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A New Double Bagging via the Support Vector
Machine with Application to the Condition
Diagnosis for the Electric Power Apparatus
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Abstract—The aggregation of multiple unstable
classifiers often leads us to reduce the misclassification
rates substantially in many applications and bench-
mark classification problems. We propose here a new
variant of the double bagging, where we use the sup-
port vector machine as the additional classifier built
on the out-of-bag samples. The underlying basic clas-
sifier is the decision tree. We use four kernel types;
linear, polynomial, radial basis and sigmoid kernels,
expecting the new classifier perform better. The ma-
jor advantages of the proposed method is that, 1) it
has robustness against many messy real data cases,
2) the generation of support vectors in the first phase
facilitate the decision tree to classify the objects with
higher accuracy, resulting a significant reduction in
misclassification rates in the second phase. We also
used subsamples with bootstrap samples, where 50%
samples are used for the training samples without re-
placement, expecting larger out-of-bag samples. We
have applied the proposed method to a real case, the
condition diagnosis for the electric power apparatus;
the feature variables are the maximum likelihood pa-
rameters in the generalized normal distribution, and
these variables are composed from the partial dis-
charge patterns of electromagnetic signals by the ap-
paratus. Comparing to other well-known ensemble
classifiers, the double bagging with the support vector
machine classifier with radial basis kernel performs
best among all the classifiers.

Keywords: Support vector machine, double bagging,
CART, condition diagnosis, electric power apparatus

1 Introduction

The support vector machine (SVM) is a new and promis-
ing classification and regression technique proposed by
Vapnik and his group at AT&T Bell Laboratories [5].
The SVM learns a separating hyperplane to maximize
the margin and to produce a good generalization ability
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[4]. Recent theoretical research work has solved the exist-
ing difficulties of using the SVM in practical applications
[14], [19]. The capability of SVM to have competitive
generalization error than other classification methods and
ensemble methods has also been checked [18], [8].

The idea of the SVM ensemble has been proposed in [23].
They used the boosting technique to train each individ-
ual SVM and took another SVM for combining several
SVMs. In [15] authors proposed to use the SVM ensem-
ble based on the bagging and boosting techniques. In
bootstrapping (bagging), each individual SVM is trained
over the randomly chosen training samples via the boot-
strap technique. In boosting, the training samples for
each individual SVM is chosen according to updating
the probability distribution (related to error) for sam-
ples. Then, the independently trained several SVMs are
aggregated in various ways such as the majority voting,
the least square error based weighting, and the double-
layer hierarchical combining. In [22] authors used a novel
aggregation rule SEN (selective ensemble) in construct-
ing LS-SVM ensemble. In [17] authors used subsampling
to build SVM ensembles to increase the diversity of the
ensemble. In this paper we have used SVM as the addi-
tional classifier model in an ensemble method called the
double bagging. In double bagging an additional classi-
fier model is built on the out-of-bag samples and then
this model is trained on both the inbag samples and test
set to extract additional predictors for both in building
the ensemble and testing it in the test set. As the SVM
is a maximum margin classifier, which construct opti-
mum separating hyperplane between the classes (for bi-
nary classification), we intended to use it in the first phase
of the ensemble to attain the support vectors consisting
the discriminative information between the classes and
then use them as the additional predictors to constructs
the decision tree ensemble in the second phase. These
support vectors are also used in the testing the decision
tree ensembles. This procedure ensures a possibility of
maximum separation of the classes so that the decision
tree ensemble can perform more accurately in discrimi-
nating the classes.

In this paper we have applied the double bagging via
SVM in classifying the type of partial discharge (PD)
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patterns in a model gas insulated switch gear (GIS) as a
typical electric power apparatus. For condition monitor-
ing purposes, it is considered to be important to identify
the type of defects when monitoring discharge activities
inside an insulation system. In the paper [10] authors
first proposed to use the decision tree as a classification
tool for diagnosing because it provides the if-then-rule in
visible form, and thus we may have a possibility to con-
nect the physical phenomena to the observed signals. In
[11] authors used several ensemble methods in classifying
the defect patterns in the electric power apparatuses. In
[16] authors applied a SVM ensemble for fault diagnosis,
based on the genetic algorithm (GA). They used the GA
in order to find more accurate and diverse ensemble.

The paper is organized as follows. In section 2, we have
introduced the SVM with a non-mathematical introduc-
tion and mathematical formulation, and then we have
introduced some popular kernels used in the SVM. In sec-
tion 3 we have introduced the double bagging and give
a brief description of the implementation of the double
bagging via the SVM. In section 4, the main topic of
this paper, we described the new double bagging via the
SVM. In section 5 we have described the characteristics
and extraction method used for the GIS data of the ex-
periments in this paper. In section 6 the experimental
setup of the study is explained, where we have compared
the performance of the double bagging (with subbagging)
SVM, with other ensemble methods, such as the bagging,
the adaboost.M1, the logitboost and th double bagging
(with subbagging) with LDA and k-NN. In section 7 the
results of the experiments are explained and discussed.
In section 8, conclusion of the study is stated.

2 Support Vector Machine (SVM)

The SVM models were originally defined for the classifi-
cation of linearly separable classes of objects. Such an ex-
ample is presented in Figure 1. For these two-dimensional
objects that belong to two classes (class +1 and class —1),
it is easy to find a line that separates them perfectly. For
any particular set of two-class objects, an SVM finds the
unique hyperplane having the maximum margin (denoted
with ¢ in Figure 1). The hyperplane H; defines the border
with class +1 objects, whereas the hyperplane Ho defines
the border with class —1 objects. Two objects from class
+1 define the hyperplane Hy, and three objects from class
—1 define the hyperplane Hy. These objects, represented
inside circles in Figure 1, are called the support vectors.
A special characteristic of the SVM is that the solution
to a classification problem is represented by the support
vectors that determine the maximum margin hyperplane.

The SVMs aim at minimizing an upper bound of the gen-
eralization error through maximizing the margin between
the separating hyperplane and the data. This can be re-
garded as an approximate implementation of the struc-
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Figure 1: Maximum Separation Hyperplane.

tural risk minimization (SRM) principle, which endows
with good generalization performances independent of
underlying distributions [14]. The SVMs algorithms are
based on parametric families of separating hyperplanes
of different Vapnik-Chervonenkis dimensions (VC dimen-
sions). The SVMs can effectively and efficiently find the
optimal VC dimension and an optimal hyperplane of that
dimension simultaneously to minimize the upper bound
of the expected risk. Usually the classification decision
function in the linearly separable problem is represented
by
fuwp = sign(w -z +b).

Thus, to find a hyperplane with minimum VC dimension,
we need to minimize the norm of the canonical hyper-
plane ||w||. Also the distance between the hyperplane
H, and Hs showed in Figure 1 is,

2
0=—".
[l

Consequently, minimizing the norm of the canonical hy-
perplane ||w|| is equivalent to maximizing the margin ¢
between H; and Hy, Figure 1. The purpose of implement-
ing SRM for constructing an optimal hyperplane is to find
an optimal separating hyperplane that can separate the
two classes of training data with maximum margin. In
Figure 1, the support vectors construct these optimal hy-
perplanes. Hence the optimal hyperplane separating the
training data of two separable classes is the hyperplane
that satisfies,

1
Minimize : F(w) = inw, yi(w - x; +b) > 1.

This is a convex, quadratic programming (QP) problem
with linear inequality constraints. It is hard to solve the
inequality constraint optimization problem directly. The
most common way to deal with optimization problems
with inequality constraints is to introduce Lagrange mul-
tipliers to convert the problem from primal space to dual
space and then solve the dual problem. For the linearly
non-separable case, the minimization problem needs to
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be modified to allow the misclassified data points. This

modification results in a soft margin classifier that allows

but penalizes errors by introducing a new set of variables
!_, as the measurement of violation of the constraints.

L
1
Minimize : F(w) = §wTw + C’(Z &),

yi(w o(z) +b) > 1-¢,

where C' and k are used to weight the penalizing vari-
ables &;, and ¢(-) is a nonlinear function which maps the
input space into a higher dimensional space. Minimizing
the first term in the above QP is corresponding to min-
imizing the VC dimension of the learning machine and
minimizing the second term in QP controls the empirical
risk. Therefore, in order to solve problem the QP, we
need to construct a set of functions, and implement the
classical risk minimization on the set of functions. Here,
a Lagrangian method is used to solve the above prob-
lem. Then the QP can be written as after introducing L

non-negative Lagrangian multipliers aq, as, ..., ar,
Maximize : L(a),
1L L L
=3 > i =3 aiagyiy;b(a) é(x)"
i=1 i=1 j=1

subject to
L L L
Zaiyi = O;ZO% <C; Zai > 0.
i=1 i=1 i=1

After the optimum Lagrange multipliers «; have been de-
termined, we can compute the optimum coefficient vector
w* and the optimal offset b*. The solution is given by

 sign z yia

where af (z) = a;y; K (2, z;), and K(z,z;) = ¢(z) - ¢(x;).
(K (x,x;) can be simplified by kernel trick [20]).

T) +b%),

2.1 Kernels used in SVM

In this subsection, we present the most used SVM ker-
nels. These functions are usually computed in a high-
dimensional space and have a nonlinear character.

Linear (dot) kernel: The inner product of x; and z; de-
fines the linear (dot) kernel

K($i7$j) = Z; l‘j.

This is a linear classifier, and it should be used as a test of
the nonlinearity in the training set, as well as a reference
for the eventual classification improvement obtained with
nonlinear kernels.
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Polynomial Kernel: The polynomial kernel is a simple
and efficient method for modeling nonlinear relationships:

K(zj,z;)=1+z;-x )d.

Gaussian Radial Basis Function: Radial basis functions
(RBF) are widely used kernels, usually in the Gaussian
form:
||z — pl |2>

202
The parameter o controls the shape of the separating
hyperplane.

K(x,25) = exp(

Ezxponential Radial Basis Function:

||z — pl]

K(zi, ) = exp(T——5—).

Neural (tanh, sigmoid) kernel: The hyperbolic tangent
(tanh) function, with a sigmoid shape, is the most used
transfer function for artificial neural networks. The cor-
responding kernel has the formula:

K(z;,z;) = tanh(ax; - z; + b).

Anova Kernel: A useful function is the anova kernel,
whose shape is controlled by the parameters v and d:

— (Y exp(y(ai — 2;))"

In this paper we have used linear, polynomial, Gaussian
radial basis function and sigmoid kernel.

IIIZ,IIJJ

3 Double Bagging

Drawing a random sample of size N from the empiri-
cal distribution, a bootstrap sample of size N covers ap-
proximately 2/3 of the observations of the learning sam-
ple. The observations, which are not in the bootstrap
sample, are called out-of-bag sample and may be used
for estimating the misclassification error or for improved
class probability estimates. In the double bagging frame-
work proposed by Hothorn and Lausen [12], the out-of-
bag sample is used to perform an additional classifier. In
the setup of Hothorn and Lausen the double-bagging uses
the values of the linear discriminant functions trained on
the out-of-bag sample as additional predictors for bag-
ging classification trees only. The discriminant variables
are computed for the bootstrap sample and a new classi-
fier is constructed using the original variables as well as
the discriminant variables. In the experiments of [12] the
double-bagging was performed as follows:

(1) Draw B random samples LM, ...L(®) with replace-
ment from the training set L and let X denote the
matrix of predictors m( ) .,xs\?) from L®).
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(2) Compute an LDA Z®), using the out-of-bag sample
L~® that gives a matrix W) where the columns are
the coefficients of the linear discriminant functions.

(3) Construct the combined classifier C' using the origi-
nal variables as well as the discriminant variables of the
bootstrap sample (L(®*), X ) (®))

(4) Iterate steps (2) and (3) for all B bootstrap samples.

A new observation =z is classified by, ‘aver-
age ~rule using the predictions of all classifiers
C((z,xZ (b)), (L(b), X (D)W (D))) for b = 1,2,...B. Using
the out-of-bag sample for the LDA, the coefficients are
of the discriminants are estimated by an independent
sample thus it avoiding the overfitted discriminant
variables in the tree growing process. Furthermore it
ensures that the training sample for the LDA is small
and therefore the LDA becomes less stable and in the
typical situation bagging can lead to stabilization. In
double bagging instead of the LDA the other stable
classifiers like, Nearest Neighbor (NN), Linear Logistic
and SVM can be used as the additional classifier models.

4 Double Bagging with SVM

The underlying idea of double bagging is in the spirit
of Breiman [3], “Instead of reducing the dimensional-
ity, the number of possible predictors available to the
classification trees is enlarged and the procedure is sta-
bilized by bootstrap aggregation ” . In this algorithm a
classifier model is constructed for each bootstrap sample
using an additional set of observations, the out-of-bag
sample. The prediction of this classifier is computed for
the observations in the bootstrap sample and is used as
additional predictors for a classification tree. The trees
implicitly select the most informative predictors. The
procedure is repeated sufficiently often and a new ob-
servation is classified by averaging the predictions of the
multiple trees. So we see that performance of the dou-
ble bagging solely depends on how much informative (or
discriminative) are the additional predictors built on the
out-of-bag samples. Keeping this in mind we used the
SVM as the additional classifier model as SVC (support
vector classifier) are maximum margin classifier, i.e., the
support vectors construct the separating hyperplane with
the maximal margin between the classes (for example in
2-class problem), it has an extra advantage regarding au-
tomatic model selection in the sense that both the opti-
mal number and locations of the support vectors are auto-
matically obtained during training [21]. So in the double
bagging the use of SVM will ensure that the additional
predictors (the support vectors) extracted after training
the SVM models on the inbag samples, constructed on
out-of-bag samples, will be the observations with maxi-
mal margin between the classes. Henceforth it will allow
us the decision tree based on the combined training sam-
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Figure 2: Architecture of Double Bagging via SVM

ple (i.e., the bootstrap samples and the support vectors)
to split the data more accurately and therefore will have
an improved performance.

So we see from Figure 2 that in the first phase of training
step SVMs are constructed using the out-of-bag samples,
then to get additional predictors, these SVMs are used in
the bootstrap samples to get the support vectors (SV?).
In the second phase an ensemble of decision tree(DT?)
is built using these SVs and the bootstrap samples (T?).
The SVMs are also used in the test set to enlarge the size
of the test set by the test support vectors (TSV?). Then
these TSVs are included with test set as the additional
predictors.

The SVM has been known to show a good generaliza-
tion performance and is easy to learn exact parameters
for the global optimum [4]. Because of these advantages,
their ensemble may not be considered as a method for
improving the classification performance greatly. How-
ever, since the practical SVM has been implemented us-
ing the approximated algorithms in order to reduce the
computation complexity of time and space, a single SVM
may not learn exact parameters for the global optimum.
Sometimes, the support vectors obtained from the learn-
ing is not sufficient to classify all unknown test examples
completely. So, we cannot guarantee that a single SVM
always provides the global optimal classification perfor-
mance over all test examples. This allows us to use the
SVM in bagging; as in bagging the base classifiers should
be unstable to get better performance. In addition to
this as in the double bagging, in the first phase, the SVCs
built on out-of-bag samples, are smaller in size will have
a rather unstable performance, will result in as the per-
fect unstable predictor for the bagging procedure in the
second phase of the method.

As the success of the double bagging mostly lie on the
classifier model build on the out-of-bag samples, to en-
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sure large out-of-bag samples we used subsamples instead
of the bootstrap samples, i.e., use 50% of each sample
without replacement; we call this the double subbagging.
This modification ensures that the learning samples for
the additional classifier model always contain half of the
observations of the training sample.

As our data consist of three classes we need to modify the
classification strategy of each SVM. Another method is
called the one-against-one method [24]. When the num-
ber of classes is k, this method constructs k(k — 1)/2
SVM classifiers. The ijth SVM is trained from the train-
ing samples where some examples contained in the ith
class have, “ 417, labels and other examples contained
in the jth class have, “—17 labels. The class decision
is performed in the following way. The decision is based
on the “max wins” voting strategy, in which k(k —1)/2
binary SVM classifiers will vote for each class, and the
winner class will be the class having the maximum votes.

5 Data

The data used in the experiments in this paper is a trans-
formed version of the electromagnetic signals measured
by the sensors in the substations, since the stochastic
signals measured cannot be used as they are of too abun-
dant information, they are once transformed into ¢-V-n
(phase resolved PD) patterns. Then generalized normal
distribution fitting [9] is used in order to acquire accu-
rate diagnosis of the faults. We assume three classes for
possible abnormal conditions in the GIS; 1) the metal is
attached on the high voltage side conductor (abridged by
HV from now on), 2) the metal is attached on the earth
side tank (TK), and 3)the metal is freely movable (FR).
The numbers of the observed samples are, 150, 377, 126,
for HV, TK, FR. Here the dataset consist of MLEs for 4
parameter (2 parameters for phase 0-180 and 2 parame-
ters for phase 180-360) of the generalized normal distri-
bution (GND) fitted to the observed PD patterns, and
these are used as feature variables.

6 Experimental Setup

To evaluate the efficacy of the proposed double bag-
ging via SVM ensemble we have performed three dif-
ferent ensemble methods, bagging [2], adaboost.M1 [6]
and logitboost [7], with the double bagging (with subbag-
ging) with LDA, 5-NN and 10-NN classifier models. We
have used CART [1] in bagging, double bagging and ad-
aboost.M1 and decision stump (DS) [13] in adaboost.M1
and logitboost as the base classifier. We used here 2-node
decision stump in case of adaboost.M1 and logitboost and
3-node decision stump in case of adaboost.M1. Since DS
is more efficient as a weak classifier to be used in boosting
algorithms, we used it in the experiments. As there are
three classes in the data set, we used here 3-node DS and
2-node DS. The results are shown in Table 1. In double
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bagging with SVM we have used four kernels (as stated in
section 2.1) linear, polynomial, radial basis function and
sigmoid. The main idea behind this is to check which ker-
nel produces better diagnosis results. In the experiments
we have split the dataset into two independent parts, one
for training, the training set (50% of the dataset) and
the test set (remaining 50% of the data). We perform
this splitting 5, 10, 25 and 50 times in order to avoid the
dependence on the splitting. The ensemble size in case of
bagging and double bagging is B=50 and 100; in case of
adaboost.M1 and logitboost it is M = 25, 50 and 100. We
report here only the better performing ensembles. The
notations used in the paper for the classifiers:

CART: Single CART,

BCART: Bagged CART,

DBLDA: Double bagging with LDA

DB5NN: Double bagging with 5-NN

DBI10NN: Double bagging with 10-NN

DSBLDA: Double subbagging with LDA

DSB5NN: Double subbagging with 5-NN
DSB10NN: Double subbagging with 10-NN
DBLINSV: Double bagging with linear kernel SVM

DBPOLYSV: Double bagging with polynomial kernel
SVM

DBRBFSV: Double bagging with RBF kernel SVM
DBSIGSV: Double bagging with sigmoid kernel SVM
DSBLINSV: Double subbagging with linear kernel SVM

DSBPOLYSV: Double subbagging with polynomial ker-
nel SVM

DSBRBFSV: Double subbagging with RBF kernel SVM

DSBSIGSV: Double subbagging with sigmoid kernel
SVM

ADACART: Adaboost.M1 CART

ADADS2: Adaboost.M1 Decision Stump with 2-node
ADADS3: Adaboost.M1 Decision Stump with 2-node
LOGITDS: LogitBoosted Decision Stump

7 Results

In this section we present the results of the experiments.
We have reported here the lowest test errors of the clas-
sifiers, with the training error and the corresponding en-
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semble size (B or M) with the number of random parti-
tions (R). The best result is printed in bold. In Table 1 we
have presented the diagnosis results of CART, BCART,
ADACART, ADADS2, ADADS3 and LOGITDS.

In Table 1 we see that the performance of BCART is
(misclassification error 4.5%) better than single CART
and adaboost.M1 and logitboost. We see that 3-node DS
has highest the prediction accuracy among the boosted
algorithms. We see here also that the best results are
occurred with random partitions 5 and 10, while for the
boosted algorithms, nothing can be deduced on the opti-
mum ensemble size (M).

Table 1: Misclassification error of BCART, ADACART,
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Gaussian RBF instead of the exponential RBF and as the
features of this dataset are the fitted parameters of gen-
eralized normal distribution, the kernel function mapped
the features in the best way than the other kernel meth-
ods. We see in this table that all the classifiers instead
of DSBPOLYSV and DSBLINSV produced error nearly
the same or lower than the classifiers in Table 1 and 2.
For these classifiers the better ensemble size can be set
to B = 100 for subsampled ensembles and B = 50 for
bootstrapped ensembles.

Table 3: Misclassification error of double bagging (and
subbagging) with LIN-SVM, POLY-SVM, RBF-SVM
and SIGMA-SVM.

ADADS2, ADADS3 and LOGITDS. data _ GND fitted _
classifiers train error test error condition

data GND fitted DBLINSV 0.000000 0.03792 B=50, R =10
classifiers train error test error condition DBPOLYSV 0.000000 0.034250 B=100, R =5
CART 0.061773 0.087461 DBRBFSV 0.000000 0.03211 B=50, R =10
BCART 0.00000 0.04587 B=50, R =5 DSIGMSV 0.00000 0.03795 B=100, R =5
ADACART  0.015337 0.051988  M=100, R =10 DSBLINSV 0.00721 0.04220 B=100, R =10
ADADS?2 0.068712 0.097248 M=50, R =10 DSBPOLYSV 0.00521 0.03852 B=100, R =5
ADADS3 0.012577 0.047095 M=100, R =5 DSBRBEFSV 0.00243 0.02935 B=100, R =10
LOGITDS 0.044192 0.071976 M=25, R =5 DSIGMSV 0.002147 0.03552 B=100, R =5

In Table 2 we have presented the results of DB5NN,
DB10NN, DBLDA, DSB5NN, DSB10NN and DSBLDA.
Here we see that DBLDA has the highest accuracy than
the other classifier (accuracy 96.23% ); though DB5NN
has 96.21% accuracy. We see here that the accuracy has
increased (or misclassification error is decreased) than the
best result of Table 1 which was acquired by BCART (ac-
curacy 95.5% ). For the number of partitions (R), we can
say that for these classifiers the optimum values is R =
50. Unlike Table 1, we can say that for these classifiers
the better performing ensemble size is B = 100. We also
see that with the introduction of subsamples (double sub-
bagging) the accuracy is increased for double subbagging
with 5-NN and 10-NN.

Table 2: Misclassification error of double bagging (and
subbagging) with LDA, 5-NN and 10-NN Data GND fit-
ted Data.

data GND fitted
classifiers train error test error condition
DB5NN 0.000000 0.039083 B=100, R =50
DB10NN 0.000000 0.045872 B=100, R =50
DBLDA 0.000000 0.037676 B=100, R =50
DSB5NN 0.002147 0.03792 B=100, R =25
DSB10NN 0.003436 0.043425 B=100, R =50
DSBLDA 0.001104 0.04159 B=100, R =50

In Table 3 we have presented the results of the double
bagging (and subbagging) via the SVM. We see here that
the better performing SVM for this data is the RBF, as
the DBRBF and DSBRBF have the lowest misclassifi-
cation error (0.03211, 0.02935) among all the classifiers
here. The main reason could be for the success of the
RBF kernel to perform very well is that, we used the
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8 Conclusions

CART searches for partitions in the multivariate sam-
ples space, which may be seen as higher-order interac-
tions or homogeneous subgroups defined by some combi-
nation binary splits of the predictors. On the contrary
the SVC construct the optimum separating hyperplane
which maximize the margin between the classes (in bi-
nary classification). To build an ensemble of classifier
with better generalization performance we combine these
two methods.

A new SVM ensemble method has been proposed in this
study, being a variant of another ensemble method named
double bagging, where the SVM is used to construct addi-
tional classifier models using an independent sample than
the training sample (the out-of-bag sample) to enhance
the generalization performance of the ensemble method.
Then these additional predictors are combined with the
CART to build the ensemble.

The new method is used to detect the defects in the insu-
lation system in order to model a better diagnosis system
for the electric power apparatus. The proposed method
outperformed other ensemble methods such as bagging,
adaboost.M1, logitboost and double bagging with LDA
and k-NN (k =5 and 10), in the experiments.
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