

Abstract— Classification is a data mining (machine learning)

technique used to predict group membership for data instances.
In this paper, we present the basic classification techniques.
Several major kinds of classification method including decision
tree induction, Bayesian networks, k-nearest neighbor
classifier, case-based reasoning, genetic algorithm and fuzzy
logic techniques. The goal of this survey is to provide a
comprehensive review of different classification techniques in
data mining.

keywords— Bayesian, classification technique, fuzzy logic

I. INTRODUCTION
 Data mining involves the use of sophisticated data

analysis tools to discover previously unknown, valid patterns
and relationships in large data set. These tools can include
statistical models, mathematical algorithm and machine
learning methods. Consequently, data mining consists of
more than collection and managing data, it also includes
analysis and prediction. Classification technique is capable of
processing a wider variety of data than regression and is
growing in popularity.

There are several applications for Machine Learning (ML),
the most significant of which is data mining. People are often
prone to making mistakes during analyses or, possibly, when
trying to establish relationships between multiple features.
This makes it difficult for them to find solutions to certain
problems. Machine learning can often be successfully
applied to these problems, improving the efficiency of
systems and the designs of machines.

Numerous ML applications involve tasks that can be set up
as supervised. In the present paper, we have concentrated on
the techniques necessary to do this. In particular, this work is
concerned with classification problems in which the output of
instances admits only discrete, unordered values.

Our next section presented Decision Tree Induction.
Section 3 described Bayesian Network where as k-nearest
neighbor classifier described in section 4. Finally, the last
section concludes this work.

2. DECISION TREE INDUCTION
Decision trees are trees that classify instances by sorting them
based on feature values. Each node in a decision tree
represents a feature in an instance to be classified, and each
branch represents a value that the node can assume. Instances
are classified starting at the root node and sorted based on
their feature values. An example of a decision tree for the
training set of Table I.

Thair Nu Phyu is with University of Computer Studies, Pakokku, Myanmar
(Email: Thair54@gmail.com)

Table I. Training set

At1 At2 At3 At4 class
a1 a2 a3 a4 yes
a1 a2 a3 b4 yes
a1 b2 a3 a4 yes
a1 b2 b3 b4 no
a1 c2 a3 a4 yes
a1 c2 a3 b4 no
b1 b2 b3 b4 no
c1 b2 b3 b4 no

Using the decision tree as an example, the instance At1 =

a1, At2 = b2, At3 = a3, At4 = b4∗ would sort to the nodes:
At1, At2, and finally At3, which would classify the instance
as being positive (represented by the values “Yes”). The
problem of constructing optimal binary decision trees is an
NP complete problem and thus theoreticians have searched
for efficient heuristics for constructing near-optimal decision
trees.

The feature that best divides the training data would be the
root node of the tree. There are numerous methods for finding
the feature that best divides the training data such as
information gain (Hunt et al., 1966) and gini index (Breiman
et al., 1984). While myopic measures estimate each attribute
independently, ReliefF algorithm (Kononenko, 1994)
estimates them in the context of other attributes. However, a
majority of studies have concluded that there is no single best
method (Murthy,1998). Comparison of individual methods
may still be important when deciding which metric should be
used in a particular dataset. The same procedure is then
repeated on each partition of the divided data, creating
sub-trees until the training data is divided into subsets of the
same class.

The basic algorithm for decision tree induction is a greedy
algorithm that constructs decision trees in a top-down
recursive divide-and-conquer manner. The algorithm,
summarized as follows.

1. create a node N;
2. if samples are all of the same class, C then
3. return N as a leaf node labeled with the class C;
4. if attribute-list is empty then
5. return N as a leaf node labeled with the most common

class in samples;
6. select test-attribute, the attribute among attribute-list

with the highest information gain;
7. label node N with test-attribute;
8. for each known value ai of test-attribute
9. grow a branch from node N for the condition

test-attribute= ai;

Survey of Classification Techniques in Data
Mining
Thair Nu Phyu

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

10. let si be the set of samples for which test-attribute= ai;
11. if si is empty then
12. attach a leaf labeled with the most common class in

samples;
13. else attach the node returned by

Generate_decision_tree(si,attribute-list_test-attribute)

Fig.1 Algorithm for a decision tree

A decision tree, or any learned hypothesis h, is said to over

fit training data if another hypothesis h2 exists that has a
larger error than h when tested on the training data, but a
smaller error than h when tested on the entire dataset. There
are two common approaches that decision tree induction
algorithms can use to avoid over fitting training data: i) Stop
the training algorithm before it reaches a point at which it
perfectly fits the training data, ii) Prune the induced decision
tree. If the two trees employ the same kind of tests and have
the same prediction accuracy, the one with fewer leaves is
usually preferred. Breslow & Aha (1997) survey methods of
tree simplification to improve their comprehensibility.

Decision trees are usually unvaried since they use based on
a single feature at each internal node. Most decision tree
algorithms cannot perform well with problems that require
diagonal partitioning. The division f the instance space is
orthogonal to the axis of one variable and parallel to all other
axes. Therefore, the resulting regions after partitioning are all
hyper rectangles. However, there are a few methods that
construct multivariate trees. One example is Zheng’s(1998),
who improved the classification accuracy of the decision
trees by constructing new binary features with logical
operators such as conjunction, negation, and disjunction. In
addition, Zheng (2000) created at-least M-of-N features. For
a given instance, the value of an at least M-of-N
representation is true if at least M of its conditions is true of
the instance, otherwise it is false. Gama and Brazdil (1999)
combined a decision tree with linear discriminate for
constructing multivariate decision trees. In this model, new
features are computed as linear combinations of the previous
ones.

Decision trees can be significantly more complex
representation for some concepts due to the replication
problem. A solution is using an algorithm to implement
complex features at nodes in order to avoid replication.
Markovitch and Rosenstein (2002) presented the FICUS
construction algorithm, which receives the standard input of
supervised learning as well as a feature representation
specification, and uses them to produce a set of generated
features. While FICUS is similar in some aspects to other
feature construction algorithms, its main strength is its
generality and flexibility. FICUS was designed to perform
feature generation given any feature representation
specification complying with its general purpose grammar.
The most well-know algorithm in the literature for building
decision trees is the C4.5 (Quinlan, 1993). C4.5is an
extension of Quinlan's earlier ID3 algorithm
(Quinlan, 1979). One of the latest studies that compare
decision trees and other learning algorithms has been done by
(Tjen-Sien Lim et al. 2000). The study shows that C4.5 has a
very good combination of error rate and speed. In 2001,
Ruggieri presented an analytic evaluation of the runtime
behavior of the C4.5 algorithm, which highlighted some

efficiency improvements. Based on this analytic evaluation,
he implemented a more efficient version of the algorithm,
called EC4.5. He argued that his implementation computed
the same decision trees asC4.5 with a performance gain of up
to five times.

 To sum up, one of the most useful characteristics of
decision trees is their comprehensibility. People can easily
understand why a decision tree classifies an instance as
belonging to a specific class. Since a decision tree constitutes
a hierarchy of tests, an unknown feature value during
classification is usually dealt with by passing the example
down all branches of the node where the unknown feature
value was detected, and each branch outputs a class
distribution. The output is a combination of the different class
distributions that sum to 1. The assumption made in the
decision trees is that instances belonging to different classes
have different values in at least one of their features. Decision
trees tend to perform better when dealing with
discrete/categorical features.

3. BAYESIAN NETWORKS
A Bayesian Network (BN) is a graphical model for

probability relationships among a set of variables features.
The Bayesian network structure S is a directed acyclic graph
(DAG) and the nodes in S are in one-to-one correspondence
with the features X. The arcs represent casual influences
among the features while the lack of possible arcs in S
encodes conditional independencies. Moreover, a feature
(node) is conditionally independent from its non-descendants
given its parents (X1 is conditionally independent from X2
given X3 if P(X1|X2,X3)=P(X1|X3) for all possible values of
X1, X2, X3).

Fig.2 The structure of Bayes network

Typically, the task of learning a Bayesian network can be
divided into two subtasks: initially, the learning of the DAG
structure of the network, and then the determination of its
parameters. Probabilistic parameters are encoded into a set of
tables, one for each variable, in the form of local conditional
distributions of a variable given its parents. Given the
independences encoded into the network, the joint
distribution can be reconstructed by simply multiplying these
tables. Within the general framework of inducing Bayesian
networks, there are two scenarios: known structure and
unknown structure.

In the first scenario, the structure of the network is given
(e.g. by an expert) and assumed to be correct. Once the
network structure is fixed, learning the parameters in the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Conditional Probability Tables (CPT) is usually solved by
estimating a locally exponential number of parameters from
the data provided (Jensen, 1996). Each node in the network
has an associated CPT that describes the conditional
probability distribution of that node given the different
values of its parents. In spite of the remarkable power of
Bayesian Networks, they have an inherent limitation. This is
the computational difficulty of exploring a previously
unknown network. Given a problem described by n features,
the number of possible structure hypotheses is more than
exponential in n. If the structure is unknown, one approach is
to introduce a scoring function (or a score) that evaluates the
“fitness” of networks with respect to the training data, and
then to search for the best network according to this score.
Several researchers have shown experimentally that the
selection of a single good hypothesis using greedy search
often yields accurate predictions (Heckerman et al. 1999),
(Chickering, 2002).

The most interesting feature of BNs, compared to decision
trees or neural networks, is most certainly the possibility of
taking into account prior information about a given problem,
in terms of structural relationships among its features. This
prior expertise, or domain knowledge, about the structure of a
Bayesian network can take the following forms:

1. Declaring that a node is a root node, i.e., it has no
parents.

2. Declaring that a node is a leaf node, i.e., it has no
children.

3. Declaring that a node is a direct cause or direct effect of
another node.

4. Declaring that a node is not directly connected to
another node.

5. Declaring that two nodes are independent, given a
condition-set.

6. Providing partial nodes ordering, that is, declare that a
node appears earlier than another node in the ordering.

7. Providing a complete node ordering.
A problem of BN classifiers is that they are not suitable for

datasets with many features (Cheng et al., 2002). The reason
for this is that trying to construct a very large network is
simply not feasible in terms of time and space. A final
problem is that before the induction, the numerical features
need to be discredited in most cases.

4. K-NEAREST NEIGHBOR CLASSIFIERS

 Nearest neighbor classifiers are based on learning by
analogy. The training samples are described by n
dimensional numeric attributes. Each sample represents a
point in an n-dimensional space. In this way, all of the
training samples are stored in an n-dimensional pattern space.
When given an unknown sample, a k-nearest neighbor
classifier searches the pattern space for the k training samples
that are closest to the unknown sample. "Closeness" is
defined in terms of Euclidean distance, where the Euclidean
distance, where the Euclidean distance between two points,
X=(x1,x2,……,xn) and Y=(y1,y2,….,yn) is

d(X, Y)= 2

1
)(i

n

i
i yx −∑

=

 The unknown sample is assigned the most common class
among its k nearest neighbors. When k=1, the unknown
sample is assigned the class of the training sample that is
closest to it in pattern space.

Nearest neighbor classifiers are instance-based or lazy
learners in that they store all of the training samples and do
not build a classifier until a new(unlabeled) sample needs to
be classified. This contrasts with eager learning methods,
such a decision tree induction and backpropagation, which
construct a generalization model before receiving new
samples to classify. Lazy learners can incur expensive
computational costs when the number of potential neighbors
(i.e.,stored training samples)with which to compare a given
unlabeled smaple is great. Therefore, they require efficient
indexing techniques. An expected lazy learning methods are
faster ata trainging than eager methods, but slower at
classification since all computation is delayed to that time.
Unlike decision tree induction and backpropagation, nearest
neighbor classifiers assign equal weight to each attribute.
This may cause confusion when there are many irrelevant
attributes in the data.

Nearest neighbor classifiers can also be used for
prediction, that is, to return a real-valued prediction for a
given unknown sample. In this case, the classifier retruns the
average value of the real-valued associated with the k neraest
neighbors of the unknown sample.

The k-nearest neighbors’ algorithm is amongest the
simplest of all machine learning algorithms. An object is
classified by a majority vote of its neighbors, with the object
being assigned to the class most common amongst its k
nearest neighbors. k is a positive integer, typically small. If k
= 1, then the object is simply assigned to the class of its
nearest neighbor. In binary (two class) classification
problems, it is helpful to choose k to be an odd number as this
avoids tied votes.

The same method can be used for regression, by simply
assigning the property value for the object to be the average
of the values of its k nearest neighbors. It can be useful to
weight the contributions of the neighbors, so that the nearer
neighbors contribute more to the average than the more
distant ones.

The neighbors are taken from a set of objects for which the
correct classification (or, in the case of regression, the value
of the property) is known. This can be thought of as the
training set for the algorithm, though no explicit training step
is required. In order to identify neighbors, the objects are
represented by position vectors in a multidimensional feature
space. It is usual to use the Euclidian distance, though other
distance measures, such as the Manhanttan distance could in
principle be used instead. The k-nearest neighbor algorithm is
sensitive to the local structure of the data.

4.1 INSTANCE-BASED LEARNING

Another category under the header of statistical methods is
Instance-based learning. Instance-based learning algorithms
are lazy-learning algorithms (Mitchell, 1997), as they delay
the induction or generalization process until classification is
performed. Lazy-learning algorithms require less
computation time during the training phase than
eager-learning algorithms (such as decision trees, neural and
Bayes nets) but more computation time during the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

classification process. One of the most straightforward
instance-based learning algorithms is the nearest neighbor
algorithm. Aha (1997) and De Mantaras and Armengol
(1998) presented a review of instance-based learning
classifiers. Thus, in this study, apart from a brief description
of the nearest neighbor algorithm, we will refer to some more
recent works. k-Nearest Neighbor (kNN) is based on the
principle that the instances within a dataset will generally
exist in close proximity to other instances that have similar
properties (Cover and Hart, 1967). If the instances are tagged
with a classification label, then the value of the label of an
unclassified instance can be determined by observing the
class of its nearest neighbors. The Knn locates the k nearest
instances to the query instance and determines its class by
identifying the single most frequent class label. In Figure 8, a
pseudo-code example for the instance base learning methods
is illustrated.

procedure InstanceBaseLearner(Testing
Instances)
for each testing instance
{
find the k most nearest instances of
the training set according to a
distance metric
Resulting Class= most frequent class
label of the k nearest instances
}

Fig.3 Pseudo-code for instance-based learners

In general, instances can be considered as points within an
n-dimensional instance space where each of the
n-dimensions corresponds to one of the n-features that are
used to describe an instance. The absolute position of the
instances within this space is not as significant as the relative
distance between instances. This relative distance is
determined by using a distance metric. Ideally, the distance
metric must minimize the distance between two similarly
classified instances, while maximizing the distance between
instances of different classes. Many different metrics have
been presented. The most significant ones are presented in
Table II.

For more accurate results, several algorithms use
weighting schemes that alter the distance measurements and
voting influence of each instance. A survey of weighting
schemes is given by (Wettschereck et al., 1997). The power
of kNN has been demonstrated in a number of real domains,
but there are some reservations about the usefulness of kNN,
such as: i) they have large storage requirements, ii) they are
sensitive to the choice of the similarity function that is used to
compare instances, iii) they lack a principled way to choose k,
except through cross-validation or similar,
computationally-expensive technique (Guo et al. 2003). The
choice of k affects the performance of the Knn algorithm.
Consider the following reasons why a knearest neighbour
classifier might incorrectly classify a query instance:
� When noise is present in the locality of the query instance;
the noisy instance(s) win the majority vote, resulting in the
incorrect class being predicted. A larger k could solve this
problem.
 When the region defining the class, or fragment of the
class, is so small that instances belonging to the class that
surrounds the fragment win the majority vote. A smaller k
could solve this problem.

Table II. Approaches to define the distance between

instances (x and y)

Minkowsky: D(x,y)=

rm

i

r
ii yx

/1

1
|| ⎟

⎠

⎞
⎜
⎝

⎛
−∑

=

Manhattan: D(x,y)= || ii yx −∑

Chebychev: D(x,y)= ||max
1 ii

m

i
yx −

=

Euclidean: D(x,y)=
2/1

2

1
|| ⎟

⎠

⎞
⎜
⎝

⎛
−∑

=

m

i
ii yx

Camberra: D(x,y)=∑
= −

−m

i ii

ii

yx
yx

1 ||
||

Kendall’s Rank Correlation:

D(x,y)=)()(
)1(

21
1

jii

i

i

m

ji

yysignyxsign
mm

−−
−

− ∑∑
−

=

Wettschereck et al. (1997) investigated the behavior of the

kNN in the presence of noisy instances. The experiments
showed that the performance of kNN was not sensitive to the
exact choice of k when k was large. They found that for small
values of k, the kNN algorithm was more robust than the
single nearest neighbor algorithm (1NN) for the majority of
large datasets tested. However, the performance of the kNN
was inferior to that achieved by the 1NN on small datasets
(<100 instances).

Okamoto and Yugami (2003) represented the expected
classification accuracy of k-NN as a function of domain
characteristics including the number of training instances, the
number of relevant and irrelevant attributes, the probability
of each attribute, the noise rate for each type of noise, and k.
They also explored the behavioral implications of the
analyses by presenting the effects of domain characteristics
on the expected accuracy of k-NN and on the optimal value
of k for artificial domains.

The time to classify the query instance is closely related to
the number of stored instances and the number of features
that are used to describe each instance. Thus, in order to
reduce the number of stored instances, instance-filtering
algorithms have been proposed (Kubat and Cooperson,
2001). Brighton & Mellish (2002) found that their ICF
algorithm and RT3 algorithm (Wilson & Martinez, 2000)
achieved the highest degree of instance set reduction as well
as the retention of classification accuracy: they are close to
achieving unintrusive storage reduction. The degree to which
these algorithms perform is quite impressive: an average of
80% of cases is removed and classification accuracy does not
drop significantly. One other choice in designing training set

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

reduction algorithm is to modify the instances using a new
representation such as prototypes (Sanchez et al., 2002).
Breiman (1996) reported that the stability of nearest neighbor
classifiers distinguishes them from decision trees and some
kinds of neural networks. A learning method is termed
"unstable" if small changes in the training-test set split can
result in large changes in the resulting classifier.

As we have already mentioned, the major disadvantage of
instance-based classifiers is their large computational time
for classification. A key issue in many applications is to
determine which of the available input features should be
used in modeling via feature selection (Yu & Liu, 2004),
because it could improve the classification accuracy and
scale down the required classification time. Furthermore,
choosing a more suitable distance metric for the specific
dataset can improve the accuracy of instance-based
classifiers.

5. CONCLUSION
 Decision trees and Bayesian Network (BN) generally have
different operational profiles, when one is very accurate the
other is not and vice versa. On the contrary, decision trees
and rule classifiers have a similar operational profile. The
goal of classification result integration algorithms is to
generate more certain, precise and accurate system results.
Numerous methods have been suggested for the creation of
ensemble of classifiers. Although or perhaps because many
methods of ensemble creation have been proposed, there is as
yet no clear picture of which method is best.
 Classification methods are typically strong in modeling
interactions. Several of the classification methods produce a
set of interacting loci that best predict the phenotype.
However, a straightforward application of classification
methods to large numbers of markers has a potential risk
picking up randomly associated markers.

REFERENCES
[1] Baik, S. Bala, J. (2004), A Decision Tree Algorithm for

Distributed Data Mining: Towards Network Intrusion
Detection, Lecture Notes in Computer Science, Volume 3046,
Pages 206 – 212.

[2] Bouckaert, R. (2004), Naive Bayes Classifiers That Perform
Well with Continuous Variables, Lecture Notes in Computer
Science, Volume 3339, Pages 1089 – 1094.

[3] Breslow, L. A. & Aha, D. W. (1997). Simplifying decision
trees: A survey. Knowledge Engineering Review 12: 1–40.

[4] Brighton, H. & Mellish, C. (2002), Advances in Instance
Selection for Instance-Based Learning Algorithms. Data
Mining and Knowledge Discovery 6: 153–172.

[5] Cheng, J. & Greiner, R. (2001). Learning Bayesian Belief
Network Classifiers: Algorithms and System, In Stroulia, E.
& Matwin, S. (ed.), AI 2001, 141-151, LNAI 2056,

[6] Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002).
Learning Bayesian networks from data: An information-theory
based approach. Artificial Intelligence 137: 43–90.

[7] Clark, P., Niblett, T. (1989), The CN2 Induction Algorithm.
Machine Learning, 3(4):261-283.

[8] Cover, T., Hart, P. (1967), Nearest neighbor pattern
classification. IEEE Transactions on Information Theory,
13(1): 21–7.

[9] Cowell, R.G. (2001). Conditions Under Which Conditional
Independence and Scoring Methods Lead to Identical Selection

of Bayesian Network Models. Proc. 17th International
Conference on Uncertainty in Artificial Intelligence.

[10] Domingos, P. & Pazzani, M. (1997). On the optimality of the
simple Bayesian classifier under zero-one loss. Machine
Learning 29: 103-130.

[11] Elomaa T. (1999). The biases of decision tree pruning
strategies. Lecture Notes in Computer Science 1642.
Springer, pp. 63-74.

[12] Friedman, N., Geiger, D. & Goldszmidt M. (1997). Bayesian
network classifiers. Machine Learning 29: 131-163.

[13] Friedman, N. & Koller, D. (2003). Being Bayesian About
Network Structure: A Bayesian Approach to Structure
Discovery in Bayesian Networks. Machine Learning 50(1):
95-125.

[14] Jensen, F. (1996). An Introduction to Bayesian Networks.
 Springer.
[15] Kubat, Miroslav Cooperson Martin (2001), A reduction

technique for nearest-neighbor classification: Small groups of
examples. Intell. Data Anal. 5(6): 463-476.

[16] Madden, M. (2003), The Performance of Bayesian Network
Classifiers Constructed using Different Techniques,
Proceedings of European Conference on Machine Learning,
Workshop on Probabilistic Graphical Models for
Classification, pp. 59-70.

[17] McSherry, D. (1999). Strategic induction of decision trees.
Knowledge-Based Systems, 12(5- 6):269-275.

[18] Vivarelli, F. & Williams, C. (2001). Comparing Bayesian
neural network algorithms for classifying segmented outdoor
images. Neural Networks 14: 427-437.

[19] Wilson, D. R. & Martinez, T. (2000). Reduction Techniques for
Instance-Based Learning Algorithms. Machine Learning 38:
257–286.

[20] Witten, I. & Frank, E. (2005), "Data Mining: Practical machine
learning tools and techniques", 2nd Edition, Morgan
Kaufmann, San Francisco, 2005.

[21] Yang, Y., Webb, G. (2003), On Why Discretization Works for
Naive-Bayes Classifiers, Lecture Notes in Computer Science,
Volume 2903, Pages 440 – 452.

[22] Zhang, G. (2000), Neural networks for classification: a survey.
IEEE Transactions on Systems, Man, and Cybernetics, Part C
30(4): 451- 462.

[23] Zheng, Z. (2000). Constructing X-of-N Attributes for Decision
Tree Learning. Machine Learning 40: 35–75.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

