
 
 

 

  
Abstract—In this paper, we propose a novel recurrent interval 
type-2 fuzzy neural network with asymmetric membership 
functions (RT2FNN-A). The RT2FNN-A uses the interval 
asymmetric type-2 fuzzy sets and it implements the fuzzy logic 
system (FLS) in a five-layer neural network structure. The 
RT2FNN-A is modified from the type-2 fuzzy neural network to 
provide memory elements for capturing the system’s dynamic 
information and has the properties of high approximation 
accuracy and small network structure. Based on the Lyapunov 
theorem and gradient descent method, the convergence of 
RT2FNN-A is guaranteed and the corresponding learning 
algorithm is derived. In addition, the RT2FNN-A is applied in 
the nonlinear channel equalization to show the performance and 
effectiveness of RT2FNN-A system. 
 

Index Terms—type-2 fuzzy logic system, recurrent neural 
network, asymmetric membership functions, channel 
equalization  

I. INTRODUCTION 

In recent years, the fuzzy systems and control are regarded 
as the most widely used application of fuzzy logic system 
[5-9, 22]. Mendel and Karnik developed a complete theory of 
type-2 fuzzy logic systems (T2FLSs) [8, 16, 21-22]. Recently, 
T2FLSs have attracted more attention in many literatures and 
special issues [1, 6, 10-11, 16, 21-22, 24]. 

The major difference being the present of type-2 is their 
antecedent and consequent sets. T2FLSs result in better 
performance than type-1 fuzzy logic systems on the 
applications of function approximation, modeling, and 
control. Besides, neural networks have found numerous 
practical applications, especially in the areas of prediction, 
classification, and control [15]. Based on the advantages of 
T2FLSs and neural networks, the type-2 fuzzy neural 
network (T2FNN) systems are presented to handle the system 
uncertainty and reduce the rule number and computation [1, 
10-11, 22, 24]. Using the asymmetric Gaussian function 
which is a new type of membership function due to excellent 
approximation results it provides. It also provides a 
fuzzy-neural network with higher flexibility to easily 
approach the optimum result more accurately. In the literature 
[9-10, 23], a T2FNN with asymmetric membership functions  
(T2FNN-A) was proposed to improve the system 
performance and obtain better approach ability. 

In recent years, the nonlinear channel equalization using 
intelligent system was discussed [1-2, 17, 19-20]. Literature 
[4] introduced the ionospheric scintillation phenomenon 
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which may cause multi-path problem when signal was 
transmitted. The multi-path problem is similar to nonlinear 
time-varying channel. In [19], there were successful 
application cases in complex channel equalization by using 
self-constructing fuzzy neural network, but a larger fuzzy 
rule number should be used when signal to noise ratio is low. 

 In this paper, we proposed a combining interval type-2 
fuzzy asymmetric membership functions with recurrent 
neural network system, called RT2FNN-A. The proposed 
RT2FNN-A is a modified version of the T2FNN [11-14, 20, 
24] which provides memoried elements to capture system 
dynamic response [15]. The RT2FNN-A system capability 
for temporarily storing information allowed us to extend the 
application domain to include temporal problem. Simulations 
are shown to illustrate the effectiveness of the RT2FNN-A 
system. 

II. INTERVAL TYPE-2 FUZZY NEURAL NETWORK SYSTEMS  
We first introduce the recurrent type-2 neural fuzzy 

inference system with asymmetric fuzzy MFs (RT2FNN-A) 
that was modified and extended from previous results [4, 5, 8, 
12]. The RT2FNN-A uses the interval asymmetric type-2 
fuzzy sets and it implements the FLS in a five-layer neural 
network structure which contains four-layer forward network 
and a feedback layer.  
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Figure 1: Construction of a type-2 AFMF: (a) upper MF (solid line), (b) lower 
MF (solid line), and (c) constructed type-2 AFMF. 

 

A.    Construction of Type-2 Asymmetric Fuzzy Membership 
Functions 

In general, given an system input data set ix , i=1, 2, …, n, 
and the desired output py , p=1, 2, …, m, the jth type-2 fuzzy 
rule has the form 
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Rule j:       IF       x1 is jF1

~  and … xn is j
nF~   

THEN   y1 is jw1
~ and … ym is j

mw~              

where j is the number of rules, j
iF~  represents the linguistic 

term of the antecedent part, j
pw~  represents the real number of 

the consequent part; n and m are the numbers of the input and 
output dimensions, respectively. Besides, the representation 
of jth rule for RT2FNN-A is 
Rule j: IF x1 is jG1

~  and … xn is njG
~

 and gj is F
jG~  THEN y1 is 

 jw1
~ and … ym is j

mw~ ,  g1 is ja1
~ , g2 is ja2

~ , …, and gM is j
Ma~ . 

where ijG~  represents the linguistic term of the antecedent part, 
j
pw~  and j

pa~  represents the interval real number of the 
consequent part; and M is the rule number. Here the fuzzy 
MFs of the antecedent part ijG~  are asymmetric interval 
type-2 fuzzy sets, which represent the different from typical 
Gaussian MFs.  

Here we use the superscripts (l) and (r) to denote the left 
and right curves of a Gaussian MF. The parameters of lower 
and upper MFs are denoted by an underline (_) and bar ( ), 
respectively. Thus, the upper MF is constructed as 
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where )(lm  and )(rm  denote the means of two Gaussian MFs 
satisfying )()( rl mm ≤ , and )( lσ  and )(rσ  denotes the 
deviation (i.e., width) of two Gaussian MFs. Figure 1(a) 
shows the upper type-2 AFMF constructed using )(lm , )(rm , 

)(lσ , and )(rσ . Similarly, the lower asymmetric MF is 
defined as  

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

≤≤

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⋅

=

xmmxr

mxmr

mxmxr

x

r

r

r

rl

l

l

l

F

)(

2

)(

)(

)()(

)(

2

)(

)(

~

for    ,  
2
1exp

for    ,                                     

for    ,  
2
1exp

)(

σ

σ

μ   (2) 

where )()( rl mm ≤  and 15.0 ≤≤ r . The corresponding 

widths of the MFs are )(lσ  and )(rσ . To avoid unreasonable 
MFs, the following constrains are added: 
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Figure 1(b) sketches the lower type-2 AFMF. The 
corresponding constructed type-2 AFMF is shown in Fig. 
1(c). This introduces the properties of uncertain mean and 
variance [14]. Additionally, we can construct other type-2 
asymmetric MFs by tuning the parameters. The 
corresponding tuning algorithm is derived to improve system 
accuracy and approximation ability. 
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Figure 2: Diagram of MISO recurrent type-2 fuzzy neural network with 

AFMFs (RT2FNN-A). 
 

III. STRUCTURE OF RECURRENT TYPE-2 FUZZY NEURAL 
NETWORK WITH ASYMMETRIC MFS (RT2FNN-A) SYSTEM 

The RT2FNN-A is shown in Fig. 2. In the following, we 
use )( l

iO  to denote the ith output of a node in the lth layer. 
 

Layer 1: Input Layer 
For the ith node of layer 1, the net input and output are 

represented as 
    )1()1(

ii xO =                                      (4) 
where )1(

ix  represents the ith input to the jth node. 
 
Layer 2: Membership Layer 

In layer 2,  it is clear that there are two parts in this layer, 
regular nodes and feedback nodes. Their input are )1(

jO  and 
)(kg j . Therefore, for network input ix , the output is 

              [ ] [ ] .)()( )1(
~

)1(
~

)2()2()2( T

iGiG

T

ijijij OOOOO
ijij

μμ==     (5) 

For internal or feedback variable jg , 

   [ ] [ ]TjGjG

TF
j

F
j

F
j kgkgOOO F

j
F
j

))(())(( ~~
)2()2()2( μμ==     (6) 

where the subscript ij indicates the jth term of the ith input 
)1(

iO , where j=1,…, M. The superscript F indicates the 
feedback layer. 
 
Layer 3: Rule Layer 

Using the product t-norm, the firing strength associated 
with the jth rule is 

   )()()( ~~1~
1

⋅∗∗∗=
jF
j

j
n

j GnFF

j xxf μμμ L                   (7) 
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1

⋅∗∗∗= jF
j

j
n

j GnFF
j xxf μμμ L                      (8) 

where )(~ ⋅
jG

μ  and )(~ ⋅
jG

μ  are the lower and upper 

membership grades of )(~ ⋅
G

μ . Therefore, a simple 
PRODUCT operation is used. Then, for the jth input rule 
node 
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where the weights )3(
ijw  are assumed to be unity.  
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Layer 4: Output Layer 

Without loss of generality, the consequent part of interval 
T2FLS is [ ] ,~ T

jjj www =  jj ww ≤ . The vector notations 
T

Mwww ][ 1 L=  and T
Mwww ][ 1 L=  are used for 

clarity. According to the literature [23], we denote the 
maximum and minimum of ∑ =

M

i ii wf
1

 as )4(O and )4(O . 

            ( ) ( ),
1

)3(

1

)3()4( ∑∑
+==

+==
M

Lj
jj

L

j
jjL

T wOwOfwO            (10) 

   ( ) ( )∑∑
+==

+==
M

Rj
jj

R

j
jjR

T wOwOfwO
1

)3(

1

)3()4(               (11) 

where  
[ ] [ ]TMLL

T

MLLL OOOOfffff )3()3(
1
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111 ,,,,,,,,,, LLLL ++

==

(12) 
[ ] [ ]  ,,,,,,,,,, )3()3(

1
)3()3(

111

T

MRR

T

MRRR OOOOfffff LLLL ++ == .  
                                                                                         (13) 
It is obvious that R and L should be calculated first. The 
weights are arranged in order as Mwww L≤≤ 21  and 

Mwww L≤≤ 21 . According to the Karnik-Mendel procedure 
[8, 16, 22], L and R are 
 ( ), minarg )4(

]1,.1[
OL

Mj −∈
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L

    ( ). maxarg )4(
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Mj −∈
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L
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Finally, the crisp output is  
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2
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+
=                                 (15) 

 
Layer 5: Feedback Layer 

This layer contains the context nodes which is used to 
produce the internal or feedback variable jg . Each rule is 
associated with a particular internal variable. Hence, the 
number of the context nodes is equal to the number of rules. 
The same operations (type-reduction and defuzzification) as 
layer 4 are performed here. 
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Finally, the crisp output of this layer is  

[ ].)1()1(
2
1)1()1( )5()5()5( +++=+=+ kOkOkOkg jjjj      (20) 

Note that the delayed value of jg  is fed into layer 2, and it 
acts as an input variable to the precondition part of a rule. 
Each fuzzy rule has the corresponding internal variable jg  
which is used to decide the influence degree of temporal 
history to the current rule. 

 

A. Learning Algorithm for RT2FNN-A System  
The gradient descent method is adopted to derive 

learning algorithm of the RT2FNN-A system. For 
clarification, we consider the single-output system and define 
the error cost function as 

    2)](ˆ)([
2
1)( kykykE d −=                         (21) 

where dy  is the desired output and ŷ  is the RT2FNN-A’s 
output. Using the gradient descent algorithm, the parameters 
updated law is  

⎟⎟
⎠

⎞
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⎛
∂
∂
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k
kEkkkk

W
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in which η  is the learning rate ( 10 ≤< η ). 

][ F
a

FF
w rrWWWWWWW =  are the 

adjustable parameters, where wW  is consequent weights, W  

and FW  are parameters of lower MFs, W  and FW  are 
upper MFs parameters, aW  is parameter in feedback layer, 

and r  and Fr  are the column vectors, i.e., 

 [ ]T
w ww=W                                         (23) 

[ ]T
a aa=W                                                  (24) 

 [ ]Trlrl mm )()()()( σσ=W                       (25) 

 [ ]Trlrl mm )()()()( σσ=W                     (26) 

 [ ]TrFlFrFlFF mm )()()()( σσ=W                (27) 

 [ ]TrFlFrFlFF mm )()()()( σσ=W .            (28) 
 

Considering )()( kkE W∂∂ , we have 
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Thus, (21) can be rewritten as 

 
)(

)(ˆ
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k
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W
WW

∂
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+=+ η                   (30) 

where  ).(ˆ)()( kykyke d −=  The remaining work involves 
finding the corresponding partial derivative with respect to 
each parameter. 

Observing equation (16) and if Lj ≤ , only the term of 

( )∑ =

L

j jj wO
1

)3(  should be considered, and only consider 

( )∑ +=

M

Lj jj wO
1

)3(  if Lj > . Moreover, we consider 

( )∑ =

R

j jj wO
1

)3(  if Rj ≤  in (17), as well as ( )∑ +=

M

Rj jj wO
1

)3(  

where Rj > . Thus, we should notice the values of j, R, and L 
in deriving the update laws.  

In order to avoid unnecessary tuning, we must also 
consider the firing regions of MFs for input variable ix . For 
example, considering an upper MF as shown in Fig. 3, region 
(I)- )(l

iji mx ≤ , only )(l
ijm  and )( l

ijσ  are updated; region (II)- 

i
r

ij xm ≤)( , only )(r
ijm  and )(r

ijσ  must be updated as well. 

Finally, region (III)- )()( r
iji

l
ij mxm << , nothing should be 

done. Therefore, we can tune one side of MF for each training 
pattern. The results of lower MFs are the same as above. 
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Besides, parameter r  must be updated for all three regions. 
Owing the recurrent property, the real time recurrent learning 
algorithm (RTRL) is used [26]. The update rules of 
RT2FNN-A can be derived. Herein, we omit them due to the 
limitation of writing space.  
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Figure 3: Firing regions definition of input variable ix  (upper MF). 

B. Stability Analysis of RT2FNN-A System  
By [3, 15, 23], using the Lyapunov stability approach, 

we have the following convergence theorem. 
Theorem 1: Let ][ raw ηηηηη  be the learning 

rates of the tuning parameters for RT2FNN-A. The 
asymptotic convergence of RT2FNN-A is guaranteed if 
proper learning rates ][ raw ηηηηη  are chosen 
satisfying the following condition. 

 
( ) 2<++++++++ Fr

FF
aarw λλλλλλλλλ           (31) 

Proof: The proof is omitted due to the limitation of writing 
space.  

IV. NONLINEAR CHANNEL EQUALIZATION USING 
RT2FNN-A SYSTEM  

To demonstrate the performance of RT2FNN-A system, 
several simulations regarding signal processing are 
constructed. The RT2FNN-A system is applied to nonlinear 
time-varying channel equalization to overcome the 
multi-path problem when signal is transmitted. 

A. Nonlinear Channel Equalization  
The channel characteristic represents random temporal 

fluctuations by the time-varying amplitude factor. The 
received signal can be described as follows 

)()1(...)1()()(ˆ 21 knpksctsctsctx p ++−++−+=      (32) 
where s(t) is transmitted signal, and )(ˆ tx  denotes the channel 
state; cl, ,2,..., ,1 pl =  are time-varying amplitude factor, and 
p is the channel order. The channel characteristic is similar to 
nonlinear time-varying channel. In order to reduce multi-path 
channel interference, we firstly introduce nonlinear 
time-varying channel equalization in next section. 

The nonlinear channel equalization is a technique used to 
combat some imperfect phenomenon in high-speed data 
transmission over channels [25]. Figure 4 shows the block 
diagram of a communication system that is subject to 
inter-symbol interference (ISI) and additive white Gaussian 
noise (AWGN). The transmitted input symbols )(ks  is 
independent and identically distributed discrete-time random 
processes taking its value {-1, +1}. The signal is sent through 
the channel.  

In real communications, the channel is too dispersive to 
cause interference between successive signal samples 
(inter-symbol interference). It will complicate reliable 
transmission and reception. )(ˆ kx  denotes the output of the 
channel. The channel function can be described as [20] 
 ( ))1(,),1(),()(ˆ +−−= pksksksfkx L                   (33) 

where p  means the channel order. Generally, f  is a 
nonlinear function of past transmitted signals, and the 
channel changes slowly but significantly over time; therefore, 
a nonlinear channel equalizer with adaptation ability is 
needed. Let Tnkxkx(k) )]1(ˆ,),(ˆ[ˆ +−⋅⋅⋅≡x , where )(ˆ kx  is 
called channel state.  

At receiving terminal, the inter-symbol interference and 
nonlinear distortion are introduced by the channel; received 
signals )(kx  are also assumed to be corrupted by a additive 
noise )(kn , that is  

 )()(ˆ)( knkxkx +=                               (34) 
where n(k) is an additive white Gaussian noise (AWGN), and 
is assumed to be zero mean white Gaussian. 
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Figure 4: Block diagram of adaptive equalizer. 

 
The function of the equalizer is to re-construct the 

transmitted signal, )( dks −  (d denotes the decision delay), 
from the observed information sequence, 

)1( , ),( +− pkxkx L  from which greater speed and reality 
can be achieved. Thus, the mathematical representation of 
equalizer is  

))1(,),1(),(()(ˆ +−⋅⋅⋅−=− pkxkxkxdks ψ             (35) 
where }1,1{: −→ℜ pψ . We can say that a correct decision 
by the equalizer if 

)()(ˆ dksdks −=− .                           (36) 
Based on the category of )( dks −  (i.e., 1± ), the channel 
states )(ˆ kx  can be partitioned into two classes [2] 

{ }, 1)(|)(ˆ =−=+ dkskxX                           (37)  
    { } 1)(|)(ˆ −=−=− dkskxX .                       (38) 

The numbers of elements in +X  and −X  are denoted as +
sn  

and −
sn , respectively [2]. The probabilities for 1)( =− dks  

and 1)( −=− dks  are the same, which means, 
2/sss nnn == −+ , where sn  is the total number of channel 

state. Besides, the channel states in +X  and −X  are denoted 
),,1(ˆ ++ = si nix L  and ),,1(ˆ −− = si nix L , respectively. 
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Suppose channel order is 2=p  in the nonlinear channel 
function. For a time-varying channel, the coefficients of the 
channel, , , ,1  ,0  , nici K=  are unknown. The nonlinear 
time-varying channel model is described as [18, 20] 

 )()()1()()( 21 knkHkscksckx +−−+=            (39) 
where 1c  and 2c  are time-varying coefficients, and H(k) is 
Co-Channel Interference, (CCI) is described as 

 ))()(()( 1
1211

−+= zkckczH λ                    (40) 
where )(11 kc  and )(12 kc  are co-channel time-varying 
coefficients. 

The time-varying coefficients, 1c  and 2c , are simulated by 
using a second-order Markov model. It is also called 
second-order Butterworth low-pass filter (LPF) which is 
derived by white Gaussian noise source [18]. In our 
simulations below, we use the function butter, provided by 
the Matlab- Signal Processing Toolbox, to generate a 
second-order low-pass digital Butterworth filter with cutoff 
frequency 0.1. Then the function filter is used to generate a 
colored Gaussian sequence, which is then used as 
time-varying channel coefficients. Note that we center )(1 kc  
around 1 and )(2 kc  around 0.5 as shown in Fig. 5. The input 
to Butterworth filter is a white Gaussian sequence code for 
time-varying coefficients with length of 1000. The Matlab 
codes are [18] 

 
[B, A] = butter(2,0.1)   % B (numerator) and A (denominator) of LPF 

  c1 = 1 + filter(B , A ,  0.5*randn(1,1000)) 
 c2 = 0.5 + filter(B , A ,  0.25*randn(1,1000)) 
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Figure 5: Time-varying channel coefficients. 
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Figure 6: Block diagram of adaptive equalizer using RT2FNN-A 

system. 
 

Herein, we use the RT2FNN-A system to be an adaptive 
equalizer for time-varying channel equalization. As Fig. 6 
shows, we use the RT2FNN-A filter to construct the equalizer 
and take the error to update the parameters of RT2FNN-A 
filter which can achieve the adaptive equalizer. In our 
simulations, we choose the independent input sequence s(k) 
which consists of 2000 symbols. The first 1000 symbols are 
used for training, and the remaining 1000 are used for testing. 
After training, the parameters of the T2FNN, T2FNN-A and 
RT2FNN-A filters are fixed, and then the testing is performed. 
Then, we compare two examples among these three types of 
filters. 

Firstly, we do not consider the CCI, i.e., H(k)=0. We 
assume that the time-varying channel is the form of (39) and 
we choose 4 rules to construct the RT2FNN-A filter. The 
learning rate is chosen to be 0.1, whereas the training epoch is 
50. Figure 7 shows the simulation results (solid-line: 
RT2FNN-A, dashed-line: T2FNN-A, and dotted-line: 
T2FNN). The comparisons of network structure and bit error 
rate (BER) are shown in Table 1. Obviously, the performance 
using our approach is also better than T2FNN-A and T2FNN 
(smaller BER value). 

Next, we consider the time-varying channel with the 
co-channel for CCI [20] 

31
1211 ))()((9.0)( −+⋅= zkckczH                        (41) 

where the nominal values are 1)(11 =kc  and 5.0)(12 =kc . 
The learning rate is set as 0.1, whereas the training epoch is 
50. Figure 8 shows the simulation results (solid-line: 
RT2FNN-A, dashed-line: T2FNN-A, and dotted-line: 
T2FNN). We found that the performance is better than 
T2FNN-A and T2FNN (smaller BER value). We can see that 
our approach results better performance and has advantages 
of fewer adjustable parameters and smaller BER value. 
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Figure 7: Performance comparisons of nonlinear time-varying channel 

without CCI (solid-line: RT2FNN-A, dashed-line: T2FNN-A, and 
dotted-line: T2FNN). 
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Figure 8: Performance comparisons of nonlinear time-varying channel with 

CCI (solid-line: RT2FNN-A, dashed-line: T2FNN-A, and dotted-line: 
T2FNN). 

 
Table 1: Comparison results of network structure, rule number, parameter 

number, and BER for Example 1 (SNR=10 dB). 

BER 
 Network 

structure 
Rule No. 

(M) Parameter No 
Without 

CCI 
With 
CCI

2-30-15-1 15 120 0.1897 0.4704
T2FNN[29] 

2-8-4-1 4 32 0.597 0.798

2-18-9-1 9 108 0.0825 0.1932
T2FNN-A[37] 

2-8-4-1 4 48 0.434 0.601

RT2FNN-A 2-8-4-1 4 100 0.0063 0.017
 

V. CONCLUSION   
In this paper, we propose a recurrent interval type-2 

fuzzy neural network with asymmetric membership functions 
(RT2FNN-A). The novel RT2FNN-A uses the interval 
asymmetric type-2 fuzzy sets implements the FLS in a 
five-layer neural network structure which contains four-layer 
forward network and a feedback layer. According to the 
Lyapunov theorem and gradient descent method, the 
convergence of RT2FNN-A is guaranteed and the 
corresponding learning algorithm is derived. The effect of 
RT2FNN-A has been introduced by several illustration 
examples.  

From the simulation results, a RT2FNN-A equalizer 
over various channel models are presented in this paper. 
Simulation results have been carried out in both real-valued 
and complex-valued nonlinear channels to ensure the 
flexibility of the proposed equalizer. The feedback layer of 
proposed RT2FNN-A makes it have advantages of storing 
past information. Moreover, the RT2FNN-A can use a small 
number of tuning parameters than the feed-forward fuzzy 
neural networks to obtain better performances (smaller BER). 
To reduce the computation complexity, RT2FNN-A is a good 
choice. 
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