
A Novel Way to Analyze Competitive
Performance of Online Algorithms

Jiping Tao ∗ Zhijun Chao Yugeng Xi

Abstract—A competitive analysis method for on-
line algorithms is developed based on the idea of in-
stance transformation. The method is applied on a
single machine online scheduling problem where an
assumption is made that the longest processing time
among the jobs in any instance is not longer than a
constant, say γ, times the shortest processing time.
An online algorithm is designed and its competitive
ratio is proven to be 1 + γ−1

1+
√

1+γ(γ−1)
by the proposed

analysis method.

Keywords: online algorithm, competitive analysis, sin-

gle machine scheduling, total completion time

1 Introduction

Many scheduling problems are intrinsically online in that
they require immediate decisions to be made in real time.
Ready-made examples include CPU scheduling in the
multi-processor operating system and routing in commu-
nications networks. The corresponding algorithms solv-
ing these online problems have to be online. In contrast
to the offline version, an online algorithm must produce
a sequence of decisions based on past events without any
information about the future. The lack of knowledge of
the future does generally not guarantee the optimality of
the obtained schedule. Thus a natural issue is how to
evaluate different online algorithms that solve the prob-
lem.

A widely used approach to evaluate online algorithms is
competitive analysis, where the quality of an online algo-
rithm on each input instance is measured by comparing
its performance with that of the optimal offline algorithm.
An online algorithm is called ρ-competitive if, for any in-
stance, the objective function value of the schedule ob-
tained from this algorithm is no worse than ρ times the
objective value of the optimal offline schedule [2]. Thus a
ρ-competitive online algorithm guarantees that schedules
by the algorithm are in some way not too far from the
optimal. In this sense, we hope that ρ is as small as pos-
sible. For a given online algorithm, its competitive ratio
is defined as the infimum of ρ such that the algorithm is

∗This work is supported by the National Science Foundation of
China (No.60504026) and Specialized Research Fund for the Doc-
toral Program of Higher Education (No.20070248004). Department
of Automation, Shanghai Jiao Tong University, 800 Dong Chuan
Road, Shanghai, China. Email: jipingtao@gmail.com

ρ-competitive.

Competitive analysis of online algorithms is never a triv-
ial routine. The difficulty lies in two aspects. The first
one is that the set of all instance for a given problem is
not a very structured set. The number of jobs, released
dates, processing time can be extremely arbitrary. The
difficulty is how to explore the arbitrariness and locate
the worst case instance. Another difficulty is that no real-
izable optimal offline algorithm is available in most cases
due to the NP-hard characteristic, a reasonable lower
bound on the optimal schedule has to be constructed.
For these twofold aspects of difficulty, most of the com-
petitive analysis methods are typically constructive and
problem dependent.

In this work, we focus on the first difficulty and develop a
straightforward analysis method based on instance trans-
formation. We use the widely used online model which as-
sumes that jobs arrive at the machine over time, and any
job’s information is not revealed until it is released. For
an instance I of the considered problem, Denote ALG(I)
as the objective value of the schedule by an online algo-
rithm, and L(I) as a lower bound on the optimal objec-
tive value. Our method is to modify I by an adjustment δ
on the instance data, and to choose an appropriate δ ac-
cording to the change tendency of both ALG(I) and L(I)
with respected to δ, such that not only does the modified
instance show a more special structure compared with
before the modification, but also the ratio of ALG(I) to
L(I) doesn’t reduce.

We apply the proposed method to analysis online algo-
rithms for the single machine scheduling problem with the
objective of minimizing total completion time. This prob-
lem is denoted by 1|rj |

∑
Cj in the notation of Lawler

et al.[7]. Numerous results have been obtained for the
problem [3, 5, 6, 8, 9]. Hoogeveen and Vestjens [5] prove
any online algorithm has a competitive ratio of at least
2 for the problem. They construct an online algorithm
called by delayed SPT rule (D-SPT) which has exactly an
competitive ratio of 2. The D-SPT algorithm delays the
release date of each job j until time max{rj , pj}, then
implements the shortest processing time (SPT) rule on
the modified instance.

In order to present our proof method more clearly, we

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

first employ it to verify the competitive ratio of D-SPT
algorithm. Then we generalize the problem by assum-
ing that the ratio of the longest processing time among
the jobs in any instance to the shortest is not greater
than a constant, say γ. We notate the general prob-
lem by 1|rj ,

pmax

pmin
≤ γ|∑Ci and call it a single machine

scheduling problem with bounded processing time. For
this problem, we construct a deterministic online algo-
rithm and also apply our proposed analysis method to
prove that it has a competitive ratio of 1+ γ−1

1+
√

1+γ(γ−1)
.

The paper is organized as follows. The competitive analy-
sis method is presented by verifying the competitive ratio
of D-SPT algorithm in Section 2. The same method is
then applied on an online algorithm for a generalized sin-
gle machine problem in Section 3. Concluding remarks
are given in Section 4.

2 Competitive Ratio of D-SPT Algo-
rithm

In order to present our analysis method more clearly, we
first use it to verify the competitive ratio of D-SPT algo-
rithm which was proposed and proven to be 2-competitive
by Hoogeveen [5].

First we introduce an important lemma without proof
since it can be derived from basic mathematics. The
lemma will be repeatedly used in the competitive analy-
sis.

Lemma 1. Let f(x) and g(x) be two positive func-
tions defined in the interval [u, v], moreover f(x) is con-
vex and g(x) is concave. Then f(x)/g(x) reaches its
maximum at one endpoint of the interval, i.e., f(x)

g(x) ≤
max

{
f(u)
g(u) ,

f(v)
g(v)

}
∀x ∈ [u, v].

Next we will develop an upper bound on the competitive
ratio of D-SPT Algorithm. Throughout the analysis the
performance ratio is calculated with respected to the op-
timal preemptive schedule since its objective value is a
lower bound of the optimal non-preemptive schedule and
can be easily obtained by the shortest remain process-
ing time(SRPT) rule [1]. For any instance I, denote the
schedule obtained by D-SPT by σ(I) and the optimal pre-
emptive schedule by φ(I), and denote the objective values
of these two schedules by ALG(I) and L(I), respectively.

In order to develop an upper bound, we begin with an
arbitrary instance and modify the instance step by step,
such that the modified instance has a simple structure
and its performance ratio can be directly calculated or
analyzed. Similar to the analysis in [5], we only need
focus on such instances for which the schedules by D-
SPT are composed of a single block. Denote any one of
these instances by I1. Denote the release time of the first
released job by r0. Denote the start time of the block by

S. We further partition jobs into subblocks, such that
the jobs within each subblock are ordered according to
the SPT rule, and that the last job of a subblock is longer
than the first job of the succeeding subblock if it exists
[5].

We can keep the processing order unchanged and reduce
the release dates of jobs released after S, such that each
of these jobs is released either at S or at the staring time
of the last job in a subblock plus an infinitely small pos-
itive value ε. The adjustment doesn’t decrease the per-
formance ratio since it keeps ALG(I1) unchanged and
doesn’t increase L(I1). Likewise, for these jobs released
before S, we can reduce their release dates to r0 since
they don’t start processed before the time S according
to D-SPT rule. For some job released at S, say Ji , if
pi ≥ S, we can also reduce its release time to r0. There-
fore, without loss of generality, all the jobs in I1 can be
classified into three sets in terms of their release dates,
denoted by QS↑, QS and QS↓ respectively, i.e.

QS↑ = {Ji|ri = r0 pi ≥ S}
QS = {Ji|ri = S pi < S}

QS↓ = {Ji|ri > S}

Denote these subblocks in σ(I1) by B1, B2, · · · , Bm. De-
note the last job of the jth subblock Bj by JBj

, its pro-
cessing time by pBj

, and its starting time in σ(I1) by SBj
.

Then if j < m, the jth release date after S is SBj + ε.
Denote the set of jobs released at SBj

+ε by Qj
S↓. Figure1

illustrates the structure of σ(I1).

Figure 1: The schedule by D-SPT for I1

Next we will develop two lemmas to show that the in-
stance I1 can be modified step by step such that in the
new instance, QS and QS↓ are both empty.

Lemma 2. A new instance, denoted by I2, can be con-
structed by modifying I1, such that QS↓ in I2 is empty,
moreover

ALG(I1)
L(I1)

≤ max
{

ALG(I2)
L(I2)

, 2
}

(1)

Proof. Consider the last release date, denote it by rL for
the sake of convenience. Suppose the job being processed
at rL in σ(I1) is Jk. After Jk is finished in σ(I1), all the
remained jobs are processed according to SPT rule since

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

there is no jobs released hereafter. Likewise, jobs are
processed continuously according to SRPT rule from the
time rL in φ(I1). Denote QL

S↓ as the set of jobs released
at rL. Divide it into three sets,

QL′
S↓ = {Ji|Ji ∈ QL

S↓, 0 < pi < pk} (2)

QL′′
S↓ = {Ji|Ji ∈ QL

S↓, pi ≥ pk} (3)

QL′′′
S↓ = {Ji|Ji ∈ QL

S↓, pi = 0} (4)

The following adjustment procedure removes all the jobs
in QL′

S↓ into QL′′
S↓ or QL′′′

S↓ .

Increase the processing time of all the jobs in QL′
S↓ by δ,

which is a parameter to be chosen hereafter. Let

δ = −min{pi|Ji ∈ QL′
S↓} (5)

δ̄ = pk −max{pi|Ji ∈ QL′
S↓} (6)

Denote the intermediate instance after this adjustment
by I ′1.

Jobs are continuously processed in σ(I ′1) in the same or-
der as in σ(I1) for any δ ∈ [δ, δ̄]. Hence ALG(I ′1) is a
linear function with respected to δ. Consider how φ(I ′1)
changes with respected to δ. If jobs keeps the same pro-
cessing order as in φ(I1), the objective value of the ob-
tained preemptive schedule is also a linear function w.r.t
δ. Since the optimal preemptive schedule φ(I ′1) is the
one with the minimal objective value among all the feasi-
ble schedules, we can figure out that L(I ′1) is a piecewise
linear function with respected to δ, moreover its slope
doesn’t increase with δ increasing, i.e., L(I ′1) is a concave
function with respected to δ. According to Lemma1, we
can obtain an instance with a worse performance ratio by
choosing δ as either δ or δ̄. Thus at least one job belong-
ing to QL′

S↓ whose processing time is adjusted to 0 or pk

according to (5) and (6).

Update QL′
S↓, QL′′

S↓ and QL′′′
S↓ according to (2)(3)(4). We

can repeat the above adjustment procedure. After finite
steps, all the jobs in QL′

S↓ can removed into QL′′
S↓ or QL′′′

S↓
since QL′

S↓ is finite.

For all the jobs in QL′′′
S↓ , they are processed continuously

from rL in φ(I1) and processed immediately after Jk is
finished in σ(I1). Suppose that there are q jobs in QL′′′

S↓ .
We can delete these q jobs and get an intermediate in-
stance I ′1 which satisfies

ALG(I1)
L(I1)

=
ALG(I ′1) + q(rL + pk)

L(I ′1) + qrL

≤ max
{

ALG(I ′1)
L(I ′1)

, 2
}

(7)

where the last relation comes from pk ≤ rL. Furthermore
the release dates of jobs in QL′′

S↓ can be reduced to the
release date of Jk since they would not be selected before

Jk is finished. Thus QL
S↓ becomes empty. Therefore,

we can begin from the new last release date again and
repeatedly execute the above adjustment procedure for
jobs in QS↓. After finite loops, these jobs either have
processing time 0 and are deleted, or are removed into
QS and QS↑. Moreover the relation (1) is always satisfied.

Remark 3. In the above proof, if there appears idle time
between the execution of jobs in σ(I ′1) after some adjust-
ment due to the waiting strategy of D-SPT, we can obtain
an smaller instance with a worse performance ratio. So
for the sake of simplicity, we make an implicit assump-
tion that jobs are always processed continuously in σ(I ′1)
during the adjustment.

Lemma 4. A new instance, denoted by I3, can be con-
structed by modifying I2, such that QS in I3 is empty,
moreover

ALG(I2)
L(I2)

≤ ALG(I3)
L(I3)

(8)

The proof is almost the same as that for Lemma 2 except
that (2)(3)(4) are replaced by the following equations

Q′S = {Ji|Ji ∈ QS , 0 < pi < S}
Q′′S = {Ji|Ji ∈ QS , pi ≥ S}
Q′′′S = {Ji|Ji ∈ QS , pi = 0}

and (5)(6) are replaced by

δ = −min{pi|Ji ∈ Q′S}
δ̄ = S −max{pi|Ji ∈ Q′S}

Another exception is that the upper bound becomes as
follows when deleting jobs with the processing time of 0
in QS .

ALG(I2)
L(I2)

=
ALG(I ′2) + qS

L(L′2) + qS
≤ ALG(I ′2)

L(I ′2)

After the same adjustment in Lemma2, Q′S becomes
empty, jobs in Q′′S can be removed into QS↑, and jobs
in Q′′′S can be deleted. The detailed proof can be easily
finished by readers.

QS and QS↓ in I3 are both empty. We can figure out
that σ(I3) begins continuously processing all the jobs in
QS↑ from the time S according to SPT rule, and φ(I3)
processes jobs from the time r0 in the same order as in
σ(I3). Thus each job starts latter in σ(I3) by S than in
φ(I3). For the job Ji, denote its completion time in σ(I3)
and φ(I3) by Ci and C ′i. We have

ALG(I3)
L(I3)

=

∑
Ji∈QS↑

Ci

∑
Ji∈QS↑

C ′i
≤ max

Ji∈QS↑

{
C ′i + S

C ′i

}

≤ min
Ji∈QS↑

{
1 +

S

pi

}
≤ 2 (9)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

where the last relation comes from (1). Combining
Lemma 2, 4 with (9), we can immediately obtain the
following lemma.

Lemma 5. The D-SPT online algorithm in [5] is 2-
competitive for 1|rj |

∑
Cj.

3 The αD-SPT online algorithm and its
competitive analysis

In this section, we generalize the problem 1|rj |
∑

Cj by
assuming that the ratio of the longest processing time
among the jobs in any instance to the shortest is not
greater than a constant, say γ. We denote the modi-
fied problem by 1|rj ,

pmax

pmin
≤ γ|∑Ci. Kaminsky and

Simchi-Levi [6] make the same assumption and prove that
the shortest processing time among available jobs algo-
rithm(SPTA) is asymptotically optimal. This assump-
tion is also adopted by He and Dósa [4] for parallel ma-
chine scheduling problems. For the modified problem, we
will construct an online algorithm and employ the same
method as in Section 2 to analysis its competitive perfor-
mance.

The key point to develop a good online algorithm for
the problem considered here is to determine whether to
insert appropriate waiting time or to immediately sched-
ule a job when the machine is idle and some jobs are
available. D-SPT algorithm [5] makes this decision by
comparing the processing time of jobs with the current
time, which guarantees each job starts processed at the
time no earlier than its processing time. The resulted ad-
ditional waiting time for some jobs is necessary in order
to avoid the performance ratio becoming too bad when
there are jobs with extremely short processing time ar-
riving immediately after starting to process a job. Under
our assumption that the longest processing time among
the jobs in any instance is not longer than γ times the
shortest one, intuitively, less waiting time is needed in
order to avoid the performance deterioration in the case
mentioned above since processing time can only jump up
and down over a limited proportional range. A ready-
made example is that no-wait SPT strategy is optimal
when all the jobs have the same processing time.

In view of the above consideration, we directly extend
D-SPT algorithm [5] by introducing a well-designed pa-
rameter and construct an online algorithm, called by α-
delayed SPT algorithm (αD-SPT). Denote the current
decision time by t. αD-SPT algorithm can be described
as follows. Whenever the machine is idle and some jobs
are available, choose a job with the shortest processing
time in all the arrived and unscheduled jobs, say Ji , if
pi ≤ αt, schedule Ji; otherwise, wait until the above in-
equality is satisfied or a new job arrives, where α is an
algorithm parameter to be designed.

We use the same analysis method based on instance re-

duction as in Section 2 to develop an upper bound on the
competitive ratio of αD-SPT Algorithm. Throughout the
analysis, we employ the same notations as in Section 2
in condition that no confusion is induced. Similarly, we
begin with an arbitrary instance I1 for which the con-
structed schedule by αD-SPT is composed of a block.
Denote the shortest and longest processing time among
jobs in I1 by pmin and pmax. We modify jobs in QS↓ and
QS in the inverse order of release data. Similar results as
Lemma 2 and 4 can be reduced.

Lemma 6. A new instance, denoted by I2, can be con-
structed by modifying I1, such that QS↓ in I2 either is
empty, or only includes jobs with the shortest processing
time pmin, moreover

ALG(I1)
L(I1)

≤ max
{

ALG(I2)
L(I2)

, 1 +
1
α

}
(10)

Lemma 7. A new instance, denoted by I3, can be con-
structed by modifying I2, such that QS in I3 either is
empty, or only includes jobs with processing time pmin,
moreover

ALG(I2)
L(I2)

≤ max
{

ALG(I3)
L(I3)

, 1 +
1
α

}
(11)

The proofs are similar to the one for Lemma 2. The
essential idea is still to transform the instance along the
direction of its performance ratio increasing. Intuitively,
for the αD-SPT online algorithm, the worst case should
occur in two possible cases. One is that there are several
extremely small jobs released immediately after αD-SPT
chooses to process a job. Another case is that there is
no any jobs released when αD-SPT keeps the machine
idle for a period of time when some jobs are available.
The intuition is just validated by the above two lemmas,
where I3 is corresponding to the first case and 1 + 1

α is
the upper bound in the later case. The detailed proofs
are omitted due to the space limitation.

Figure 2: The schedule by αD-SPT and the optimal pre-
emptive schedule for I3

QS and QS↓ in I3 either are empty, or only include jobs
with processing time pmin. We can figure out that σ(I3)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

begins with all the jobs in QS at the time S, then alter-
nately processes jobs in QS↑ and jobs in QS↓. In φ(I3)
jobs are processed continuously from the time r0, more-
over these jobs in QS↑ keep the same processing order as
in σ(I3) except that some jobs are preempted by some
jobs in QS or QS↓. Both σ(I3) and φ(I3) are illustrated
in Figure2. We can analyze the performance ratio of I3

by directly comparing jobs’ completion time in σ(I3) and
φ(I3).

Lemma 8.

ALG(I3)
L(I3)

≤ max
{

1 +
1
α

, 1 +
γ − 1
γ
α + 2

}

Proof. For the job Ji, denote its completion time in σ(I3)
and φ(I3) by Ci and C ′i respectively. Denote the set of
all the jobs in I3 by Q, and denote one of its subsets by
Q′. We have

ALG(I3)
L(I3)

≤ max
Q′⊂Q

{∑
Ji∈Q′ Ci∑
Ji∈Q′ C

′
i

}
(12)

Next we divide Q into different subsets and compare their
completion time.

Denote the first processed job in φ(I3) by J1, which ob-
viously belongs to QS↑. Suppose there are q1 jobs in QS .
If J1 is not preempted in φ(I3) by these q1 jobs, we have

C1 = C ′1 + S + q1pmin

Consider J1 and these q1 jobs together as a subset Q′, we
can obtain

C1 +
∑

Ji∈QS
Ci

C ′1 +
∑

Ji∈QS
C ′i

=
C ′1 + S + q1pmin + q1S + q1(q1+1)

2 pmin

C ′1 + q1p1 + q1(q1+1)
2 pmin

≤ 1 +
S + q1pmin + q1(S − p1)

p1 + q1p1 + q1(q1+1)
2 pmin

≤ 1 +
S + q1S

p1 + q1p1

≤ 1 +
1
α

(13)

where the last relation comes from p1 ≥ αS since J1 is
not processed before S in σ(I3).

If J1 is preempted by the q1 jobs and other k1 jobs which
belong to Q1

S↓, then we have

C1 = C ′1 + S − k1pmin

Ci = C ′i ∀Ji ∈ QS

Ci = C ′i + p1 ∀Ji ∈ Q1
S↓

Likewise, consider J1, QS and Q1
S↓ together as a subset

Q′, we can obtain

C1 +
∑

Ji∈QS
Ci +

∑
Ji∈Q1

S↓
Ci

C ′1 +
∑

Ji∈QS
C ′i +

∑
Ji∈Q1

S↓
C ′i

=

C ′1 + S − k1pmin +
∑

Ji∈QS

C ′i +
∑

Ji∈Q1
S↓

(C ′i + p1)

C ′1 +
∑

Ji∈QS

C ′i +
∑

Ji∈Q1
S↓

C ′i

≤ 1 +
S − k1pmin + k1p1

C ′1 +
∑

Ji∈Q1
S↓

C ′i

≤ 1 +
S + k1(p1 − pmin)

p1 + (q1 + k1)pmim + k1SB1 + k1(k1+1)
2 pmin

≤ max
{

1 +
S

p1
, 1 +

p1 − pmin

SB1 + 2pmin

}

≤ max
{

1 +
1
α

, 1 +
γ − 1
γ
α + 2

}
(14)

where the last relation comes from p1 ≥ αS, p1 ≤ γpmin

and p1 ≤ αSB1 due to αD-SPT rule.

For the remained jobs except J1 in QS↑, we divide them
into two subsets denoted by Q′S↑ and Q′′S↑ such that, in
φ(I3), no jobs in Q′S↑ is preempted and each job in Q′′S↑
is preempted. We can figure out that Q′′S↑ is composed
of the last job of some subblocks in σ(I3). Denote by A
the index set such that jobs in Qj

S↓ preempt the job JBj

in φ(I3) for j ∈ A. Then Q′′S↑ = {JBj |j ∈ A}. Denote by
Q′S↓ the set of all the remained jobs in QS↓ which don’t
preempt any job in φ(I3). Denote the number of jobs in
Qj

S↓(1 ≤ j < m) by kj . We have

Ci = C ′i + S ∀Ji ∈ Q′S↑
CBj

= C ′Bj
+ S − kjpmin JBj

∈ Q′′S↑ ∀j ∈ A

Ci = C ′i + pBj
∀Ji ∈ Qj

S↓ ∀j ∈ A

Ci = C ′i + S ∀Ji ∈ Q′S↓

So we have for any job Ji in Q′S↑ or Q′S↓,

Ci

C ′i
=

C ′i + S

C ′i
≤ 1 +

S

p1
≤ 1 +

1
α

(15)

For j ∈ A, consider the job JBj in Q′′S↑ and all the jobs
in Qj

S↓ together as a subset Q′, we can obtain similar to
the transformation in (14)

CBj
+

∑
Ji∈Qj

S↓
Ci

C ′Bj
+

∑
Ji∈Qj

S↓
C ′i

≤ max
{

1 +
S

p1
, 1 +

pBj
− pmin

SBj + 2pmin

}

≤ max
{

1 +
1
α

, 1 +
γ − 1
γ
α + 2

}
(16)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Each job in Q is involved in one of the subsets above men-
tioned and considered in one of (13)(14)(15)(16). Com-
bining that with (12), we can immediately finish the
proof.

Theorem 9. For the problem 1|rj ,
pmax

pmin
≤ γ|∑Cj, the

αD-SPT online algorithm with α = 1+
√

1+γ(γ−1)

γ−1 has the
competitive ratio of 1 + 1

α .

Proof. From Lemma 6,7 and 8, we can obtain the com-
petitive ratio ρ of αD-SPT

ρ ≤ max
I1

ALG(I1)
L(I1)

≤ max
{

1 +
1
α

, 1 +
γ − 1
γ
α + 2

}

Let 1 + 1
α = 1 + γ−1

γ
α +2 , i.e., α = 1+

√
1+γ(γ−1)

γ−1 , we have

ρ ≤ 1 +
1
α

(17)

The lower bound can be obtain by constructing the fol-
lowing instance. Consider an instance with only one job
released at the time 0 with processing time 1, αD-SPT
schedules the job from the time 1

α , and the optimal ob-
jective value is obviously 1, so we have

ρ ≥ 1 +
1
α

(18)

Remark 10. The result covers the D-SPT online algo-
rithm since αD-SPT has the competitive ratio of 2 when
γ tends to infinity. At the same time the algorithm de-
generates into a no-wait SPT strategy when γ is equal to
1, which is obviously the optimal algorithm for the corre-
sponding problem 1|rj , pj = p|∑Cj.

4 Concluding remarks

In this work, we develop a novel analysis technique to de-
rive the competitive ratio of the online algorithm based
on the idea of instance transformation. In order to de-
rive an upper bound on the performance ratio among all
the instances, the analysis method exploits the possible
structure of the worst case instance with respect to the
given online algorithm. It begins with an arbitrary in-
stance, and transforms the instance along the direction
of its performance ratio increasing, such that the mod-
ified instance shows a more special structure of which
we can take advantage to analyze its performance ratio.
We present the method by verifying the competitive ratio
of D-SPT algorithm proposed by Hoogeveen [5] for the
single machine scheduling problem with the objective of
minimizing total completion time. Then we generalize
the problem by assuming that the ratio of the longest
processing time to the shortest in any instance is not

greater than a constant γ. We design an online algo-
rithm called by αD-SPT and apply our analysis method
to derive its competitive ratio is 1 + 1

α where α is equal

to 1+
√

1+γ(γ−1)

γ−1 . Further work is needed to extend the
analysis method to other online problems.

References

[1] K.R. Baker. Introduction to Sequencing and Schedul-
ing. John Wiley & Sons, 1974.

[2] A. Fiat and G.J. Woeginger. Online algorithms: the
state of the art. Springer, 1998.

[3] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time: Off-
line and on-line approximation algorithms. Mathe-
matics of Operations Research, 22(3):513–544, 1997.

[4] Y. He and G. Dósa. Semi-online scheduling jobs
with tightly-grouped processing times on three iden-
tical machines. Discrete Applied Mathematics, 150(1-
3):140–159, 2005.

[5] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-
line algorithms for single-machine scheduling. Lecture
Notes in Computer Science, 1084:404–414, 1996.

[6] P. Kaminsky and D. Simchi-Levi. Asymptotic analy-
sis of an on-line algorithm for the single machine com-
pletion time problem with release dates. Operations
Research Letters, 29(3):141–148, 2001.

[7] E.L. Lawler, J.K. Lenstra, A.H.G.R. Kan, and D.B.
Shmoys. Sequencing and scheduling: Algorithms and
complexity. In S.C. Graves, A.H.G. Rinnooy Kan,
and P.H. Zipkin, editors, Handbooks in Operations
research and Management Science, volume 4, pages
445–522. North-Holland, 1993.

[8] X. Lu, RA Sitters, and L. Stougie. A class of on-
line scheduling algorithms to minimize total comple-
tion time. Operations Research Letters, 31(3):232–
236, 2003.

[9] C. Phillips, C. Stein, and J. Wein. Minimizing aver-
age completion time in the presence of release dates.
Mathematical Programming, 82(1):199–223, 1998.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

