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Abstract—We have developed Dipper, a data integration with 

privacy protection environment, aiming to tackle the following 
challenges. Firstly, records can be matched albeit typographical 
differences between their attribute values. Secondly, they can 
be matched albeit some attribute values being suppressed to 
protect the privacy of an individual. Dipper enables data 
providers to suppress sensitive attributes before exporting their 
data sets. It then integrates the data sets based on matching 
rules specified by the users. Its simple graphical user interfaces 
(GUIs) guide the users through a few easy steps to complete 
their tasks. 
 

Index Terms—data integration, privacy protection.  
 

I. INTRODUCTION 
Many real-world applications process data from multiple 

data sets. For example, a marketing department devises new 
marketing campaigns by analyzing customer profiles 
(gender, age, etc.) and transaction data. To consolidate 
multiple data sets, one needs to identify records that match 
each other, i.e. they refer to the same entities. These records 
can be merged or duplicate ones can be eliminated. This 
process has several names such as data integration, data 
linkage, record linkage, and deduplication. In data mining 
and data warehousing, it crucially helps increase the 
dimensionality of data. 

If every record contains hard key attributes such as social 
security number, barcode, or ISBN, integrating the data sets 
is similar to joining database tables. It is a trivial task since 
the attributes’ values are often error-free; otherwise, a 
transaction would have failed and the data would not have 
been stored in a data repository. However, disparate data sets 
do not always use the same hard keys. Instead, the integration 
often relies on composite keys such as a composite of first 
name, surname, and date of birth attributes. These attributes’ 
values are more likely to be misspelled or written in different 
styles. Finding algorithms that are robust to typographical 
differences is a challenge in data integration research. 

Another challenge in data integration stems from the need 
to protect privacy of an individual, particularly when data 
providers and data collectors are different parties. The data 
providers need to remove or transform personal identifiable 
attributes before giving out the data. At the same time, the 
lack or the anonymity of such attributes makes the integration 
task even more complicated. 
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We have developed a data integration tool called “Dipper” 
(Data integration with privacy protection environment). It 
consists of Data Exporter and Data Integrator modules. The 
former suppresses sensitive attributes and exports a data set. 
The latter integrates data sets according to user’s specified 
rules. The rest of this paper is organized as follows. Section II 
reviews related techniques and tools. Section III describes 
Dipper framework. Section IV presents data integration tasks 
performed by Dipper. Section V finally concludes the paper. 

 

II. DATA INTEGRATION TECHNIQUES AND TOOLS 
Record matching requires comparison in two levels [4], [5]. 

At low level, each pair of attributes (one from each record) is 
compared. Since attributes’ values may contain 
typographical errors, string similarity test is typically applied 
instead of the exact equality test. At high level, similarity 
between records is determined by combining the individual 
attribute similarity scores. For two data sets having n and m 
records, nm record matchings are performed. This poses 
scalability problem in real practice. TAILOR [5] and Febrl [1] 
handle large data volume by using some key attributes to (1) 
split the records into mutually exclusive blocks; or (2) sort 
the records and move a sliding window over them. As a result, 
the matching space is shrinked to one block/window at a time. 
[1] found that comparing and merging the records are 
scalable tasks which can be executed efficiently by parallel 
processors. 

With the increasing concern about privacy, data 
integration tools have incorporated privacy protection and 
blindfolded data integration mechanisms. The first 
mechanism suppresses sensitive, identifiable attributes such 
as patient name or social security number. The second 
mechanism matches records by comparing the suppressed 
attributes. [9] suggested one-way hash function as a simple 
suppression method, but a drawback is that any marginal 
discrepancy between the original attribute values will be 
enormously magnified. 

An alternative method, minimal knowledge n-gram 
similarity test, was proposed by [2]. It first generates a power 
set of encrypted n-grams for each attribute value. When the 
attributes are compared, their power sets are intersected and 
the attribute similarity score is calculated from the common 
n-grams. [8] proposed finding a cluster of strings similar to 
each attribute value from a public reference table. The strings 
are encrypted. Attribute similarity is determined in the same 
way as the n-gram similarity test. However, these methods 
are memory inefficient because they replace a single attribute 
value with a set of encrypted data. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 
 

 

 
Fig. 1. Data export and data integration tasks performed by 

data provider and data collector, respectively  
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Fig. 2. Possible outcomes of record matching 

 

III. DIPPER FRAMEWORK 
Our Data integration with privacy protection environment  

(Dipper) comprises two modules, Data Exporter and Data 
Integrator. These modules can be used by data providers and 
data collectors as illustrated by Fig. 1.  

Dipper’s GUI was designed to be as simplest as possible. 
We observed that average users are most comfortable to work 
with Microsoft Excel-style spread sheets. So, Dipper presents 
data in tables. Users can edit table cells or transfer data within 
and between the tables via cut-and-paste operations. The 
main Data Exporter and Data Integrator windows are divided 
into subject panels, ordering from left to right and top to 
bottom. Such interface is self-explanatory; it easily guides the 
users through to complete their tasks. 

A. Data Exporter 
The main Data Exporter window is shown in Fig. 3. To 

export a data set, the user loads data from a 
comma-separated-value (CSV) file or a database table. Then 
he/she might suppress sensitive attributes. The following 
suppression methods were implemented. They are based on 
cryptographic hashing: 

− MD5 (RFC 1321). MD5 takes a message of arbitrary 
length as input and produces a 128-bit message digest 
as output.  

− SHA-1 (FIPS 180-2). SHA-1 takes a message with a 
maximum length of 264 bits and produces a 160-bit 
message digest as output.  

Finally, the data set can be exported as a CSV file or SQL 

script consisting of CREATE TABLE and INSERT INTO 
TABLE commands. 

B. Data Integrator 
The main Data Integrator window is shown in Fig. 4. To 

integrate two data sets, the user loads data into Master and 
Lookup tables. Then he/she needs to define matching rules 
(see Fig. 5) and choose mode of integration. The results are 
presented in Master table (it is assigned a new table name, so 
as to not replace the old table). Record similarity scores are 
reported. The user may correct the result manually, by editing 
the table. It is either exported as a CSV file or SQL script, or 
saved to the database. 

Matching records in Master and Lookup tables yields three 
possible outcomes, as illustrated by Fig. 2. If the tables are 
completely joined, the result will include {master ∩ lookup}, 
{master ∩ ~lookup}, and {~master ∩ lookup}. In some 
cases, the user focuses on entities in the Master table and 
wants to look up additional information about these entities 
in the Lookup table. Data integration can be executed in 
lookup mode, producing {master ∩ lookup} and {master ∩ 
~lookup} as the result. Thanks to fewer record matchings and 
thus lower computational overhead, the lookup mode is set as 
default one.  

Dipper attempts to match records A and B against a number 
of matching rules specified by the users. A matching rule may 
have several clauses, connected by logical AND operators. It 
can be written as follows: 

 comparator(A’s attribute, B’s attribute) ≥ s1

  AND 
 comparator(A’s attribute, B’s attribute) ≥ s2

  AND 
 … 
  AND 
 comparator(A’s attribute, B’s attribute) ≥ sk . 

A comparator treats attribute values as strings. It calculates  
string similarity score which falls within a [0, 1] interval. If 
the score is not below a threshold s, then the attributes are 
considered similar. Once every clause in rule is true, B and its 
average matching score will be memorized as a candidate 
match for A and the next record will be tested. The best match 
for A is then the one with the highest average matching score.  

The following string comparators are used by Dipper: 
− Levenstein. Levenstein measures a distance between 

two strings as the minimum edit operations required to 
convert one string to the other. An edit operation is the 
insertion, deletion, or substitution of a character. The 
similarity score is then calculated as a reverse measure 
of the distance. 

− Jaro and Jaro-Winkler [10]. Jaro similarity score is a 
function of common characters between both strings 
(the same characters appearing at nearby positions) 
and the transpositions from one string to the other. Its 
variant, Jaro-Winkler, adds weight to account for the 
length of the common prefix, because typographical 
errors are more likely at the tail-end of the strings and 
when the strings are longer. 
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Fig. 3. Main Data Exporter window (“Id” has been encrypted by MD5) 

 
 

 
Fig. 4. Main Data Integrator window 

 
 

− Monge-Elkan [6]. It is a variant of Levenstein 
comparator which allows affine costs for edit 
operations. For example,  successive insertions yield 
lower costs than separate insertions.  

It is possible that a string consists of tokens, or sequences 
of characters delimited by punctuations. The arrangement of 
tokens in any two strings may also differ, for example, “Mary 
Jane Watson” and “Watson, Mary J.”. To tackle this, one 
should compare every token in one string with every token in 
the other string. This solution was implemented by Cohen et 
al as Level-2 comparators [3], [11]. They are also employed 

by Dipper. 

C. Dipper’s Implementation 
Dipper is based on opensource technology. It was written 

in Java. Its execution requires Java Runtime Environment 
(JRE) version 1.5 or higher. Cohen’s SecondString package 
[11] are employed for string comparison. Dipper was tested 
with MySQL, but users can work around the other types of 
databases by exporting tables and processing flat CSV files. 
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Fig. 5. Rule Editor and Constructor windows 
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Fig. 6. Thai name and surname, each having 2 syllables  
(of length 2 and 5 for name’s, 4 and 5 for surname’s) 

 

IV. EXPERIMENTS 
Dipper lets users construct and refine matching rules by 

themselves. Hence, the following experiments serve only as 
general guidelines about how each comparator performs. The 
performance based on English data had already been reported 
by the SecondString developers themselves [3]. In their 
study, a number of real and synthetic data were tested. 
Among the four comparators used by Dipper, they found that 
Monge-Elkan performed better than the others on average. 
But there were a few cases where it lost out to Jaro and 
Jaro-Winkler. 

We conducted further experiments by using Thai data. 
Two data sets, Th_Lookup and Th_Master, were retrieved 
from the Faculty of Engineering at Mahidol University, 
Thailand. Each data set was originally clean and contained no 
duplication. There were 528 student records (ID, name, 
surname, and major) in Th_Lookup, and 213 senior project 
records (ID, name, surname, project, and advisor) in 
Th_Master. About 50% of the records in Th_Master found 
their matches in Th_Lookup.  

A. Experimental Setup 
Adapting the methodology used by [1], we added errors to 

name and surname attributes of some records as follows. 
− Add a character randomly. 

− Delete a character randomly. 
− Replace a character with its neighboring character on 

the keyboard. 
− Transpose two characters randomly. 
− Merge name and surname.  
− Merge name and surname, then swap the values.  

The first four data transformations were applied to 
evaluate Levenstein (L), Jaro (J), Jaro-Winkler (JW), and 
Monge-Elkan (ME) comparators. The other two data 
transformations were applied later to evaluate the Level-2 
versions of these comparators. They are L2-L, L2-J, L2-JW, 
and L2-ME, respectively.  

In each experiment, we constructed a single matching rule 
which compared name and surname attributes, by using the 
same comparator and similarity threshold. For example, 

 JaroWinkler(name, name) >= 0.85 AND 
 JaroWinkler(surname, surname) >= 0.85 . 

B. Results 
Thai alphabet is far more complex than English one. It 

includes 44 consonants, 18 vowel symbols which make up 32 
vowels, 4 tone marks, and 2 diacritics [7]. Thai text is written 
in four lines, as illustrated by Fig. 6. There are certain rules 
for mixing consonants, vowel symbols, tone marks, and 
diacritics together. The length of a Thai syllable can vary 
from 2 to 10 characters. A name is usually up to 5 syllable 
long; a surname might be a little bit longer. 

Fig. 7 shows the accuracy, false positive (FP), and false 
negative (FN) rates of each comparator against 0.75, 0.85, 
and 0.95 thresholds. We observed that comparators that takes 
patterns of characters into account, such as Jaro and 
Jaro-Winkler, performed better than comparators that 
processes characters one by one, such as Levenstein and 
Monge-Elkan.  
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Fig. 7. Performance of each comparator at 0.75, 0.85, and 0.95 similarity thresholds 
 
 

When name and surname were compared separately, Jaro 
and Jaro-Winkler performed slightly better than the other two 
comparators. At the 0.85 threshold, they matched the records  
nearly 100% accurately, while Levenstein and Monge-Elkan 
failed to match some records (about 10% false negative rate). 
At the 0.95 threshold, the false negative rates increased for all 
the comparators. 

When name and surname were merged into one attribute, 
Level-2 Levenstein and Monge-Elkan were very optimistic 
and incurred very high false positive rates. This is because 
edit operations at the boundaries of consecutive syllables in 
one string could result in new syllables that exist in the other 
strings. Therefore, strings that consist of multiple substrings 
are likely considered similar by these comparators.  

 

V. CONCLUSION 
We have presented Dipper, a Data integration with privacy 

protection environment, which comprises tools for exporting 
and integrating data. To protect individuals’ privacy, users 
can suppress sensitive attributes prior to the exporting. 
Dipper merges records from two data sets according to 
user-specified matching rules. It supports the well-known 
Levenstein, Jaro, Jaro-Winkler, and Monge-Elkan string 
comparison methods. We tested these methods with Thai 
data and found that, given appropriate similarity thresholds, 
Jaro and Jaro-Winkler were able to match most of the records 
correctly.  

A limitation of Dipper is that its suppression methods are 
based on cryptographic hashing. If data integration requires 
the comparison of suppressed attributes, then a pair of 
records will match only if their original attribute values are 
exactly equal. This does not leave room for even marginal 
errors. 

Besides its functionality, Dipper’s worth is its simple user 
interface. Bearing in mind that average users are most 
familiar with spread sheet presentation and cut-and-paste 
operations, Dipper imitates such working environment. 
Morever, due to self-explanatory interface, users can easily 
go through a few steps to complete their tasks. 

We aim to improve Dipper in two directions. The first one 

transform the data. An alternative solution, as discussed in 
Section II, is replacing old values with new ones associated in 
some ways with common reference data. But for this solution 
to be practical, the storage space of the new values must not 
overly exceeds that of the old ones. The other improvement is 
adding attribute comparison methods that are more advanced 
and, perhaps, specific to Thai language. 

is adding suppression methods that do not cryptographically 
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