
 

 

 

  

Abstract—With new services provided by airlines and travel 

agencies passengers gained more flexibility, but also their 

visibility for airports and airlines was decreased. We describe 

the profiling component of a movement forecast system to 

increase passenger transparency. Therefore we present three 

approaches to learning classifiers and how they can be used for 

passenger classification. It is shown how the choice of attributes 

considered in classification influences classifier performance. 

This is used as a comparison criterion for learning algorithms. 

 
Index Terms—accuracy estimation, comparing classifiers, 

feature subset selection, passenger classification 

 

I. INTRODUCTION 

  The constantly increasing number of air traffic passengers 

over the last years requires either the expansion of existing 

infrastructures like terminal buildings or the construction of 

new airports.  

Modern terminal buildings can be designed with a layout 

that allows different streams of passengers being separated 

from each other in compliance with regulations for passenger 

flows like domestic, Schengen, international, arriving, 

departure, or transit. However, existing terminals are 

restricted in their infrastructure and have to find a possible 

integration of regulations and control for the passenger flows. 

In addition, passengers get lost, and suffer from raised stress 

levels. They might cause the delay of flights due to different  

passenger handling philosophies – from past time periods – as 

well as regulation by authorities varying from country to 

country. 

Airlines and travel agencies continuously improve their 

extensive services to manage and simplify the passenger’s 

travel with respect to flexibility. For example, passengers can 

check in at home to avoid long queuing lines at the airport – if 

they travel without check-in luggage (common for domestic 

or short range business traveler). Unfortunately, these 

passengers are not visible for the airlines until the moment 

where they pass the departure gate. Note that passenger pass 

through several security checks and border controls without 

any notification to the airlines. 

In this publication, we discuss some aspects of the 
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methodology for a system to support airlines and airports with 

respect to the transparency of passengers, i.e. to detect late- or 

no-show passengers as early as possible. 

II. SYSTEM OVERVIEW 

We developed an airport movement forecast system to 

detect late- or no-show passengers in an early stage and to 

predict the routes of passengers – based on their 

characteristics – already being present at the airport; with 

calculations being done in or close to real-time. In addition, 

the system can provide optimized routes for the single 

passenger to guide him smoothly and without stress 

throughout the terminal. That is, passengers can ask for 

guidance to so-called Points of Interests (POI) and the system 

will determine the (best) route in accordance to feasibility 

checks. These checks include estimations if the passenger can 

visit his POIs and still arrive at the gate in time. Furthermore, 

the system can determine if the POI is out of scope for the 

passenger, e.g. a domestic traveler cannot access the duty free 

area. There are other minor checks to assure plausible results 

of the system but these are not further discussed in this paper. 

For the system a modular approach is used to provide 

flexibility for different operating systems and hardware 

architectures, or a later system optimization being described 

in Section VII. The modular architecture also supports 

extensibility, scalability, and refactoring of modules to 

prevent large or unstructured systems.                      

All other components are linked to a centralized database 

system. The database stores third party data like up-to-date 

passenger data from airlines, travel agencies, and tracking 

data from the airport and ground handlers. Other components 

of the overall system are modules dealing with, e.g., 

communication, calculation, or classification. 

In the current development stage, the route calculation 

module cover the complete route prediction calculation, see 

[1]. It was planned from the beginning that this is an 

intermediate step as the prediction of reliable movement 

information for each passenger had to be improved using 

more sophisticated algorithms. Nevertheless, the algorithms 

were chosen in a way that they can later be modified by 

another system component. 

In this paper we introduce passenger classifier, which are 

used for calculations to forecast the routes according to the 

specific characteristics of individual passengers.  

III. SYSTEM IN- AND OUTPUT 

The prediction of routes requires a certain set of passenger 

attributes that are obtained from third party applications. The 

results of our calculations can be redistributed to third party 
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applications like airline systems to show the passengers’ 

status per flight or airport to identify bottlenecks on a short 

term basis, which are not covered by long term resource 

planning systems [2]. And of course the passengers can get 

the latest flight information, e.g. gate changes or delays. 

A. Input parameters 

To predict the route of a passenger the actual position 

needs to be known. Therefore, the airport terminal is divided 

into zones to allow localization methods to report the position 

to our system. Using variable zones makes the whole 

installation flexible and easily adaptable to the requirements 

of different airports. Even though the zone size does not have 

to be limited for the system, several drawbacks are related to 

the actual zone sizes. In case of very large zones, the 

prediction of the passenger’s position might not be precise, 

whereas small zones increase the problem size exponentially 

and require additional filters to handle irrational passenger 

movements. Note that the latter reason also explains why no 

movement vector is required as input, but only the unique 

identifier of the zone. 

Legacy airport systems provide flight related data like 

departure gate, estimated departure time, possible gate 

changes, and the flight identifier (also known as flight 

number).   

Finally, individual data of the passenger is used to link the 

passenger to the right passenger category. These categories 

can concern age, gender, movement abilities with respect to, 

e.g., stairs as well as further optional parameters like 

requested guidance, airline bonus programs, or profession. 

These optional parameters can be widely extended whereas 

the classifier should not rely on them and rather work with a 

minimum set. In case of requested guidance, the chosen POIs 

are additional parameters to the system. 

The privacy of the passenger is mandatory – and even 

enforced by national laws – so that names or contact details 

are not used for the calculations, independent of the fact that 

all additional information about the passenger could improve 

the output quality of the system. 

In this paper, we consider the layout of the airport to be 

static and, therefore, it is not used as an input parameter.  

Nevertheless, the system could handle dynamic layouts, 

which occur, e.g., in case of areas being blocked due to 

cleaning, special events, or security problems. 

B. Output parameters 

The overall system can provide a large variety of data and 

can be used to monitor passenger flows in a live environment, 

calculate bottlenecks online – e.g. at security check points or 

border controls – identify crowded airport zones, and 

distribute the load in the zones more equally in case of guided 

passengers. The system provides functionality to calculate the 

time that a passenger needs to reach the gate under all present 

constraints including optional intermediate POIs. The system 

also provides detailed route information to the passenger. 

Depending on the passenger’s guidance settings the route is a 

forecast (for non-guided person) or an optimal route taking 

the environmental conditions of the airport into consideration 

(for guided person). 

Stakeholders like airlines and airports are more interested 

in the condition of each single passenger. For example, this 

can indicate if a passenger has still enough time to reach the 

gate or if someone needs help, or is even going to miss the 

flight. The advantage of the system is that it can recognize 

these situations long before even the boarding has begun e.g. 

due to large queues at border controls or limited movement 

capabilities. Furthermore, the system gives an indication 

about what causes the possible delay of the passenger, so that 

the personnel can act appropriately. 

IV. CLASSIFICATION CONSTRAINTS 

A. General Constraints 

The main purpose of the system is the forecast of a more 

precise movement route and time for each passenger to reduce 

the uncertainty of late arrival, which are reasons for flight 

delays. With the path calculation from [1] and its flexible 

design, the next step was the investigation of the possibilities, 

to categorize passengers according to their specific attributes 

listed in Section III. Some of the parameters had to be derived 

from non-personal data e.g. the departure time or waiting 

times at the airport. Nevertheless, the number of attributes per 

passenger is restricted, mainly for privacy reasons. 

Basically, the classification module should take the 

available data from the data base and link the passenger with a 

class of behavior attributes to be used in the path calculation. 

A more sophisticated classification method results in a more 

reliable forecast for the stakeholders. That is, the estimated 

walking time of each passenger including the preferred POIs 

on the route; this could be either shops, restaurants, or other 

configurations.  

The classifiers are constrained by this limited data as well 

as the uncertain data basis during the training process of the 

system. Especially, if we intend to allow installation of the 

system at every airport worldwide without conducting long 

surveys to build up the data basis. Furthermore, we assume 

that the behavior of the people is changing periodically 

throughout the seasons of the year. Section V outlines 

approaches how the used classification methods cope with 

these constrains automatically. 

B. Training Constraints 

Training datasets – where passenger data is being linked to 

specific target classes – are needed for the learning process of 

classifiers. The class allocation can only be done in a reliable 

manner when the passenger is surveyed throughout his time in 

the airport terminal. This can be achieved e.g. by a tracking 

system. The tracking data contains the passenger movements 

and describes the chosen routes of each passenger through the 

terminal tagged with time stamps to estimate walking times. 

The classification is done in two steps. First, the walking 

speed is categorized by taking the deviation of the surveyed 

speed and an assumed normal walking speed of about 1,34 

m/s [3]. Fig. 1 shows the five classification categories 

(classes) upon an assumed standard walking time – using the 

normal walking speed – of 30 minutes from A to B. The 

interval width is derived from the standard time interval used 

to define the classes. Passengers can be mapped to one of 

these classes, e.g. passengers that need between 28 and 32 

minutes are clustered into the class normal.  Respectively, the 
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classification task is to map unseen passengers to the 

corresponding classes shown in Fig. 1. 

 

 
Fig. 1 Classes for different walking speed 

 

The second step is the classification of the passengers’ 

preferred routes with respect to the characteristics of the 

visited nodes in the terminal zone network. Here, we have to 

distinguish the individual preferences of passengers’ 

preferences – that is the weight towards a specific POI-class – 

to establish the classes for the routes: Some prefer to visit a 

restaurant while others use their time for last minute shopping 

in duty free stores. Note that the exact number of classes 

depends on the airport infrastructure and the options 

passengers can choose from. 

The classifier for the routes is given by a graph 

representation for the airport layout [1].  In this graph, which 

is also used for the route determination, the destination of the 

directed edges is equivalent to the corresponding POI-classes 

of the nodes; see also Fig. 2. Black represents the POI-class 

shop and grey the POI-class restaurant while the other nodes  

in this scenario have no specific attributes. All edges towards 

one node have the same POI-class and color, respectively. In 

Fig. 2, we assume that node A represents the security 

checkpoint and node J the departure gate. 

 

 
Fig. 2 Classes of POI’s and in the airport graph 

 

To classify a passenger, its route data is mapped onto the 

graph. The node type that is visited most on the route from the 

border security (A) to the gate (J) represents the POI-class for 

the passenger.  

 

Table I: Path’ along preferred POI’s 

Passenger Observed path Preference 

1 A-C-F-I-J Shops 

2 A-C-D-G-H-J Restaurants 

3 A-D-E-H-J No preference 

 

Table I shows three examples with different preferences of 

surveyed passengers. The first one chose a path from the 

border security (A) to the departure gate (J) passing through 

one restaurant node (C) and two shop nodes (F, I), so the 

passenger is classified in the POI-class shop. The second 

passenger has two restaurants (C, G), one shop (D) and one 

unspecified (H) on the route and belongs therefore to the 

POI-class restaurant. The third passenger shows no 

preferences as the route is going mainly through unspecified 

nodes. The preference is determined for all passengers. 

V. PASSENGER CLASSIFIER 

The previous section described how the training data is 

used to determine the classes for walking speed as well as 

preferred route (POI-classes). Next, we apply these 

information to new passengers to acquire their POI-class,  

which is then added to the attributes of the passengers and 

used to determine the best walking speed class and, therewith, 

the time required to arrive at the gate.  

In general, learning algorithms can be divided into eager 

and lazy learners [4]. An eager learner needs a model – being 

built earlier from a given set of passengers for whom the 

correct classification is already known – to perform a new 

classification process on unknown data.  

In contrast, a lazy learner only relies on the given dataset in 

order to assess the classification of a previously unknown 

passenger. Therefore, no training has to be performed in 

advance. The nearest neighbor classifier is the only 

representative of the group of lazy learners we tested [7]. 

The initial training process of this classifier might be 

inconvenient if one is installing the system in a new airport, as 

the system cannot be set operationally right from the 

beginning.  

The following list summarizes possible methods and 

describes their (dis-)advantages for the classification module 

of the overall system. 

A. Decision Trees 

The special nature of the operational environment of the 

system implies classifiers, which can be used without 

previous training and allow an immediate adaptation in case 

of specific configurations. One possibility is a decision tree 

with predefined but adaptable rules. Fig. 3 shows a decision 

tree with basic branching rules.  

In the decision tree, each node represents an attribute test, 

while the leaves represent conclusions; in this case they are 

the class labels. Therefore, each path from the root to a leaf 

can be interpreted as a decision rule, e.g. each passenger with 

normal mobility and age between twenty and thirty would be 

classified as FAST. These rules do not cover all attributes of 

the passenger, but only the ones for which we expect a 

significant impact on the decision; e.g. age and mobility. 

Afterwards, the scale is increased by applying further rules. 

Note that rules cannot be reduced. 

Every classified passenger is also stored in the training 

database with the corresponding attributes and classification. 

When the passenger has left the terminal – and therewith left   

the system – his final and true class is determined. Every new 

passenger dataset is used to improve the accuracy of the 

classifiers, which is verified periodically. If the accuracy 
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Fig. 3 A simple decision tree 

 

drops below a predefined threshold, the classifier is adapted 

with respect to the collected passenger data as follows: 

1. First, the classes linked to the leaves of the tree are 

altered. For each decision rule, the subset of the 

training dataset – which fulfills this rule – is 

determined. All objects of the subset have been 

allocated to the same class by the classifier and, e.g., 

contain all passengers being of normal mobility and of 

age between twenty and thirty years. According to the 

decision tree in Fig. 3, all passengers in this subset 

would be classified as FAST.  Next, the current target 

class distribution is calculated. If the results indicate a 

deviation of the major subset class from the predicted 

one, e.g. the majority of passengers in the subset are 

observed being SLOW instead of FAST. The class 

allocation of the leaf is changed to the true class 

dominating the subset. 

2. Afterwards, the tree is expanded similar to the method 

described in [5]. This is done if a certain amount of 

objects in a subset are misallocated and a change of the 

class allocation of the leaf does not result in a better 

accuracy. A rule based classification method is used 

on the subset to identify new rules to describe the 

subset. For example, new rules can split a subset where 

passengers having a frequent flyer status belong to 

class FAST, while the others are observed as being 

SLOW. The tree is expanded for this leaf applying the 

new rules, i.e. adding an attribute test that separates 

passengers with and without a frequent flyer status. 

Two leaves with corresponding class labels are added 

to the new tree node.  

Instead of expanding the tree step by step, another 

approach uses a full spanning tree with all possible rules 

based on the given attributes. As before links between the 

leaves and the classes are based on given data. 

Under the assumption that the prerequisites are the same 

the classification results of both approaches are the same. 

Also the classification modifications follow the same 

procedure, but only up to the first step of a new leaf allocation. 

Despite the advantage that an operational classifier is 

available where the learning is done while new passengers are 

classified, decision trees bear the disadvantage that changes in 

the passengers’ behavior causes trees to become obsolete. A 

new model has to be built from the beginning. This is 

especially the case with the incremental tree, as an expansion 

of certain branches of the tree cannot be undone. Although in 

the full tree approach the model could be adapted to changes 

in the passengers’ behavior, this would be more time 

consuming than building a new incremental tree, where every 

leaf of the fully expanded tree needs to be examined. 

B. Neural Network 

In analogy to the human brain, a neural network consists of 

interconnected simple neurons (nodes), generally structured 

in three layers (input, hidden, output). The neurons use 

activation functions that calculate the input of all (connected) 

neurons from the previous layer to an output value for the next 

layer. The activation function is often based on a threshold 

like the delta function or the sigmoid. To derive arguments for 

its activation function from it, a linear combination of the 

inputs of a neuron’s predecessors is formed using certain 

weights. In this paper, we assume that the layers are fully 

linked: every node from one layer is linked to all nodes of the 

following layer. The weights of the links are initialized with 

random real numbers in the interval [0, 1]. 

A network consists of an input layer, which is provided 

with a vector representation of the object to classify, a certain 

number of hidden layers and an output layer with one unit for 

each possible class [6]. The passenger classification using 

neural networks requires an encoding as a vector x
r

with the 

passengers attributes being mapped to the components xi of 

this vector. The activation of the nodes in the input layer is 

determined by the values of the attributes, whereas we have to 

distinguish the type of the attributes. In case of interval scaled 

attributes, the xi is set to the respective value of the attribute. 

For a discrete attribute ak with n possible values (aki, i=0,…, 

n-1), a segment xl to xm , m-l = n of the vector x
r

is used to 

encode the current value by setting xl+i to 1 and all others in 

this segment to 0. Note that the values of the attribute need to 

be serialized beforehand. 

The number of nodes in the output layer of the network 

equals the number of different classes and is encoded similar 

to input layer. Therefore, the vector for the classification of 

passengers from the training set is encoded according to 

equation (1): 

{ } { }n
n

i
i

C
oooo 0,1,1,1,0

1

∈=∀∈ ∑
=

rrr
        (1) 

The network topology, e.g. the number of hidden layers and 

the number of nodes per hidden layer needs to be determined 

by experiments. The required training to adapt the random 

weights for the wanted behavior is done by a backpropagation 

learning algorithm [6, 8].  

In each iteration, all passengers of the training dataset are 

presented to the network by activating the nodes of the input 

layer according to the described encoding. The calculated 

result in the output layer is compared with the anticipated 

classification and the weights of the links are adjusted with 

respect to decrease the error in the output. In addition, the 

mean square error is calculated for all outputs after each 

iteration. 

Fig. 4 illustrates the development of the mean squared error 

over 800 iterations. The black curve shows a typical behavior. 

The error drops rapidly at the beginning and later converges 

asymptotically to a value of 0,086. The grey curve shows the 

mean squared error using a validation subset, where one half 

of the training dataset is used for the learning process 
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(changing the weights) while the other half is used to 

determine the classification error after each iteration (not 

changing the weights). As expected, the error drops fast at the 

beginning, but then increases again after approximately 80 

iterations. At this point the training leads to better results on 

the training dataset but the network looses the ability of 

classifying new objects correctly. This problem is commonly 

known and shows the successful memorization of the training 

dataset [6, 8]. 
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Fig. 4 Development of the mean squared error in the neural 

network over 800 iterations 

 

The validation with the second half of the dataset is a good 

indicator for a stopping criterion of the backpropagation 

algorithm. The training can be aborted as soon as the error of 

the validation subset increases again. However, other 

stopping criteria like a maximum number of iteration are 

needed as the memorization phenomenon is not always 

occurring. 

Presenting previously unknown passengers to the neural 

network results in a specific activation in the output layer, 

where the highest activation indicates the class membership.  

With the standardization of the activation values in the 

interval [0,1], a probability based interpretation of the 

belonging class is possible.  

If the passengers’ behavior changes, the neural network can 

either be initiated with random weights and go through 

another full training session, or it is trained for a certain 

number of iterations with the modified training set.  The latter 

approach can incorporate previous memorizations to reduce 

the overall learning time, whereas this depends also on the 

severity of the changes. 

C. Nearest Neighbor 

The nearest neighbor classifier is based on the distances in 

between all passengers of the training dataset and determines 

so-called neighborhoods or clusters for similar passengers. 

The distance calculation between two objects follows the 

approach by [7]. Distances between passengers are computed 

by summing up attribute-specific distances and dividing the 

sum by the total number of attributes. As the range of attribute 

values varies, distances need to be standardized to be 

comparable. For example, age ranges from 2 to 80 years, 

while waiting time ranges from 30 to 150 minutes. Therefore, 

the difference between two interval scaled attribute values is 

divided by the difference between the attributes largest and 

smallest occurring value. These values are determined during 

an initialization phase, which substitutes an eager learner’s 

training phase. For distance computation in an ordinal 

dimension like time of day, attribute values are ranked and 

mapped to integer values. In the given example, MORNING is 

mapped to the least, NIGHT to the highest value. Distances 

are computed and standardized the same way as for interval 

scaled attributes. For categorical attributes the distance is 

binary: For example, if two passengers are of different 

mobility, the distance equals 1 while it equals zero if their 

mobility is the same. 

The only parameter for this classifier is the size k of the 

neighborhood. With n elements ( )
kj cx ,

r
,  j=1, …, n; k=1, …, 

|C| in the training dataset t ⊂ ( Ω × C), all 

distances ( ) njxxd
ji

,,1,, K
rr

= are to be determined for the 

classification of the unknown passenger
ix
r

.The class for each 

cluster is determined by the class that has the maximum 

number of passengers in the neighborhood [7]. 

In a production environment the nearest neighbor can be 

easily adapted to changes in the passengers’ behavior by 

replacing the dataset from it, which is used to select the 

nearest neighbors. 

VI. VALIDATION OF CLASSIFIER RESULTS 

Next, we perform benchmarks to compare the quality of the 

classifiers with respect to our intended scenarios. A common 

criterion is the classification accuracy, which is the number of 

correctly classified passengers – using a dataset with known 

class memberships – divided by the total number of 

passengers [9]. The intuitive approach bares disadvantages as 

the misclassifications are weighted equally, which might not 

be appropriate in real-world applications [9]. Therefore, we 

have planned to include cost of misclassification and further 

benchmarking measures like ROC analysis in our ongoing 

research.  

In our benchmarking experiments, we used datasets with 

varying attributes and correlations between passengers. Table 

II shows the datasets generated for testing. For interval scaled 

attributes the mean value is given while the mode is shown for 

categorical attributes. For them, the number in parentheses 

shows the number of occurrences of the attributes. 

A. Test data generation 

In the current stage of the project, we do not have enough 

data to perform extensive benchmarks. We implemented a 

generator for datasets based on distributions from a passenger 

survey conducted by the British Civil Aviation Authority in 

2006 [10].  

Since information about the passengers’ real class 

memberships in that dataset are determined using only the 

tracking data, we decided to use only the distribution of the 

data and apply classification rules similar to the ones we used 

for defining the classes above. For example, older passengers 

walk slower than younger ones. In this way, we generate 

datasets with features that are ideal for the classification task 

as they can easily be identified by the classifiers during the 

learning process. 
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Table II Test Datasets 

Mean/Mode  
Attribute 

Dataset 1 Dataset 2 Dataset 3 

Age Mean(40,5); Min(2); Max(79) Mean(40,8);Min(2);Max(80) Mean(42,15); Min(2); Max(80) 

Frequentflyerstatus NO(792); YES(208) NO(792); YES(208) NO(581); YES(419) 

Gender MALE(585); FEMALE(415) MALE(518); FEMALE(482) MALE(534); FEMALE(466) 

Mobility #1(704); #2(295); #3(37) #1(810); #2(153); #3(37) #1(608); #2(202); #3(190) 

Paxstatus #1(320); #2(325); #3(355) #1(445); #2(449); #3(106) #1(443); #2(443); #3(134) 

Profession (three 

highest out of ten) 
#9(254); #8(208); #7(150) #8(261); #9(186); #7(164) #9(254); #8(208); #7(170) 

Time of day 5 values equally distributed 

Waitingtime 
Mean(90,785); Min(31); 

Max(153) 

Mean(85,991); Min(11); 

Max(163) 

Mean(81,163); Min(-9); 

Max(174) 

 
This generated data follows simple (synthetic) rules, which 

are not found in real-world applications. Therefore, we add 

different noises – kind and degree – to the datasets to disguise 

the true classification and have passengers that do not follow 

the predefined rules.  

B. Validation procedures 

The classification task estimates the conditional probability 

of a passenger belonging to a certain class given the available 

data. As the real probability distribution is unknown, the 

accuracy – the difference towards the true distribution – can 

only be estimated. There are different methods for accuracy 

estimation. They can be compared in terms of their bias as 

well as their variance [9]. To find a suitable method we 

compared cross validation and the bootstrap method [11]. 

Fig. 5 illustrates the relation of sample data, training data and 

test data generation to the large population data for the 

bootstrap method.  
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Fig. 5 Estimating accuracy with bootstrap 

The real accuracy was estimated by the method leave one out 

as its estimate has a very low bias [12]. Unfortunately, it has a 

high variance and computation cost as one classifier has to be 

built and evaluated for each object in the training set. 

 

Table III Comparison of accuracy estimation methods on 

basis of a nearest neighbor classifier 

Estimation method Dataset Mean Variance 

Leave one out 1 46,20% - 

Leave one out 2 51,50% - 

Leave one out 3 53,10% - 

Bootstrap (10) 1 35,00% 0,0008 

Bootstrap(10) 2 32,50% 0,0007 

Bootstrap(10) 3 37,00% 0,0015 

Cross Validation (10) 1 24,89% 0,0007 

Cross Validation (10) 2 25,23% 0,0007 

Cross Validation(10) 3 20,88% 0,0009 

 

Table III shows the accuracy obtained by different 

estimation methods for the nearest neighbor classifier, which 

was trained on datasets shown in Table II. Compared to the 

accuracy calculated by leave one out, the bootstrap seems to 

be the better estimate for the accuracy of classifiers. 

C. Feature Subset Selection 

An important factor influencing performance of classifiers 

is the choice of attributes to be included in the classification 

process [13, 14]. If a passenger is described by a certain set of 

attributes – the feature set – it can be projected to a specific 

feature subset. This is done by eliminating the features not 

being used for classification from the vector representing the 

passenger. If passengers are described by a feature set 

A={Age, Mobility, WaitingTime} with G={Age, 

WaitingTime} being a subset of A, a vector x
r

with one 

component for each attribute in A can be projected to 
Gx
r

 with 

one component for each attribute in G. This means that only 

attributes in the subset are taken into account for the classifier 

training and the later classification. Depending on the 

correlation between the attributes the performance of a 

classifier can vary substantially with different feature subsets. 

The data indicates that the selection of a feature subset can 

significantly improve the accuracy and needs to be considered 
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for the training of the classifier. 

Feature subset selection can be seen as a search problem 

[13, 14]. Fig. 6 shows a possible search space with three 

attributes. The edges describe the transformation from one 

subset to another by adding or removing one feature. 

 

 
Fig. 6 Feature subset selection a as search problem [13] 

 

Heuristics to solve the problem can either apply an ADD- 

or DROP-strategy. For the first one, we start with an empty set 

and add the feature with the best improvement of the solution 

(so-called greedy approach). For the DROP-strategy, features 

are dropped with the least reduction. The measure for 

improvement or reduction, respectively, has to be chosen 

beforehand. 

Following the filter approach, the measure would only 

depend on the training data, like Shannon’s entropy [13]. 

Another possibility, introduced by Kohavi as the wrapper 

approach, is to train and test a classifier with the data 

projections related to each investigated subset [15]. 

As an alternative, more sophisticated heuristics like. 

genetic algorithms could be used to iterate over the search 

space [13]. 

D. Classifier accuracy evaluation 

Table IV shows the accuracy for three selected classifiers 

being trained and tested on our three datasets.  

 

Table IV: Accuracy estimation for different classifiers 

Classifier Dataset 1 Dataset 2 Dataset 3 

Nearest Neighbor 47,02% 49,33% 53,72% 

Neural Network 20,33% 20,78% 15,32% 

Full Tree 51,92% 53,48% 49,98% 

 

The accuracies were obtained by bootstrap with 10 

repetitions. Each classifier was trained and tested using the 

full attribute set. The topology of the neural network was 

determined experimentally before. The full tree classifier 

relies on a set of rules, which are not implicit in the datasets 

used for testing. Therefore, the values given here are a worst 

case scenario. The data shows that the neural network is far 

less accurate than the nearest neighbour classifier and the full 

tree. However, as the accuracy of the two classifiers is quite 

similar, a decision in favour of one of them needs to be based 

on other factors as well.  

VII. CONCLUSION 

We have lined out different methods for passenger 

classification and described how they could be applied in an 

airport terminal context. We showed that classifier accuracy 

estimated by means of the bootstrap is a reasonable method to 

compare the performance of different classifiers. Due to the 

drawbacks in the use of accuracy, we plan to investigate 

different measures like the area under the ROC-curve [16]. 

As we have seen, the nearest neighbor and the full tree 

classifier are of competitive accuracy. On the one hand, the 

estimations for the full tree are rather pessimistic, while on the 

other hand the nearest neighbor classifier is expected to 

perform better if a better feature subset is used. The full tree is 

independent of the selected feature subset but takes a longer 

time for training than the nearest neighbor classifier. In 

general, both methods are applicable to the task and have 

certain advantages and disadvantages. Nevertheless, there is a 

tendency towards the nearest neighbor classifier. We also 

pointed out that feature subset selection is an important issue 

in the area of classification. This is especially the case when 

using the nearest neighbor classifier. The present choice of a 

greedy forward selection procedure has to be reconsidered 

under the given circumstances.  

VIII. FUTURE WORK 

This section should give a short inside what we plan in the 

next steps to improve the overall forecast system including the 

route calculation and classifiers. 

It is envisioned to test the passenger classification as well 

as the route calculation for the individual passenger on 

different hardware architectures to boost the performance. 

Reasons for that are mainly based in the real-time human 

interaction capabilities of the system, e.g. if a passenger 

requests guidance from a kiosk or mobile application the 

response of the system has to be as fast as possible. 

The results of other research work in this area look very 

promising to gain a high performance boost, e.g. with the 

nearest neighbor implementation and shortest path search on a 

graphics board [17, 18]. 

Furthermore, the functionality will be extended to deliver 

more data to third party stakeholders to support their business. 

The interface to other planning and surveillance tools for 

apron or air traffic control will be investigated. 

Preliminary tests of some system functionalities in a closed 

environment are planned for the summer 2009, where an 

airport terminal mock-up will be build in a smaller scale to 

demonstrate the concept in an operating environment [19]. 
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