressions of one tree in D(N),
respectively. Figure 4 shows the relationship between
TC(N) and N . The running time depends on the capac-
ity of a temporal dictionary and settings of two integers
Min and Max. From Figure 4, TC(N) increases almost
linearly w.r.t. N . Our algorithm could process in about
30 seconds even a tree which has 100,000 vertices. Each
tree is compressed to a Lempel-Ziv compression whose
size is about 80% of the original size. For all randomly
generated trees, over 50 elements of dictionary were gen-
erated. It is no wonder that artificial tree data were not

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Table 1: Experimental results
Compression
ratio(%)

Running time for
Compression(sec)

Running time
for Decompres-
sion(sec)HTML file set #Vertices

Our Algo-
rithm

XMill Our Algo-
rithm

XMill Our Algo-
rithm

XMill

nissan∗1 5142 2.84 16.08 5.69 1.86 1.87 1.76
honda∗2 7369 2.56 15.61 7.32 1.84 2.10 1.90
toyota∗3 5295 3.08 17.08 5.97 1.88 1.90 1.78

various files∗4 10980 11.94 15.63 10.67 2.56 2.52 2.33

∗1 http://www.nissan.co.jp/CARLINEUP/ ∗2 http://www.honda.co.jp/auto-lineup/

∗3 http://toyota.jp/Showroom/carlineup/index.html ∗4 Mixed data from official sites of European football teams.

compressed and a number of dictionary abound because
they contain little same structure.

We applied our decompression algorithm to the
Lempel-Ziv compressions obtained by the above compres-
sion experiments on D(20, 000), D(40, 000), D(60, 000),
D(80, 000), and D(100, 000). TD(N) is quite faster than
TC(N). For example, the average of the running time
of decompressions on the Lempel-Ziv compressions of
D(100,000) is about 1 second. All the other Lempel-
Ziv compressions are decompressed in less than a sec-
ond. This result shows that our Lempel-Ziv compression
scheme has the same characteristics as a Lempel-Ziv com-
pression scheme such as LZSS over strings. Finally, these
results also show that our algorithms have high durabili-
ties against huge data.

We also experimented applying our compression algo-
rithm to HTML files as real-world data. We used 3 sets
of HTML files that contain a lot of same tree structures
and a set of HTML files that contains little same tree
structure. In this experiment, we applied a huge tree
structured data by connecting some tree structured data
which represent HTML files to our algorithm. Table 1
shows the compression ratios for HTML file sizes and run-
ning times for compressions and decompressions of each
set. From Table 1, the running time for our compression
and decompression algorithms was lower that XMill

These experimental results show higher compression
ratios than those of the experiments on XMill. Similarly
to the experiments on random data sets, the decompres-
sion time is quite fast. In fact, the Lempel-Ziv compres-
sion of the set “toyota” of HTML files is decompressed in
about 1 second. The other three sets of HTML files are
decompressed in less than a second.

5 Concluding Remarks
We have presented efficient compression and decom-

pression algorithms for ordered trees based on a Lempel-
Ziv compression scheme, by improving XMill and XDe-
mill presented by Liefke and Suciu [3]. In order to evalu-
ate the performance of our algorithms, we have reported
some experimental results of applying our algorithms to

artificial large ordered trees and real-world tree struc-
tured data which are HTML documents.

As future works, when a Lempel-Ziv compression (t, θ)
and a term tree s are given, we will design a pattern
matching algorithm without decompression that decides
whether there exists a substitution δ such that tθ ≡ sδ
or not

References
[1] J. Adiego and G. Navarro and P. de la Fuente.

Lempel-Ziv compression of structured text. Data
Compression Conference (DCC 2004), pages 112–
121, 2004.

[2] J. Cheney. Compression XML with multiplexed hi-
erarchical PPM models. Proc. Data Compression
Conference (DCC 2001), pages 163, 2001.

[3] H. Liefke and D. Suciu. Xmill: an efficient com-
pressor for xml data. Proc. ACM SIGMOD Conf.,
29(1):57–62, 2000.

[4] S. Matsumoto, Y. Hayashi, and T. Shoudai. Poly-
nomial time inductive inference of regular term
tree languages from positive data. Proc. ALT-97,
Springer-Verlag, LNAI 1316, pages 212–227, 1997.

[5] J.A. Storer and T.G. Szymanski. Data compres-
sion via textual substitution. Journal of the ACM,
29(4):928–951, 1982.

[6] P. Tolani and J. Haritsa. XGRIND: A query-friendly
XML compressor. Proc. of 18th International Con-
ference of Data Engineering (ICDE’02), pages 225–
234, 2002.

[7] K. Yamagata, T. Uchida, T. Shoudai, and Y. Naka-
mura. An effective grammar-based compression al-
gorithm for tree structured data. Proc. ILP-2003,
Springer, LNAI 2835, pages 383–400, 2003.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

