
 

 Abstract—Virtual building modeling became an increasingly 
urgent need for computer graphics, simulation, games, films 
and virtual reality. However, this is an exhaustive task and 
requires much more time and effort. There are many 
researches, which state this problem, but most of them 
concentrate on grammar-based generation. Grammar-based 
generation researches require more time to learn and are 
not suitable for non-qualified users. Our paper presents a 
new framework to generate automatic and extensive 3D 
solid building models procedurally relying on a set of 
methods called modules; these modules are offset, ellipse, L-
system, smoother, polygon reduction, polygon division, 
transformation, and extrusion. Our building model can be 
created either automatically or semi-automatically. Each 
building model consists of some or all of our modules, these 
modules are specified either by an automatic model 
generator or by users to create a special model (using the 
wizard or writing an xml file). Model modules declare how 
the building footprints, floors and geometries will be 
generated. Our framework generates different building 
models using the same modules with different parameters’ 
values, while the modules remain small and simple, which 
means less time to learn and enables non-technical users to 
create wonderful solid building models. Our framework can 
generate trivial and non-trivial buildings’ types according to 
certain rules.  
 
Index Terms—Procedural modeling,  urban simulation, 
virtual city, L-system. 

I. INTRODUCTION 

   Modeling a building is a great challenge in computer 
graphics; there is an urgent need for building modeling in 
virtual reality, in computer games, in movies, in 
simulation, and by architects. The buildings can be 
modeled either by hand or manually using specialized 
software such as CAD software; this requires much more 
time and effort from architects and planners to fulfill the 
modeling. Therefore, there is a growing need for 
modeling the buildings automatically, this operation is 
called a procedural modeling. 

  Design grammar is one of the used tools in building 
modeling. L_system is one of the design grammars that 
has achieved  powerful results in plant modeling [Mêch 
 

  M. S. Author, is a professor at Helwan University, Helwan,   
EGYPT (e-mail: mhmdshaarawy@yahoo.com). 

  A. K. Author, is a professor at Al-Shorouk Academy and computer 
graphics consultant, Cairo, Egypt (e-mail: akaboudan@yahoo.com). 

S.T. Author, is a master student at Helwan University, Cairo, Egypt 
(e-mail: shaimaa_toriah@yahoo.com). 

 

and Prusinkiewicz  [1]; Prusinkiewicz and Lindenmayer 
[2]; Prusinkiewicz et al. [3]] and in the area of street 
modeling [Parish and M¨uller 2001 [4]]. Still, L-systems 
cannot easily be adapted to the modeling of buildings 
since they simulate growth in open spaces. An alternative 
grammar for buildings is shape grammar [Stiny 1975 [5]; 
Wonka et al. 2003 [6]; Muller et al. 2006 [7]]. The 
drawback of grammars is that they are usually limited to a 
specific class of models and they require a lot of training 
and time for experimenting.     

   Since the main problem of building modeling is the 
complexity of creating solid models in procedural 
modeling automatically especially by non-qualified users, 
this paper concentrates on procedural building modeling 
automatically by non-qualified users using few modules. 
Our framework will enable the user to generate the 
building models either fully automatically or using a 
customized model (a combination of modules are 
specified by the user using the wizard or writing an xml 
model file) for specific buildings.  

    This framework has the ability to generate 
interesting, variant and complex solid building models 
automatically using simple input, this input includes 
building coordinates and building’s attributes such as 
building type, building main side, ground floor type, etc. 
Each building will be generated according to its model 
modules. Model modules such as offset, ellipse, L-system 
substitution , transformations, smoother, polygon 
reduction, polygon division and extrusion. Our 
framework will produce solid faces of the façade (with no 
details), these faces carry  attributes according to the user 
specifications ,these attributes will be important for 
generating  façade details , but this is out of our scope.    

    Our paper will be structured as follows: After 
reviewing relevant previous work, Section III provides an 
explanation of our proposed framework and its 
components. Section IV presents model modules which 
should be specified by user to create models. Section V is 
the implementation. Section VI presents results and some 
examples of our models. Section VII presents the possible 
enhancement and plans for future work to our framework. 
Our conclusions are in Section VIII. 

II. RELATED WORK 
 
   Procedural modeling was successfully introduced for 

3D Automatic Building Footprints Generation 
Mohamed Shaarawy         Ahmed Kaboudan         Shaimaa Toriah                                   

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

the natural phenomena especially for plants. Artistied 
Lindenmayer has proposed the formalism of lindenmayer 
systems, in short L-system. The central notation of L-
system is the concept of rewriting where complex objects 
can be defined by replacing part00s of a simple initial 
object using a set of rewriting rules or productions, these 
productions are applied in parallel Prusinkiewicz and 
Lindenmayer [2]. There are many researches in plant 
modeling with L-system such as Przemyslaw et al [8]; 
Mêch and Prusinkiewicz [1]. L-system has been extended 
to include general computer simulation [Parish and 
Mŭller 2001 [4]] and self-sensitivity [Mêch and 
Prusinkiewicz  [1]]. 

   Building modeling researches fall in one of two 
approaches which are  creating models using photographs 
and procedural modeling approach. Building modeling 
methods using photographs [Debevec et al [9]], videos 
and range scanning [Jepson et al [10]], etc, produce 
excellent models with high accuracy and reality, but they 
require clear and detailed images of the buildings, also 
they are quite labor intensive and can not  be used to 
generate virtual cities or generate new building models. 
This approach is used to simulate existing buildings and 
cities, Whereas procedural modeling approach has the 
ability to create new building models and virtual cities. 
There are a few researches in this approach.   

   Parish and Muller propose a system called a CITY 
ENGINE [4] using a procedural approach based on L-
system, which creates simple buildings. However, using 
L-system in city modeling still has less success than in 
plant modeling and it is more complex.  

    Wonka [6] generates buildings using a split 
grammar. Split grammar is a type of set grammar based 
on shape, it generates more realistic buildings, but this 
requires the users to learn this complex grammar and the 
rules of its database to set its attributes.  

    Greuter and Parker propose Real-time Procedural 
Generation of Pseudo Infinite Cities method [11], using 
this method, a building is built up, or more accurately, 
built down, in sections, each section is composed of a 
unique extruded floor plan. This research produce good 
buildings with simpler methods, but it has more focus on 
the  real-time generation of a city. 

    Pascal and Wonka present a grammar-based solution 
to generate detailed building [7]. They generate mass 
models of buildings using union of volumetric shapes and 
transformation operations. 

III. PROPOSED FRAMEWORK 

    There are many researches, which state procedural 
building-modeling problem, but most of them concentrate 
on grammar-based solutions Wonka [6] , Pascal and 
Wonka [7], and the solid models generation process is 

constructed as a union, scaling, rotation, and translation 
of volumetric shapes.  

  Our approach concentrates on solid models generation 
both automatically and semi-automatically. In our 
framework, the automatic building model generation 
means that the model will be generated fully 
automatically using our system according to the building 
attributes, and Semi- automatically means that the user 
will specify (select ) the modules of the model. 

  Our framework has large databases, these databases 
are: 

A.  Buildings’ Models Database : 
   For each building’s model , we save  its modules and 

its faces. Accessing model’s modules from Database can 
generate a different model due to the randomness used in 
each module (parameters), but accessing model’s faces 
generates typical models of the saved one. 

B.  Buildings’ Rules Database: 
 This database contains the rules of some building 

types. These rules help the automatic model generator to 
generate new buildings’ models. 

C.  L-System Production Rules Database: 
 This database contains the L_system production rules, 

axioms, and some other attributes. This database helps the 
L-system generator to generate L-system curves.  

  Our approach relies on the principle that each 
building has a set of floors and each floor has a footprint. 
It is not necessary that each floor’s footprint should be 
unique; all floors may have the same footprint. These 
footprints will be extruded to construct the building’s 
solid model with its faces. Each building is divided into 
one (simple) or more sub buildings (complex building). 
Table Ι shows subbuilding components. 

 
Table Ι: SubBuilding Components 

 
Subbuilding 
Components 

Description 

Basic 
Footprint 

This represents the input GIS region 
coordinates. 

Ground Floor 
Footprint 

This represents the footprint of the 
ground floor, which may differ from the 
footprints of the other floors. The ground 
footprint may represent a shop, a mall, or 
something else. 
 

Floors  
Footprints 

These are the footprints of the rest of 
building floors; these floors may have 
one footprint or many footprints 
according to its building model. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

 

 
Figure 1: Framework components 

 

The framework components will interact with the 
following scenario: 
 
� The first component  invoked in our system is buildings 
specification loader. This component is responsible for 
loading the building’s region geometries and its sides’ 
attributes for example, is it one of the main façade sides? 
if yes, then what is its façade side number ? Etc. In 
addition, it is responsible for loading building’s attributes 
such as simplicity, name, model generation type, etc. 
Generation type attribute  value can be one of the 
following values:               

• Automatic: means that the building model will be 
generated using our system. So, the automatic 
model generator component will be invoked. 

• Database: this attribute value requires the model 
name attribute to be specified (model name should 
be included in our building model database). 
Building model loader is responsible for loading 
the saved model. 

• Manual:  the user will construct his building 
model by selecting the suitable modules using our 
system wizard or specifying the name of xml file 
that contains the building model modules, 
Therefore, building model loader will be invoked. 

� After that footprints generator will be invoked to 
generate solid models that include faces geometries  and 
their attributes, which will be useful in façade generation. 
According to the building model’s modules, Footprint 
generator will call the following components: L-system 
substitution, extrusion, smoother, polygon division, 
polygon selection, polygon reduction, and 
transformations.      
 

IV. FRAMEWORK COMPONENTS 
 
   In this section, we will briefly describe our framework 
components. Framework components are shown in Figure 
1 as the following:  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

A. Building Specifications Loader 
     This component is responsible for loading the input 
region coordinates and building attributes.  
 

B. Building Model Generator 
       This component includes the followings: 

1) Automatic Building Model Generator 
 This component is responsible for generating 

building models automatically according to the 
attributes of the building such as  building type. The 
generated building model can be one of the followings:  

 
� Selected Model 
 This model is selected and loaded from building 

models database, according to the building 
attributes by the building model loader. But in this 
model type , only model faces will be loaded.   

 
� Modified Selected Model 
This model is selected and loaded from building 

models database according to the building 
attributes. But in this model type, model modules 
are loaded and then are modified by the automatic 
model generator.   

 
� Generated Model 
The model modules and their parameters values 

will be set according to this building type rules that 
are specified in the building rules database.  

 
   The following examples declare some of buildings 
rules.  
Villa Rules Example: 
• Basic footprint: - must have offset module with 

offset area parameter ranging from 40 to 60 
percent to represent the garden of the villa. 

• Extrusion module should have a height parameter 
of >3m. 

•  It should have L-system module and L-system 
smoothing module.  

  
Popular Buildings: 
• It can  include Offset module with the offset area 

parameter ranging from 0-20 % 
• Can’t include other modules, except extrude 

module. 
  

2) Building Model Loader 
This component is responsible for loading and 

saving building model modules and building model 
faces. Building model loader can load building model 
from: 
• Building model database 

• XML building model file which is edited by the 
user to create his own special model. 

• System wizard.    
      

C.  L_system Generator 
An L-system is a parallel string rewriting mechanism 

based on a set of production rules. Each string consists of 
a set of symbols with associated numerical parameters. 
Simulation begins with an initial string called the axiom, 
and proceeds in a sequence of discrete derivation steps. In 
each step, rewriting rules or productions replace all 
modules in the predecessor string by successor modules. 

L-system Generator generates L-system curves 
according to the selected production rules, axioms, and a 
suitable number of iterations saved in the production rules 
database. Selected production rules may be selected by 
the user or randomly. In addition, it can generate L-
system curves by applying more than one type of curves 
production rules to generate extensive L-system curves.  

D. L-System Footprint Substitution 
This component is responsible for Substituting the 

specified footprint sides (specified by the user or 
randomly) of the current footprint with the curves 
generated by L-system generator.  

E. Footprint Generator 
This component generates building footprints and faces 

with the help of the other components. It is considered the 
main component in the footprint generation process, 
which is responsible for calling the other components 
(such as polygon division ,L-system substitution, polygon 
reduction ,polygon selection, transformations ,ellipse, 
offset, and smoother component ) according to the 
building model  modules that is passed from building 
model generator.   

F. Ellipse Component 
    This converts a current footprint that can be a square 

or triangle into an n-side polygon .It is mostly used in 
basic footprint. This component is based on the ellipse 
algorithm, which states that any rectangle/square has in-
ellipse; the in-ellipse is the largest ellipse that will fit 
inside the rectangle and touch each side of the rectangle 
in just the middle of it .Our ellipse algorithm  states that 
extensive polygon types can be generated from the ellipse  
Where the polygon can be inside or outside the ellipse, 
convex or non-convex, and simple or complex polygon, 
all of the resulted polygon types depend on parameters 
justification in the algorithm. The ellipse is represented 
parametrically in equation (1),(2). 

Θ= cosWx    (1) 
    Θ= sinHy     (2) 

W: half the rectangle width 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

H: half the rectangle height 
Θ : <= 2 ∏ 

 In our algorithm, we will add a and b parameters to the 
equation (1) ,(2) to produce equation (3),(4) . 
                             Θ= cosaWx (3) 
                             Θ= sinbHy  (4)                              
a and b  values will determine if the vertices inside or 
outside the ellipse. For example: if a <1 and b < 1 then 
the vertex will be inside the ellipse, and if a >1 and b >1 
then the vertex will be outside the ellipse. We declare 
some examples in figure.2. (a),(b),(c),(d). 

 
 
Figure2: (a), (b), (c), and (d) generated polygons from 
ellipse algorithm. (e) L-system Curve. (f) is the 
triangle of figure(d) is substituted with L-system curve 
that is shown in figure(e), (g) represents figure (f) is 
substituted with L_system curve that is shown in 
figure (e). (h), (i), and (j) some generated L_system 
Curves. 
 

G. Polygon Division 
This is responsible for dividing the footprint into 

smaller pieces using polygon division and polygon 
triangulation algorithms. 

H. Transformations 
Transformations include transformation operations 

such as scale, rotate and translate operations.  

I. Polygon Selection 
This is responsible for selecting triangles groups, 

which depends on the input parameters: 
• Number of groups  
• Estimated area of each group. 
• This returns the contour of the selected groups. 

 

J. Polygon Reduction 
This is responsible for eliminating a piece of the 

footprint. This component calls polygon selection 
component and then eliminate the selected group 
(selected triangles) with a specified area. 

K. Smoother  
   This is responsible for converting sharp curves 

(opened or closed curves) into smoothed ones 
[Przemyslaw et al [12], [13]. The curve may be L-system 
curve or a polygon (considered as a closed curve). 

L. Offsets 
    This offsets the polygon sides to inside according to the 
offset area parameter. A typical copy of the footprint will 
be generated. This module is often used in the basic 
footprint to leave an empty area around the building to be 
garden, pavement or etc. Figure.3. presents polygons with 
offsets . 

 
Figure 3: Offset Algorithm 

 

V. BUILDING MODEL MODULES 
 
    In this section, we will introduce the modules that 
create the solid building model. Model can be edited (or 
specified) by the user. If the user does not specify the 
module parameters values, then our system will use its 
default values. 
We have two types of modules: 
• Basic modules: are the elementary modules that any 

building model will be converted to . 
• Assistant modules: are virtual modules that make 

our model more readable. These modules are 
translated into the basic modules to be implemented 
or used for readability only. 

 
Table I shows building modules. 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

Table Ι Ι: Building Model Modules 
 

Module Name Parameters Description 
Building -Name 

-Simple 
-Level 
 

Type: Assistant module.  
Description: includes 
building operations. 
 

SubBuilding 
 

-Type 
-Area 
-Category 

Type: Assistant module.   
Description: This 
includes sub building  
operations as a separate 
building. 

Group 
 

- Area of the 
group. 

Type: Assistant module 
Description: Starts group 
operations, 
 these operations may 
produce one or more 
 footprints. This is useful 
for specifying  
more specific façade 
attributes for this group. 

BasicFootprint  Type: Assistant module 
Description: Starts basic 
footprint operations 
 which is  responsible for 
preparing the 
 input region, so the most 
used modules are  
offset, and ellipse. 

 
Ellipse 
 

- Number of    
polygon 
sides. 
- Polygon 
type. 

Type: Basic module 
Description: It often used 
in basic footprint. 
 

 
Division 
 

- Number of 
triangles. 

- Minimum 
triangle 
area. 

 

Type: Basic module 
Description: This divides 
the current 
 footprint into a set of 
polygons (triangles). 

Reduction - Estimated 
reduced area 

 Type: Basic module 
Description: Eliminates 
part of the footprint. 

Ground_Floor  Type: Assistant module 
Description: Starts 
ground floor operations. 
 This is useful for 
specifying a different 
 floor and has special 
attributes. 

Combined 
groups  

- Combined    
groups’ 
numbers. 

Type: Basic module 
Description: Combine 
groups or sub 
 footprints into one 
footprint. 

L-system 
Substitution 

- Number of 
substituted 
sides 
- Rule’s 
name in 
production 
rules 
database. 

Type: Basic module 
Description:  Substitute a 
number of footprint sides  
with L-system   curves. 

Closed_Lsyste
m_substitution 

-Rule’s 
name in 
production 
rules 
database. 

Type: Basic module 
Description: Substitutes 
the footprint with  
closed L-system curves. 

Scale 
 

-X 
percentage 
- Y 
percentage 

Type: Basic module 
Description: it scales the 
footprint. 

Rotate 
 

   - Angle. Type: Basic module 
Description: It rotates the 
footprint. 

Translate 
 

-Tx 
-Ty 

Type: Basic module 
Description: It translates 
the footprint. 

Smoother 
 

- Footprint 
sides 
numbers. 

Type: Basic module 
Description: it smoothes  
sharp curves  
(open and closed curves) 
with smoothed ones . 

Extrude 
 

-Height  of 
each   floor 
-Number of 
floors that 
will be 
extruded . 

Type: Basic module 
Description: This module 
indicates the end  
of the footprint‘s 
modules. It will extrude 
 the current footprint 
about 
 (Height * Number of 
floors) meters. 
 

AdvancedExtru
de 

-Height 
-Matrix 

Type: Basic module 
Description: The resulted 
extruded footprint 
 will depend on the input 
matrix.  
 

 
 

VI. IMPLEMENTATION 
 
    Now, we develop a system to generate building solid 
models by integrating Visual C++.Net and OpenGL. We 
create building models database, production Rules 
database, and Building rules database using Sql Server 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

database. In our System, We enable the user to create his 
building model using our system wizard : 

• Manually :the user will select his xml model file 
(so, we create xml schema file). 

• 2-Automatically : our automatic building model 
generator will generate the model. 

• Semi-automatically: user will select building 
model from building models database. 

 

VII. RESULT 
 
      In our system, we construct our building models 
database using Sql server, it includes the modules and the 
faces of the desired buildings models. The user has the 
ability to save the desired models produced from our 
system. We construct production rules (L-system rules) 
database using Sql server, which includes the selected L-
system production rules that will be more suitable for 
buildings. Also in our framework, we have building rules 
database. These rules are helpful for the automatic model 
generator to create the generated model according to 
certain rules. To keep our system fast, we develop our 
system with Visual C++ and OpenGl.  
     We present some building models’ examples that are  
written in xml files. The following examples represent 
samples of our system results: 
 
• Skyscraper Model Example 
         
<?xml version="1.0" encoding="utf-8" ?> 
<Building Name="specialTower" Level="high"  
                 Simple=”true”> 
  <SubBuilding  type=”skyscraper”  
                        category=="residential" > 
  <Basic_Footprint> 
   <Offset_Algorithm /> 
  </Basic_Footprint> 
  <Ground_Floor> 
   <Extrude  floorHeight="4"    
                             numberOfFloors="1" /> 
  </Ground_Floor> 
  <Floors> 
     <Division /> 
     <Reduction /> 
     <Extrude  floorHeight ="3"  
                               numberOfFloors ="20" /> 
     <Division /> 
     <Reduction area="40" /> 
     <Extrude height="3" number="20" /> 
  </Floors> 
 </SubBuilding> 
</Building> 
 
Figure 4 shows the output of the above example. 

 
• Mall Model Example (Commerical Building) 
 
<?xml version="1.0" encoding="utf-8" ?> 
<Building Name="grandMall" Level="high"           
                 simple=”true”> 

<SubBuilding type=”mall” category="commercial"/> 
  <Basic_Footprint> 
   <Offset_Algorithm area="0.10" /> 
  </Basic_Footprint> 
  <Ground_Floor> 

<L_system number_of_sides="2"    
rule_name="halfCircle"     /> 

   <Extrude floorHeight="6"  
                            number_of_floors="1" /> 
  </Ground_Floor> 
  <Floors> 
   <L_system_scale percentage="0.8" /> 
   <Extrude height="6" number_of_floors="2" /> 
  </Floors> 
 </SubBuilding> 
</Building> 
 
 Figure 5  declares mall model generation steps . 

 
• Complex Mall Model Example 
<?xml version="1.0" encoding="utf-8" ?> 
<Building Name="complexBuilding" Level="high"  
                Simple=”false”> 
 <SubBuilding area="0.30" Type=”Building” 
                           Category="administrative"> 
   <Floors> 
   <Extrude floorHeight="4" 
                           Number_of_floors="4" /> 
  </Floors> 
 </SubBuilding> 
 <SubBuilding area="0.70" Type="residential"> 
  <Basic_Footprint> 
   <Extrude  floorHeight="4" 
                            numberOfFloors="1" /> 
    </Basic_Footprint> 
    <Floors> 
   <Extrude height="4" number="4" /> 
   <Group area="0.30"> 
    <Extrude floorHeight="4" 
                               Number_of_floors="6" /> 
      </Group> 
   <Group area="0.35"> 
    <Extrude floorHeight="4"  
                               Number_of_floors="10" /> 
   </Group> 
  </Floors> 
 </SubBuilding> 
</Building> 
 
Figure 6 shows us output of this example. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

 
• L-System Examples 
   We show some buildings’ examples which rely on l-
system curves (l-system substitution module) in figure 7. 
 

VIII.   FUTURE WORK  
 
    We will extend our framework components to include 
façade generation component, which will be able to 
generate the façade with all its details using GPU. 
 

IX. CONCLUSION 
 
    In this paper, we have presented a new framework for 
the automatic generation of extensive 3D solid building 
models procedurally relying on a set of simple methods 
called modules; these modules are offset, ellipse, L-
system, curve smoother, triangulation, polygon reduction, 
polygon division, transformations, and extrusion 
modules. The main contribution of our paper is the 
automatic generation of the building with low user 
contribution and without dipping the user with technical 
details. Because our framework can generate the building 
fully automatically.  Therefore, our framework will be 
more suitable for non-technical users, especially when we 
develop our system to be able to generate the building 
using the wizard and the user will be able to modify and 
cancel the intermediate steps of model generation. In 
addition, our framework has the ability to generate 
special, extensive and fantasy models using our modules 
especially L-system module.  
 

ACKNOWLEDGMENT 
   Before and after anything praise is to God. Special 
thanks to Hany Mohamed for his help and support to 
complete this paper.  
 

REFERENCES 

[1] Mêch R., and Prusinkiewicz, “Visual Models Of 
Plants Interacting With Their Environment,” in 
proc. 23rd Annual Conference On Computer 
Graphics And Interactive Techniquess, new york 
,1996 , pp. 397-410. 

[2] Przemyslaw Prusinkiewicz and Aristid 
Lindenmayer.The algorithmic beauty of plants. 
Springer-Verlag New York, Inc., New York, 
USA, 1996. 

[3] Przemyslaw, Prusinkiewicz, M. James, and R. 
Měch, “Synthetic topiary,” in proc. the 21st 
Annual Conference On Computer Graphics and 
Interactive Techniques, New York, 1994, pp. 
351-358.  

[4] Parish, Muller, “Procedural Modeling of Cities,” 
in proc.  28th Annual Conference On Computer 
Graphics And Interactive Techniques, New 
York, 2001, pp. 301-308. 

[5]  Stiny, G. 1975. Pictorial and Formal Aspects of 
Shapes and Shape Grammars. Birkhauser, Basel, 
Switzerland. 

[6] Wonka, p., Wimmer, m., Sillion f., and 
Ribarsky, w, "Instant Architecture," in proc. 
ACM Siggraph, 2003, 669- 677. 

[7] Pascal Muller, Peter Wonka, Simon Haegler, 
Andreas Ulmer, and Luc Van Gool, "Procedural 
modeling of buildings. ACM Trans. Graph., 
25(3):614-623, 2006. 

[8] Przemyslaw, Prusinkiewicz, M. James, and R. 
Měch, “Synthetic topiary,” in proc. the 21st 
Annual Conference On Computer Graphics and 
Interactive Techniques, New York, 1994, pp. 
351-358.  

[9] Debevec, P. E., Taylor, C. J., and Malik, J, 
“Modeling And Rendering Architecture From 
Photographs: A hybrid Geometry- And Image- 
Based Approach,” ,” in proc.  28th Annual 
Conference On Computer Graphics And 
Interactive Techniques, 1996,pp. 11-20. 

[10] Jepson, w., Liggett, r., and Friedman,"Virtual 
Modeling Of Urban Environments," in proc. 
Computer Graphic International, 1997. 

[11] Greuter S., Parker J., Stewart N., AND Leach G, 
"Real-time Procedural Generation of `Pseudo 
Infinite' Cities," in proc. the 1st International 
Conference On Computer Graphics And 
Interactive Techniques in Australasia and South 
East Asia , New York, 2003, pp 87-ff. 

[12] Przemyslaw Prusinkiewicz, Faramarz F. 
Samavati, Colin Smith, Radoslaw Karwowski, 
"L-system Description of Subdivision Curves,". 
International Journal of Shape Modeling, vol 9, 
2003, pp. 41-59. 

[13] F. S. Hill, and  Jr, Computer Graphics Using 
OpenGL. 2001.  2nd Edition. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

 
Figure 4: Shows Skyscraper model steps. 

 

 
Figure 5: Mall model steps. 

 
 

 
Figure 6: Complex building model. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009



 

 
 
 
 
 
 
 
 
    
 
      
 

 
Figure 7: Generated Buildings rely on l-system curves. 

(a)_ L-system curve.  (b)Building based on l-system curve in figure(a). (c) L-system curve.  (d)Building based on l-system 
curve in figure(c).  (e) L-system curve. .(f),(g)Buildings based on l-system curve in figure(e).  

 
 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol I
IMECS 2009, March 18 - 20, 2009, Hong Kong

ISBN: 978-988-17012-2-0 IMECS 2009


