

Dipper: A Data Integration with Privacy
Protection Environment

Rangsipan Marukatat

Abstract—We have developed Dipper, a data integration with

privacy protection environment, aiming to tackle the following
challenges. Firstly, records can be matched albeit typographical
differences between their attribute values. Secondly, they can
be matched albeit some attribute values being suppressed to
protect the privacy of an individual. Dipper enables data
providers to suppress sensitive attributes before exporting their
data sets. It then integrates the data sets based on matching
rules specified by the users. Its simple graphical user interfaces
(GUIs) guide the users through a few easy steps to complete
their tasks.

Index Terms—data integration, privacy protection.

I. INTRODUCTION
Many real-world applications process data from multiple

data sets. For example, a marketing department devises new
marketing campaigns by analyzing customer profiles
(gender, age, etc.) and transaction data. To consolidate
multiple data sets, one needs to identify records that match
each other, i.e. they refer to the same entities. These records
can be merged or duplicate ones can be eliminated. This
process has several names such as data integration, data
linkage, record linkage, and deduplication. In data mining
and data warehousing, it crucially helps increase the
dimensionality of data.

If every record contains hard key attributes such as social
security number, barcode, or ISBN, integrating the data sets
is similar to joining database tables. It is a trivial task since
the attributes’ values are often error-free; otherwise, a
transaction would have failed and the data would not have
been stored in a data repository. However, disparate data sets
do not always use the same hard keys. Instead, the integration
often relies on composite keys such as a composite of first
name, surname, and date of birth attributes. These attributes’
values are more likely to be misspelled or written in different
styles. Finding algorithms that are robust to typographical
differences is a challenge in data integration research.

Another challenge in data integration stems from the need
to protect privacy of an individual, particularly when data
providers and data collectors are different parties. The data
providers need to remove or transform personal identifiable
attributes before giving out the data. At the same time, the
lack or the anonymity of such attributes makes the integration
task even more complicated.

Manuscript received June 27, 2008.
R. Marukatat is with the Department of Computer Engineering, Faculty of

Engineering, Mahidol University, THAILAND. (phone: +662-889-2138 ext
6251-2; fax: +662-889-2138 ext 6259; e-mail: egrmr@mahidol.ac.th).

We have developed a data integration tool called “Dipper”
(Data integration with privacy protection environment). It
consists of Data Exporter and Data Integrator modules. The
former suppresses sensitive attributes and exports a data set.
The latter integrates data sets according to user’s specified
rules. The rest of this paper is organized as follows. Section II
reviews related techniques and tools. Section III describes
Dipper framework. Section IV presents data integration tasks
performed by Dipper. Section V finally concludes the paper.

II. DATA INTEGRATION TECHNIQUES AND TOOLS
Record matching requires comparison in two levels [4], [5].

At low level, each pair of attributes (one from each record) is
compared. Since attributes’ values may contain
typographical errors, string similarity test is typically applied
instead of the exact equality test. At high level, similarity
between records is determined by combining the individual
attribute similarity scores. For two data sets having n and m
records, nm record matchings are performed. This poses
scalability problem in real practice. TAILOR [5] and Febrl [1]
handle large data volume by using some key attributes to (1)
split the records into mutually exclusive blocks; or (2) sort
the records and move a sliding window over them. As a result,
the matching space is shrinked to one block/window at a time.
[1] found that comparing and merging the records are
scalable tasks which can be executed efficiently by parallel
processors.

With the increasing concern about privacy, data
integration tools have incorporated privacy protection and
blindfolded data integration mechanisms. The first
mechanism suppresses sensitive, identifiable attributes such
as patient name or social security number. The second
mechanism matches records by comparing the suppressed
attributes. [9] suggested one-way hash function as a simple
suppression method, but a drawback is that any marginal
discrepancy between the original attribute values will be
enormously magnified.

An alternative method, minimal knowledge n-gram
similarity test, was proposed by [2]. It first generates a power
set of encrypted n-grams for each attribute value. When the
attributes are compared, their power sets are intersected and
the attribute similarity score is calculated from the common
n-grams. [8] proposed finding a cluster of strings similar to
each attribute value from a public reference table. The strings
are encrypted. Attribute similarity is determined in the same
way as the n-gram similarity test. However, these methods
are memory inefficient because they replace a single attribute
value with a set of encrypted data.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 1. Data export and data integration tasks performed by

data provider and data collector, respectively

master ∩ ~lookup ~master ∩ lookup

Matched: master ∩ lookup

Not matched

Master
Table

Lookup
Table

Fig. 2. Possible outcomes of record matching

III. DIPPER FRAMEWORK
Our Data integration with privacy protection environment

(Dipper) comprises two modules, Data Exporter and Data
Integrator. These modules can be used by data providers and
data collectors as illustrated by Fig. 1.

Dipper’s GUI was designed to be as simplest as possible.
We observed that average users are most comfortable to work
with Microsoft Excel-style spread sheets. So, Dipper presents
data in tables. Users can edit table cells or transfer data within
and between the tables via cut-and-paste operations. The
main Data Exporter and Data Integrator windows are divided
into subject panels, ordering from left to right and top to
bottom. Such interface is self-explanatory; it easily guides the
users through to complete their tasks.

A. Data Exporter
The main Data Exporter window is shown in Fig. 3. To

export a data set, the user loads data from a
comma-separated-value (CSV) file or a database table. Then
he/she might suppress sensitive attributes. The following
suppression methods were implemented. They are based on
cryptographic hashing:

− MD5 (RFC 1321). MD5 takes a message of arbitrary
length as input and produces a 128-bit message digest
as output.

− SHA-1 (FIPS 180-2). SHA-1 takes a message with a
maximum length of 264 bits and produces a 160-bit
message digest as output.

Finally, the data set can be exported as a CSV file or SQL

script consisting of CREATE TABLE and INSERT INTO
TABLE commands.

B. Data Integrator
The main Data Integrator window is shown in Fig. 4. To

integrate two data sets, the user loads data into Master and
Lookup tables. Then he/she needs to define matching rules
(see Fig. 5) and choose mode of integration. The results are
presented in Master table (it is assigned a new table name, so
as to not replace the old table). Record similarity scores are
reported. The user may correct the result manually, by editing
the table. It is either exported as a CSV file or SQL script, or
saved to the database.

Matching records in Master and Lookup tables yields three
possible outcomes, as illustrated by Fig. 2. If the tables are
completely joined, the result will include {master ∩ lookup},
{master ∩ ~lookup}, and {~master ∩ lookup}. In some
cases, the user focuses on entities in the Master table and
wants to look up additional information about these entities
in the Lookup table. Data integration can be executed in
lookup mode, producing {master ∩ lookup} and {master ∩
~lookup} as the result. Thanks to fewer record matchings and
thus lower computational overhead, the lookup mode is set as
default one.

Dipper attempts to match records A and B against a number
of matching rules specified by the users. A matching rule may
have several clauses, connected by logical AND operators. It
can be written as follows:

 comparator(A’s attribute, B’s attribute) ≥ s1

 AND
 comparator(A’s attribute, B’s attribute) ≥ s2

 AND
 …
 AND
 comparator(A’s attribute, B’s attribute) ≥ sk .

A comparator treats attribute values as strings. It calculates
string similarity score which falls within a [0, 1] interval. If
the score is not below a threshold s, then the attributes are
considered similar. Once every clause in rule is true, B and its
average matching score will be memorized as a candidate
match for A and the next record will be tested. The best match
for A is then the one with the highest average matching score.

The following string comparators are used by Dipper:
− Levenstein. Levenstein measures a distance between

two strings as the minimum edit operations required to
convert one string to the other. An edit operation is the
insertion, deletion, or substitution of a character. The
similarity score is then calculated as a reverse measure
of the distance.

− Jaro and Jaro-Winkler [10]. Jaro similarity score is a
function of common characters between both strings
(the same characters appearing at nearby positions)
and the transpositions from one string to the other. Its
variant, Jaro-Winkler, adds weight to account for the
length of the common prefix, because typographical
errors are more likely at the tail-end of the strings and
when the strings are longer.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 3. Main Data Exporter window (“Id” has been encrypted by MD5)

Fig. 4. Main Data Integrator window

− Monge-Elkan [6]. It is a variant of Levenstein
comparator which allows affine costs for edit
operations. For example, successive insertions yield
lower costs than separate insertions.

It is possible that a string consists of tokens, or sequences
of characters delimited by punctuations. The arrangement of
tokens in any two strings may also differ, for example, “Mary
Jane Watson” and “Watson, Mary J.”. To tackle this, one
should compare every token in one string with every token in
the other string. This solution was implemented by Cohen et
al as Level-2 comparators [3], [11]. They are also employed

by Dipper.

C. Dipper’s Implementation
Dipper is based on opensource technology. It was written

in Java. Its execution requires Java Runtime Environment
(JRE) version 1.5 or higher. Cohen’s SecondString package
[11] are employed for string comparison. Dipper was tested
with MySQL, but users can work around the other types of
databases by exporting tables and processing flat CSV files.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

Fig. 5. Rule Editor and Constructor windows

สรฤทธ ิ  ร ุ
 
งเร ือง

name surname

Base line
Upper line (1)
Upper line (2)

Lower line

Fig. 6. Thai name and surname, each having 2 syllables
(of length 2 and 5 for name’s, 4 and 5 for surname’s)

IV. EXPERIMENTS
Dipper lets users construct and refine matching rules by

themselves. Hence, the following experiments serve only as
general guidelines about how each comparator performs. The
performance based on English data had already been reported
by the SecondString developers themselves [3]. In their
study, a number of real and synthetic data were tested.
Among the four comparators used by Dipper, they found that
Monge-Elkan performed better than the others on average.
But there were a few cases where it lost out to Jaro and
Jaro-Winkler.

We conducted further experiments by using Thai data.
Two data sets, Th_Lookup and Th_Master, were retrieved
from the Faculty of Engineering at Mahidol University,
Thailand. Each data set was originally clean and contained no
duplication. There were 528 student records (ID, name,
surname, and major) in Th_Lookup, and 213 senior project
records (ID, name, surname, project, and advisor) in
Th_Master. About 50% of the records in Th_Master found
their matches in Th_Lookup.

A. Experimental Setup
Adapting the methodology used by [1], we added errors to

name and surname attributes of some records as follows.
− Add a character randomly.

− Delete a character randomly.
− Replace a character with its neighboring character on

the keyboard.
− Transpose two characters randomly.
− Merge name and surname.
− Merge name and surname, then swap the values.

The first four data transformations were applied to
evaluate Levenstein (L), Jaro (J), Jaro-Winkler (JW), and
Monge-Elkan (ME) comparators. The other two data
transformations were applied later to evaluate the Level-2
versions of these comparators. They are L2-L, L2-J, L2-JW,
and L2-ME, respectively.

In each experiment, we constructed a single matching rule
which compared name and surname attributes, by using the
same comparator and similarity threshold. For example,

 JaroWinkler(name, name) >= 0.85 AND
 JaroWinkler(surname, surname) >= 0.85 .

B. Results
Thai alphabet is far more complex than English one. It

includes 44 consonants, 18 vowel symbols which make up 32
vowels, 4 tone marks, and 2 diacritics [7]. Thai text is written
in four lines, as illustrated by Fig. 6. There are certain rules
for mixing consonants, vowel symbols, tone marks, and
diacritics together. The length of a Thai syllable can vary
from 2 to 10 characters. A name is usually up to 5 syllable
long; a surname might be a little bit longer.

Fig. 7 shows the accuracy, false positive (FP), and false
negative (FN) rates of each comparator against 0.75, 0.85,
and 0.95 thresholds. We observed that comparators that takes
patterns of characters into account, such as Jaro and
Jaro-Winkler, performed better than comparators that
processes characters one by one, such as Levenstein and
Monge-Elkan.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

25%

50%

75%

100%

J

JW

L

M
E J

JW

L

M
E J

JW

L

M
E

L2
-J

L2
-J

W

L2
-L

L2
-M

E

L2
-J

L2
-J

W

L2
-L

L2
-M

E

Accuracy FP FN

0.75 0.85 0.95 0.85 0.95

Fig. 7. Performance of each comparator at 0.75, 0.85, and 0.95 similarity thresholds

When name and surname were compared separately, Jaro
and Jaro-Winkler performed slightly better than the other two
comparators. At the 0.85 threshold, they matched the records
nearly 100% accurately, while Levenstein and Monge-Elkan
failed to match some records (about 10% false negative rate).
At the 0.95 threshold, the false negative rates increased for all
the comparators.

When name and surname were merged into one attribute,
Level-2 Levenstein and Monge-Elkan were very optimistic
and incurred very high false positive rates. This is because
edit operations at the boundaries of consecutive syllables in
one string could result in new syllables that exist in the other
strings. Therefore, strings that consist of multiple substrings
are likely considered similar by these comparators.

V. CONCLUSION
We have presented Dipper, a Data integration with privacy

protection environment, which comprises tools for exporting
and integrating data. To protect individuals’ privacy, users
can suppress sensitive attributes prior to the exporting.
Dipper merges records from two data sets according to
user-specified matching rules. It supports the well-known
Levenstein, Jaro, Jaro-Winkler, and Monge-Elkan string
comparison methods. We tested these methods with Thai
data and found that, given appropriate similarity thresholds,
Jaro and Jaro-Winkler were able to match most of the records
correctly.

A limitation of Dipper is that its suppression methods are
based on cryptographic hashing. If data integration requires
the comparison of suppressed attributes, then a pair of
records will match only if their original attribute values are
exactly equal. This does not leave room for even marginal
errors.

Besides its functionality, Dipper’s worth is its simple user
interface. Bearing in mind that average users are most
familiar with spread sheet presentation and cut-and-paste
operations, Dipper imitates such working environment.
Morever, due to self-explanatory interface, users can easily
go through a few steps to complete their tasks.

We aim to improve Dipper in two directions. The first one

transform the data. An alternative solution, as discussed in
Section II, is replacing old values with new ones associated in
some ways with common reference data. But for this solution
to be practical, the storage space of the new values must not
overly exceeds that of the old ones. The other improvement is
adding attribute comparison methods that are more advanced
and, perhaps, specific to Thai language.

is adding suppression methods that do not cryptographically

ACKNOWLEDGMENT
Dipper’s foundat ented and tested

by

REFERENCES
[1] P. Christen, T. Churc land, “Febrl – A parallel

[2]

[4]

[5]

[6]

[7]

ion classes were implem
 Angkana Chanjirakitti, Parunya Sonthipong, Siwapong

Srisodsai, Wanna Kanuwattana, and Yosita Thitiangkool.

hes, and M. Heg
opensource data linkage system,” in Proceedings of the 8th Asia-Pacific
Conference on Knowledge Discovery and Data Mining (PAKDD),
Sydney, Australia, 2004.
T. Churches and P. Christen, “Some methods for blindfolded record
linkage,” BMC Medical Informatics and Decision Making, 4(9), 2004.

[3] W. W. Cohen, P. Ravikumar, and S. E. Feinberg, “A comparison of
string distance metrics for name matching tasks,” in Proceedings of the
International Joint Conferences on Artificial Intelligence (IJCAI),
Acapulco, Mexico, 2003.
M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid, “TAILOR: A
record linkage toolbox,” in Proceedings of the 18th International
Conference on Data Engineering (ICDE), San Jose, CA, 2002.
L. Jin, C. Li, and S. Mehrotra, “Efficient record linkage in large data

thsets,” in Proceedings of the 8 International Conference on Database
Systems for Advanced Applications (DASFAA), Kyoto, Japan, 2003.
A. E. Monge and C. P. Elkan, “The field matching problem:

ndAlgorithms and applications,” in Proceedings of the 2 International
Conference on Knowledge Discovery and Data Mining (KDD),
Portland, OR, 1996.
T. Karoonboonyanan, “Standardization and implementations of Thai
language,” National Electronics and Computer Technology Center
(NECTEC), Thailand. http://www.nectec.or.th/it-standards/thaistd.pdf
C. Pang and D. Hansen, “Improved record linkage for encrypted

th
[8]

[9]

[10]

[11]

identifying data,” in Proceedings of the 14 Annual Health Informatic
Conference (HIC), Sydney, Australia, 2006.
C. Quantin, et al., “How to ensure data security of an epidemiological
follow-up: Quality assessment of an anonymous record linkage
procedure,” International Journal of Medical Informatics, 49(1), pp.
117-122, 1998.
W. E. Winkler, “Advanced method for record linkage,” in Proceedings
of the Section of Survey Research Methods, American Statistical
Association, pp. 467-472, 1994.
Second String Project Page, http://secondstring.sourceforge.net/.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009

http://www.nectec.or.th/it-standards/thaistd.pdf

	I. INTRODUCTION
	II. Data integration techniques and tools
	III. Dipper Framework
	A. Data Exporter
	B. Data Integrator
	C. Dipper’s Implementation
	
	Fig. 6. Thai name and surname, each having 2 syllables
	(of length 2 and 5 for name’s, 4 and 5 for surname’s)
	IV. Experiments
	A. Experimental Setup
	B. Results

	V. Conclusion

