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Abstract—The paper compares three different mod-
els that have been developed in the literature for mod-
eling and forecasting human mortality rates over the
age range. The first model is the quadratic Gompertz
model where the quadratic line is fitted for age and
sex. The second is the one-dimensional Spline model,
which fits linear combinations of the Basis Splines.
The last model is the Lee-Carter model which is used
to fit each sex to a set of age-specific death rates by
fitting Poisson log-bilinear regression model in gener-
alized linear models (GLM). A time-varying index of
mortality is then forecasted using a time series linear
forecasting model autoregressive integrated moving
average (ARIMA). These forecasts are used to gen-
erate projected age-specific mortality rates in Kuwait
for ages 55 to 90 for the period 2006-2015, based on
the mortality data for years 1993-2005 for males and
females separately.
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1 Introduction

Mortality refers to the decremental process by which liv-
ing members of a population gradually die out and it is
not evenly distributed by age and sex. Therefore, the
pattern of mortality depends on the distribution of age
and sex of each population and mortality rates are thus
measured separately for males and females. Mortality
rates are among the most important parameters used in
evaluating the population health and social levels, in ad-
dition to their importance in determining the level of the
population’s natural growth, population’s growth rate,
calculating mortality prospects and creating life tables.

In the last 50 years, human mortality has been seen to
follow a continued though frequently irregular declining
trend. The prospects of longer life are viewed as a positive
change for individuals and a substantial social achieve-
ment but have led to concern over their implication re-
garding public spending on old-age support. The earliest
significant measurements of mortality are those of John
Graunt who is generally regarded as the father of the de-
mography in England and Wales (Benjamin and Soliman,
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1993). Recently, mortality changes are widely studied by
demographers, economists and by now there are a con-
siderably growing literature on mortality decline and its
individual and social consequences (Tuljapurkar and Boe,
2001).

Basically, there are two mortality patterns: the cause-
specific mortality and the total or central mortality rate.
The cause-specific mortality is of interest to the health
policymakers and public health, medical and pharmaceu-
tical researchers. On the other hand, the total mortality
is of interest to the actuarial scientists, insurance compa-
nies and economists. In this paper, the second mortality
pattern, the central mortality rate is discussed, focusing
on the population of age 55 to 90 for each sex from 1993
to 2005. The mortality rates exhibit strong age patterns
and varies with respect to many characteristics, such as
sex and age. Various researchers have developed meth-
ods to capture this structure and use it in forecasting.
Therefore, mortality rates will be calculated for each age
and sex separately.

In the literature, there were a very few studies that is
related to mortality in Kuwait. The Kuwaiti mortal-
ity rates remains relatively unexplored. In fact, the de-
mographic components in Kuwait need further investi-
gations. In government planning, it is necessary for a
country to forecast future population size and age struc-
ture. This is crucial for a country like Kuwait, where
the population is increasing rapidly. Therefore to fore-
cast the future population of Kuwait both fertility and
mortality rates are needed and the structure of the popu-
lation can then be forecasted by constructing population
projections.

A comparison is conducted between three statistical
methods that are applied most frequently in the liter-
ature, Gompertz, P-Spline and Lee-Carter model. Start-
ing by an overview of the models, describing the basics;
discussing their applications and evaluating their perfor-
mance.

This paper is divided as follows. In Section 2, we in-
troduce a background on mortality in Kuwait. Section
3 presents the basic three models, Gompertz model, P-
Spline model, and Lee-Carter model. The three proposed
models are applied to Kuwait mortality data in Section 4.
In Section 5 we project the mortality rates. A compari-
son of the three models is presented in Section 6 followed
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by a general discussion in Section 7.

2 Background on Mortality in Kuwait

We briefly comment on the studies that were conducted
in Kuwait. Abaza (1984) presented abridged Kuwaiti
life tables by using the Chiang method of constructing
Kuwaiti mortality rates for the period 1965-1980. AL-
Sabah (1985) introduced the vital statistics in the State
of Kuwait among those was the crude mortality rates for
the Kuwaiti population by nationality and sex over the
year 1970 to 1979. EL-Shalakani (1989) estimated the
current level of fertility and mortality among Kuwaiti na-
tionals in Kuwait by applying indirect techniques during
1980 through 1985.

The death rates based on data from Kuwaiti insurance
companies were discussed in EL-Mansoury et al. (1991)
for the period 1985-1989. AL-Sabah (1992) discussed the
level of the natural growth and the directions of popula-
tion growth in Kuwait focusing on the Infant Mortality
rates. The age specific probabilities were estimated by
Al-Ramadhan (1995b) for the years 1987-1992 by extrap-
olating historical life expectancies at birth for Kuwaiti
population by sex. The life expectancy at birth for mid-
year Kuwaiti population by sex was also estimated from
1992-1999.

More recently, a comparison was conducted by Rowland
(2003) between the crude death rate (CDR) of U.K. and
Kuwait for the year 2001. The CDR for Kuwait was
lower than that for U.K. This was mainly due to the age
structure of the population of Kuwait.

Mortality rates discussed here are defined as the ratio
of number of people died during that year dividing by
the number of people surviving to the start of the fol-
lowing year. Fig. 1 represents the log mortality rates of
Kuwait for ages 55-90 during the period of 1993-2005, for
male and female respectively. The mortality rates fluc-
tuated over this period and was higher for males than
females. The decline in the male mortality rates is more
steady than those of the females. The United Nations
(ECWA)(1980) described the mortality rate for the pop-
ulation of Kuwait as one of the lowest of all the countries
in Asia. These low death rates can be attributed to the
high level of health expenditure beginning in 1962 when
the Government of Kuwait introduced a comprehensive
health care program for the population of Kuwait.

3 Models for Forecasting Mortality

The attempt to find an appropriate mortality curve has
a long history in demography and actuarial sciences. Fit-
ting a parametric curve to annual rates was first intro-
duced by Gompertz (1825), Makeham (1860). Different
approaches have been developed for forecasting mortal-
ity using stochastic models such as Alho (1990, 1992),
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Figure 1: The log mortality rates plot for ages 55-90 in
years 1993-2005 for male and female in Kuwait.

Alho and Spencer (1985) and Lee and Carter (1992). In
this section we introduce the most common methods cur-
rently used for forecasting mortality rates in the devel-
oped countries. For more discussion on these methods
(see Federico and King, 2004).

3.1 The Gompertz Model

The Gompertz model was firstly introduced by Gom-
pertz (1825) and has played a potential role in devel-
oping the theoretical hypotheses on mortality pattern. It
describes mortality as increasing exponentially with the
age at a constant rate and is used for forecasting mortal-
ity changes by considering years to be the covariate for
the age-specific mortality rate. The basic model can be
adopted to the mortalities of age-groups for single years.
The model is constructed as

µx = αeβx,

where x denotes the year and µx denotes the mortality
of a certain age. A log linear extrapolation is given by

log(µx) = log α + βx = a + bx.

The parameter α varies with the level of log mortality
and β measures the rate of annual decline in age-specific
mortality. This model can be extended to a log quadratic
known as quadratic Gompertz and is given by

log(µx) = a + bx + cx2.

For many purposes the Gompertz model provides a sat-
isfactory fit to adult morality rates. However, different

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



modifications has been applied to this model as its valid-
ity at higher ages was questionable.

3.2 The Spline Model

The Spline model is one of parametric smoothing mod-
els, that has been used for mortality graduations for
many years. The most commonly applied technique for
both smoothing and projecting mortality rates in U.K.
is that of penalized-spline regression, known as P-splines.
The Spline models, especially the 2-dimensional P-Spline
model, was used to construct the recent English Life Ta-
bles for the Continuous Mortality Investigation Mortality
sub-committee (CMIB)(2004).

Consider the additive model

y = g(x) + ε,

where y represents the log mortality of one specific age
group and x is the predictor variable (Year). We assume
that errors ε are independent and identically distributed
with mean zero, and g is an unknown arbitrary function
of the predictor x. The function g(x) can be fitted by
using smoothing Splines which is an indirect method of
smoothing driven by penalized least squares. At an arbi-
trary point t, g(t) can be estimated by a locally weighted
regression smoother by computing a weighted average of
all those values yj in the sample that have predictors xj

close to t . This can be represented as

ĝ(t) =
n∑

j=1

Wλ(t, xj)yj , (1)

where (xj , yj), j = 1, · · · , n, is the series of n data points,
t is the target point, and Wλ is a weight function parame-
terized by λ. Smoothing splines exploit a cubic smoothing
spline to fit the data in (1) by minimising the penalised
residual sum of squares (RSS) given by

RSS(g, λ) =
n∑

j=1

(yi − g(xi))2 + λ

∫
(g
′′
(t))2dt. (2)

The solution is a natural cubic spline with interior and
boundary knots at the unique values of xi, that can be
written as

g(x) =
n∑

k=1

θkNk(x),

where Nk(x) are N -dimensional set of basis functions
representing this family of natural splines. The fitted
smoothing spline is given by

ĝ(x) =
n∑

k=1

θ̂kNk(x), (3)

where θ̂ = (NT N + λΩN )−1NT y with {Nij} = Nj(xi)
and {ΩN}jk =

∫
N
′′
j (t)N

′′
k (t)dt. For convenience, we use

B-spline rather than the natural spline, thus (3) can be
written as

g(x) =
N+4∑

1

δjBj(x),

where δj are coefficients and Bj are the cubic B-spline
basis functions. Thus the solution can be written as

δ̂ = (BT B + λΩB)−1BT y. (4)

Comparing θ̂ with δ̂, N ×N matrix Nk(x) is replaced by
by the (N +4)×N matrix B, and the N×N dimensional
ΩN is replaced by (N+4)×(N+4) penalty matrix ΩB . For
more on the theory of B-splines, see Hastie et al.(2001).

3.3 The Lee-Carter Model

The last model is one of the leading statistical models
of mortality in demographic literature, the Lee-Carter
model, which was proposed by Lee and Carter (1992)
and was used to forecast U.S. mortality to 2065. Since
that time, the method has attracted a certain amount of
attention. The most recent Census Bureau population
forecasts (Hollmann et al. 2000) use this model forecast
as a benchmark for their long-run forecast of U. S. life
expectancy. Recently, Lee-Carter model become more
popular for modeling and forecasting mortality by age
and has been adopted widely. The model was applied for
many countries and different time periods, for example,
U.S. (Lee and Carter, 1992), Canada (Lee and Nault,
1993), Japan (Wilmoth, 1996), Chile (Lee and Rofman,
1994), Belgium (Brouhns et al., 2002), and the seven most
economically developed nations (G7) (Tuljapurkar et al.,
2000).

The model describes the secular change in mortality as a
function of a single time index. The model is based on a
log-additive model of age-specific death rates with dom-
inant time component and a fixed relative age compo-
nents. A matrix decomposition method is used to identify
the two components. The time component is projected
by using a time series linear forecasting model, autore-
gressive integrated moving average (ARIMA).

The Lee-Carter model is a simple bilinear model in vari-
ables x (age) and t (year) given by

log(µx,t) = αx + βxκt + εx,t, (5)

where µx,t is the central death rate at age x and time
t. The parameter αx describes the average age-specific
pattern of mortality, βx is age-specific constants for the
relative speed of mortality change in response to changes
in κ, and κt represents the time-trend index of general
mortality level. The term εx,t is the error term with zero
mean and variance σ2. The error terms indicates age-
specific historical influence not captured by the model.
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Table 1: The estimated parameters for the log mortality
rates of females and males using Gompertz model.

Female Male
Age β0 β1 β0 β1

55 191.1630(30.5958) -0.0982(0.0153) 105.6918(17.3605) -0.0555(0.0087)
60 215.9261(26.2746) -0.1101(0.0131) 180.5684(20.0897) -0.0925(20.0897)
65 227.6358(40.6368) -0.1157(0.0203) 139.9322(18.6458) -0.0719(0.0093)
70 210.3217(38.6737) -0.1066(0.0193) 174.6442(25.4446) -0.0888(0.0127)
75 179.0954(39.2262) -0.0909(0.0196) 153.0631(23.5742) -0.0778(0.0118)
80 229.6621(46.1281) -0.1158(0.0231) 139.2337(28.8799) -0.0706(0.0144)
85 147.9094(51.1711) -0.0884(0.0256) 224.3416(50.5993) -0.1131(0.0253)
90 217.1079(66.6129) -0.1362(0.0333) 300.5622(48.4890) -0.1509(0.0243)

The time component κt captures the main time trend on
the logarithmic scale in mortality rates at all ages. The
age component βx modifies the main time trend and it
is assumed to be invariant overtime. Thus to obtain a
unique solution for the system of equations of the model
and to ensure identifiability of the model we have

αx =
1
T

∑
t

log(µx,t),
∑

x

βx
2 = 1,

∑
t

κt = 0.

4 Fitting the Three Proposed Models

The three proposed models discussed in the previous sec-
tion, for modeling and forecasting mortality, are now ap-
plied to log mortality data in Kuwait for ages 55 to 90 for
the period 1993-2005 for males and females separately.

4.1 Gompertz Model

In Gompertz model we have a single explanatory variable
’year’, thus a polynomial regression model can be fitted
as

Yi = β0 + β1xi + εi (6)

where Y is the response variable of log-mortality of one
specific age, x is the explanatory variable of years, β is the
vector of parameters and εi is the unknown random error.
Fitting Gompertz model, the estimated values of model
parameters, as well as the standard errors, for several ages
are shown in Table 1, for females and males respectively.

From Table 1 we can notice that the standard errors are
relatively large. Similar results were obtained by Zhang
(2005) when applying the quadratic Gompertez model to
England and Wales mortality experience of age 55-84 for
each gender from 1947-1996. The plot of the observed
and fitted log mortality are shown in Fig. 4 for age 75 for
males and females separately. It is clear that the fitted
lines go most of the observed dots which indicates an

overall good fit.

As a diagnosis of the model, we examined the residu-
als to check whether the basic assumptions are satisfied.
The histograms and q-q plots of the residuals, reveals
that they are normal and independent indicating that
the model is adequate. The parameters were found to
be significant and the multiple correlation coefficient R2

have a reasonable values.

4.2 Spline Model

Fitting smooth Spline model to the log mortality data
can be seen as fitting an additive model that consists of
flexible components. Thus no list of estimated values of
model parameters can be obtained.

Fig. 4 shows the smooth spline of log mortality against
the year of age 75 category for females and males. It is
clear that the curve is smoother than that of Gompertz.
Fig. 2 displays the plot of s(Y ear) against Year as a rep-
resentation of the additive fit of Year to the log Mortality
rate. It is obvious from the plot that x-values are fairly
equally scattered with narrow confidence interval.
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Figure 2: Year smoothing term plot.

We diagnose the Spline model, by examining the resid-
ual deviance that are all far smaller than the degrees of
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freedom which indicates a good fit of data. The F val-
ues for nonparametric effect indicate that the nonlinear
component s(Y ear) is significant.

4.3 Lee-Carter Model

Different methods have been proposed to estimate the
Lee-Carter model parameters. Lee and Carter (1992) ap-
plied a two-stage estimation procedure, Singular Value
Decomposition (SVD) in the first stage, and time series
method to re-estimate κt in the second stage. This was
useful in cases where only the total, rather than age-
specific, death rates are known in certain years. Wilmoth
(1993) developed a weighted least square (WLS) and a
maximum likelihood (MLE) technique. Alho (2000) sug-
gested using MLE based on a Poisson number of deaths
Dxt. The method of maximum likelihood is based on the
assumption that the number of deaths is a counting ran-
dom variable that can be modeled by a Poisson Process.

Let Dxt be a random variable representing the death
count at age x and time t, dxt is the observed number
of deaths, Ext is the exposure-to-risk at age x and time t,
and ext is the observed value. The Poisson specification
is

dxt

ext
∼ Poisson(eηxt , ηxt = αx + βxκt)

where ηxt is the mean of the Poisson distribution and
ηxt = mxtExt. The difficulty of the MLE method, that
maximizes the log-likelihood function, arises because of
the bilinear form of the term βxκt. This approach, known
as Poisson log-bilinear modeling, is fully described in
Brouhns et al. (2002). An iterative method for esti-
mating log-linear models with bilinear terms was first
proposed by Goodman (1979). The algorithm is a uni-
Dimensional/Elementary Newton Method that uses LEM
to solve the likelihood equations. In the iteration step a
single set of parameters is updated by fixing other param-
eters at their current estimate. The detailed algorithm is
explained in Appendix A, (see, Zhang, 2005).

The estimated model parameters αx, βx and κt are shown
in Fig. 3 for females and males respectively.

The parameter αx represents the general age shape of
mortality. It is clear that both females and males have
upward trend of mortality in general. The parameter βx

describes the tendency of mortality at age x to changes as
the general level of mortality κt changes. This indicates
that when βx is large, the death rates at age x varies a lot
than the general level of mortality change and when βx

is small, then the death rate at that age varies little. The
mortality index κt, captures the main time trend on the
logarithmic scale in the death rates at all ages. In Fig.
3 the females have a significant change of mortality rates
in the last year. Moreover, the estimated mortality index
κt generally exhibits a linear decreasing trend, meaning
that the age-specific mortality has yearly declined almost
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Figure 3: The estimated parameters αx, βx and κt in Lee-
Carter model for females and males.

exponentially.

In the Lee-Carter model, the fitted values of the model are
the number of deaths D̂xt, the observed log-mortality is
log(Dxt/Ext) and the fitted log mortality is log(D̂xt/Ext).
Fig. 4 represents the observed and fitted log-mortality
rates for 75 age category for males and females. It is
obvious that the fitted lines and observed values follow a
similar pattern.

The model was diagnosed by observing the residual de-
viance, their values were less than its corresponding de-
grees of freedom indicating a good model fit, with no
over-dispersion. The residuals were also examined where
the histogram looks relatively normal and the q-q plot
indicates an adequate fit.
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Figure 4: The observed and the fitted log mortality rates
for Gompertz, Spline and Lee-Carter model.
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5 Projection of Mortality Rates to 2015

5.1 Gompertz Model

In Gompertz model, the projection of mortality from
2006 to 2015 can be calculated by assuming that the es-
timated parameters age β0, β1 and β2 are determined by
the sample years, varying the explanatory covariate Year
to the future years. Fig. 5 shows the projected log mor-
tality of age 75 from 2006 to 2015 with 95% confidence
interval. Clearly, the confidence interval in females is
much wider than that of the males indicating a greater
variability in the data.
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Figure 5: The projected log mortality of age 75 for fe-
males and males in Gompertz model.

5.2 Spline Model

For the Spline model, projections is conducted by com-
puting a model matrix using the new data, which is then
multiplied by the coefficients extracted from the original
object. Fig. 6 represents the projection to year 2015 of
age 75 for females and males respectively.

5.3 Lee-Carter Model

One of the advantages of the Lee-Carter approach is that
once the data are fitted to the model and the values of
the parameters αx, βx and κt are estimated, only the
mortality index κt needs to be predicted. Thus to per-
form projections, the parameters αx, βx remains constant
over time, while κt are forecasted of by using an ARIMA
model.

5.3.1 Forecasting the κ in ARIMA Model

Lee and Carter (1992) predicted the mortality index κt by
a standard univariate time series model ARIMA(0,1,0).
They demonstrate that other ARIMA models might be
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Figure 6: The projected log mortality of the age 75 for
females and males in Spline model.

preferable for different data sets. The graphic obser-
vation suggests an ARIMA(1,1,1), ARIMA(1,1,0) and
ARIMA(0,1,1) models. The Akaike’s information crite-
rion (AIC) was applied to select the most appropriate
model. The appropriate model for both male and female
was ARIMA(1,1,0) with the smallest AIC. The adequacy
of the selected ARIMA(1,1,0) model was diagnosed by
examining the residual plots which indicated that the
residuals are consistent with white noise. Over fitting
was also examined, and a second term was not needed.

The appropriate model ARIMA(1,1,0) was used to fore-
cast the parameter κ over the desired time period for both
males and females. Fig. 7 illustrates the fitted values of
κ from 1993 to 2005 and their forecasts from 2006 to 2015
for both females and males. The estimated values of κ
over the base period change in a linear fashion.

Year

ka
pp

a

1995 2000 2005 2010 2015

-2
5

-2
0

-1
5

-1
0

-5
0

5

Female

Year

ka
pp

a

1995 2000 2005 2010 2015

-1
0

-5
0

Male

Figure 7: The forecasted Kappa for females and males in
Lee-Carter model.
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The adequacy of the ARIMA models was checked by ex-
amining different diagnosis plots such as residual plots,
function of residual plots. The plot of residual indicates a
consistency with white noise, while the plot of standard-
ized residual suggests that the two are stationary series
with zero mean and small variance. The ACF of resid-
ual plots supports the assumption of independence and
P-values for Ljung-Box statistics give an evidence that
the model is adequate.

The mortality index κt is the only parameter that needs
to be predicted, and the next step is to project log mortal-
ity to year 2015 using the earlier equation (5) for log µx,t

, given the previously estimated age specific coefficients
αx and βx as well as the forecasted κ. Fig. 8 shows the
projection of the age 75 category from 2006 to 2015 for
the Lee-Carter model.
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Figure 8: The projected log mortality of the age 75 for
females and males in Lee-Carter model.

6 Comparison of the Projection

We evaluate the three proposed models by analyzing the
overall errors between the fitted and the observed mortal-
ity rates. The method applied here to analyze the errors
was discussed by Benjamin and Soliman (1993).

Let e be the difference between the fitted and the ob-
served mortality rate, then the first error type is the av-
erage error e1 =

∑
e/n, with n is the number of data

points. The second error is the average absolute error,
e2 =

∑ |e|/n, that measures the magnitude of the overall
error in projection. The third error type is the root of the
square error, e3 =

√∑
e2/n that measures the standard

deviation of the projected values. Table 2 shows the error
values for the three fitted models.

For the average error of fitting e1, it is obvious that
the quadratic Gompertz and Smooth spline give pro-
duce lower projected mortality rates than the observed

Table 2: The error values for Gompertz, Spline and Lee-
Carter models for females and males.

Model e1 e2 e3

Female Gompertz 1.8978 ×10−18 0.2213 0.2854
Smooth-Spline -2.8348 ×10−17 0.1721 0.2249
Lee-Carter 26.4788 26.47881 29.4713

Male Gompertz 1.6605 ×10−18 0.1651 0.2178
Smooth-Spline 3.0839 ×10−17 0.1207 0.1679
Lee-Carter 34.9848 34.9848 38.0861

rates, while the Lee-Carter method gives higher projected
rates overall. For the average absolute error e2, it is
clear that the most accurate method overall is the Spline
model with similar values for the Gompertz. The Lee-
Carter method produces larger values indicating less ac-
curacy. The standard error e3 values indicates that the
Lee-Carter have greatest confidence interval compared
with Gompertz and Spline. The Spline method gives the
smallest confidence interval overall with slight difference
between the two methods.

In assessing the overall comment of the fitted mortality
rates, the Spline method appears to be the best of the
three models and the Gompertz model is the second best.
This is true for both males and females. The Smooth
spline regression achieves local optimization by which it
successfully fits the data.

7 Conclusion

This paper presents a brief review of the main math-
ematical models that have been developed to describe
and explain human mortality patterns over the age range.
The projected mortality rates of improvement by age, sex
and year were produced by applying the three projection
methods which are ultimately chosen for both males and
females over the period 2006-2015 based on the data from
1993 to 2005 in Kuwait. First the log mortality was fitted
according to Gompertz model using the classical linear
regression method. This model was extended by apply-
ing Spline model which is equivalent to a polynomial re-
gression with degree two for more flexibility. Then the
Lee-Carter method of fitting and projecting the human
mortalities was applied.

For the Kuwaiti mortality data, it was found that the
smooth Spline regression model gives a better fitting for
short-term mortality rates due to its local optimization.
The Lee-Carter model is simple but highly structured
and two different sources of uncertainty have to be com-
bined, sampling errors in the parameters of Poisson model
and forecast errors in the projected ARIMA parameters.
However, the Lee-Carter model does not model the ob-
served number of deaths but the logarithms of the force
of mortality.
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We summarize the advantages and disadvantages of re-
gression models exemplified by the P-spline model and
the Time Series models by Lee-Carter model. We do not
single out which is preferable, but here we discuss some
of their main features.

An issue that is specific to regression models was that
traditional polynomial methods can yield acceptable fits
in the region of the data, and yet produce very poor pro-
jections out side it. The P-Spline model allows for pa-
rameter uncertainty through the variance matrix of the
regression coefficients and it can incorporate cohort effect
very simple, through the choice of penalty.

The Lee-Carter method has a number of appealing fea-
tures. The basic model is simple but highly-structured,
which introduces a degree of model uncertainty. The
model can be made to allow for parameters uncertainty
by bootstrapping, however the model does not explicitly
allow for cohort effects. The Lee-Carter has been quit
well received, but there have also been criticisms. Some
have thought that the probability bands are implausi-
bly narrow (e.g. Alho, 1992). Others argued that many
age specific rates are so low that they can not realisti-
cally be projected to decline much further. Some argue
that biomedical information should inform the forecasts,
through incorporating expert opinion. Some have called
for more within-sample testing of the methods, and oth-
ers have questioned whether the αx and βx should be
treated as invariant.

Each of the three models proposed in this paper has its
extensions. In the Gompertz model, the difference be-
tween model estimates and observed rates reveals sys-
tematic underestimation of actual mortality at youngest
adult ages and overestimation at oldest ages. The de-
viation at lower ages is addressed by Makeham (1860)
by adding a constant to the Gompertz model that re-
ferred to as a background mortality. The deviation at
the oldest ages was addressed by different ways, the sim-
ples was the logistic model introduced by Thatcher(1999)
and Thatcher et al. (1998). More complex logistic mod-
els with additional parameters have been proposed, (e.
g., Thatcher et al. 1998).

The smooth Spline model is one-dimensional and fitted
by penalized least squares. Eiler and Marx (1996) dis-
cussed the penalized likelihood in GLM and Currie et
al.(2002) extended it to smooth two-dimensional Poisson
data where the coefficients of log mortalities live in the
age-year plane.

A considerable work has been done to extend the Lee-
Carter model. An improved fitting methods has improved
by Wilmoth (1993) based on weighted least squares as
previously discussed. As the model assumes that age-
specific rate of decline remains constant over time, differ-
ent methods were introduced in the literature to overcome

this problem for example, Renshaw and Haberman (2005)
extended Lee-Carter model in a wider class of statistical
approach. A further area of consideration is to apply
these extended models to mortality data in Kuwait and
conducting the comparison.

APPENDIX A

Brouhns et al (2002) proposed a LEM method to solve
the likelihood equations and to get the fitted values of
the parameters αx, βx and κt in the Lee-Carter model.

The iterative method that is used to estimate log-linear
models with bilinear terms was first proposed by Good-
man (1979). The iteration step is a single set of parame-
ters is updated by fixing other parameters at their current
estimate.

θ̂(ν+1) = θ̂(ν) − ∂L(ν)/∂θ

∂2L(ν)/∂θ2

where L(ν) = L(ν)(θ̂(ν)) is the log likelihood function. For
the Lee-Carter equation, the updating procedures are as
follows:

1. Set the starting value with α̂0
x = 0, β̂0

x = 1, and κ̂0
t = 0.

2. Let

α̂(ν+1)
x = α̂(ν)

x −
∑

t(Dxt − D̂
(ν)
xt )

−∑
t D̂

(ν)
xt

β̂(ν+1)
x = β̂(ν)

x , κ̂
(ν+1)
t = κ̂

(ν)
t

3.

κ̂
(ν+2)
t = κ̂

(ν+1)
t −

∑
x(Dxt − D̂

(ν+1)
xt )β̂(ν+1)

x

−∑
x D̂

(ν)
xt (β̂(ν+1)

x )2

α̂(ν+2)
x = α̂(ν+1)

x , β̂(ν+2)
x = β̂(ν+1)

x

4.

β̂(ν+3)
x = β̂(ν+2)

x −
∑

t(Dxt − D̂
(ν+2)
xt )κ̂(ν+2)

t

−∑
t D̂

(ν+2)
xt (κ̂(ν+2)

t )2

α̂(ν+3)
x = α̂(ν+2)

x , κ̂
(ν+3)
t = κ̂

(ν+2)
t

The scaling constraint used by LEM is β̂ = 1 is different
from Lee-Carter parametrization. In order to obtain the∑

x β̂x = 1, it is necessary to divide the estimates for βx

by
∑

x β̂x and multiply the estimates for κt by the same
number.
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