
 
 

 

  
Abstract— This paper presents an adaptive sampling method 

for image-based walkthrough. Our goal is to select minimal sets 
from the initially dense sampled data set, while guaranteeing a 
visual correct view from any position in any direction in 
walkthrough space. With regard to image based representation, 
we adopt image based rendering by warping method. Especially 
we utilize three reference images for warping, that means the 
goal of the paper is to find the optimized sample set with respect 
to the three reference images. In this paper, we regard to the 
problem as approximating the mesh model, which is 
constructed from initial dense data and addresses an 
optimization scheme through global search with an 
approximated error measurement. 
 

Index Terms — Image-based walkthrough, Adaptive 
sampling method, Image-based rendering by warping, 
Optimization, Mesh simplication 
 

I. INTRODUCTION 
Image-based rendering (IBR) generates novel views from a 
set of input images instead of 3D models. Among the many 
IBR approaches, one promising IBR approach enhances the 
images with per pixel depth. This allows warping the samples 
from the reference image to the desired image. Generally the 
image-based approach using depth is called as image-based 
rendering by warping (IBRW) [7]. However, in IBRW, 
simply warping the samples does not guarantee high-quality 
results because one must reconstruct the final image from the 
warped samples. To solve this problem, most of all, good 
reconstruction algorithms such as efficient warping, splatting 
etc. are needed [6, 8]. But the fundamental and important 
problem of properly sampling has remained largely 
unanswered. 

The sampling is a very difficult problem since the 
sampling rate will be determined by the scene geometry, the 
texture on the scene surface, the reflection property of the 
scene surface, the specific IBR representation we take, the 
capturing and the rendering camera’s resolution, etc [12]. 
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Over-sampling was widely adopted in the early stages [5, 
11]. Generally, to reduce the huge amount of data due to 
over-sampling, many compression techniques are utilized 
[12] instead of dealing with the sampling problem. However, 
sampling is more of a fundamental problem to IBR. 

In this paper, we basically deal with the sampling problem, 
where the goal is to select minimal sets while guaranteeing a 
visually correct view from any position in any direction. The 
object of this research is to devise a method for the efficient 
re-sampling of initial pre-sampled data and for the efficient 
management of the data for interactive walkthrough. 

With regard to image based representation, we adopt 
image based rendering by the warping method. Especially we 
utilize three reference images for warping, that means the 
goal of the paper is to find the optimized sample set with 
respect to the three reference images. Therefore, the 
particular problem we would like to address in this paper is 
expressed as follows:  

 
We are given dense sampled images, each with depth and 

calibration information at a given position. We are also 
given a reconstruction error estimator, which estimates the 
quality of the reconstructed image from three reference 
images. From the set of initial samples, we have to determine 
a set of optimized three reference images, while keeping the 
error within the requirement.  

 

II. BACKGROUND AND PREVIOUS WORK 
Depending on how the capturing cameras are placed, IBR 

sampling can be classified into two categories: uniform 
sampling and non-uniform sampling. In uniform sampling, 
the cameras are positioned evenly on a capture configuration 
which is usually a surface or a line. The light field [5] and the 
concentric mosaics [11] are the representative examples. In 
the case of uniform sampling, the main research topic is to 
find the minimum sampling rate or largest spacing between 
cameras such that one can achieve perfect reconstruction 
quality on the navigation space. The goal of non-uniform 
sampling analysis is also to find the minimum number of 
cameras while rendering the highest quality scene. But in this 
case, arranging camera position is another important 
problem. 

In practice, objects in the scene have varying surface 
properties. For instance, if a scene has non-Lambertian 
surface or occluded regions, more samples are needed. In 
general, a real world scene is composed of Lambertian and 
non-Lambertian surfaces. The Lambertian surface may need 
a low sampling rate, while the non-Lambertian surface may 
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need a high sampling rate. Uniformly sampling the scene 
without concerning about the regional surface property may 
easily cause over-sampling of the Lambertian surface or 
under-sampling of the non-Lambertian surface [12]. It is 
therefore natural to consider non-uniform sampling. One 
thing to notice is, in uniform sampling, since the sampling is 
periodic, we only need to tell how many images/light rays are 
needed for perfect reconstruction of the scene; in 
non-uniform sampling, however, we need to answer not only 
how many images are needed but also where to place these 
cameras. In this paper, the non-uniform sampling approach is 
adopted. 

Fleishman et al. [2] proposed an automatic camera 
placement algorithm for IBR. They assumed a mesh model of 
the scene is known. The goal is to place the cameras 
optimally so that the captured images can form the best 
texture map for the mesh model. They proposed an 
approximation solution for the problem by testing a large set 
of camera positions and selecting the ones with higher gain 
rank. Here the gain was defined based on the portion of the 
image that can be used for the texture map. However, this 
method cannot be extended to the sampling of real 
environment due to the assumption of the known mesh model 
and is only applicable to scenes with Lambertian surfaces. 

Schirmacher et al. [10] proposed an adaptive acquisition 
scheme for a LightField setup. Assuming the scene geometry 
is known, they added cameras recursively by predicting the 
potential improvement in rendering quality when adding a 
certain view. They asserted a priori error estimator accounts 
for both visibility problems and illumination effects such as 
specular highlights used to some extent. However, this error 
estimator definitely has its limits unless a ground truth data is 
obtained. 

Depending on the application scenario, solutions to the 
non-uniform sampling problem can be classified into two 
categories: incremental sampling and decremental sampling 
[12]. In incremental sampling, the samples are captured one 
by one incrementally. The stopping criterion is either the 
overall number of samples desired reached, or an error 
requirement that the sampling process must achieve. In 
decremental sampling, we assume there is already a dense set 
of samples available that fulfills the error requirement. This 
sample set might be too large, thus decremental sampling can 
be used to reduce the size, while keeping the error within the 
requirement. 

 
Rear Object

Front Object

Reference-Image
Viewpoint

Destination-Image
Viewpoint

 
Fig. 1. A simple visibility example. The rear object is 

visible in the destination image, but occluded in the reference 
image [6] 

 

Most previous image-based walkthrough systems which 
have the sampling strategy have adopted the incremental 
sampling approach since it was too difficult to get the initial 
dense samples. However, recent advances in acquisition and 
modeling technologies have resulted in large databases of 
real-world and synthetic environments. This is made possible 
by using an omni-directional camera capture system in which 
the camera is placed on a motorized cart together with a 
battery, computer, frame grabber and fast disk system to store 
the captured images on [1]. Therefore, in this paper, we 
choose the decremental sampling approach to determine 
optimal view positions. 

 

III. SAMPLING FOR TRIANGULATED VIEWS 
The sampling method in the decremental approach can be 

expressed as a view selection problem and the optimized 
views imply a kind of best view which is representative of the 
sampling space. We can consider a single reference image for 
warping. However, in most circumstances, a single reference 
image is insufficient to avoid unacceptable occlusion 
artifacts. Figure 1 shows such a case. The rear surface is not 
visible in the reference images, but should appear in the 
destination image. As a result, if we warp the reference image 
to the destination viewpoint, we will get a destination image 
that does not contain the rear surface. Figure 2 shows this 
phenomenon for a reference image and corresponding 
destination image. 

 

3D Warp

 
Fig. 2. The 3D warp can expose areas of the scene for which 
the reference frame has no information (shown here in 
white). 

 
With respect to the region which involves the occlusion 

artifacts, the single reference image based best view selection 
chooses many samples to guarantee an adequate warping 
quality. Due to this reason, if we consider only a single 
reference image for best view selection, it is not sufficient to 
say that the selected set is fully optimized - although this can 
optimize the number of the samples in a fashion. In order to 
get acceptable quality of warped output, we need additional 
information about the scene. The post-rendering warping 
system [6] renders these additional images using view-points 
that are different from those used to render the first image. 

 

A. Triangulation of Reference Views 
There are several tradeoffs involved in choosing the 

number of reference images that are warped to produce each 
displayed frame. First, more reference images demand a high 
computational cost, because all of the reference images must 
be warped for every frame. Second, as we increase the 
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number of reference images, we also increase the lifetime of 
each reference image. The reason for this tradeoff is that the 
conventional rendering engine only produces one reference 
image at a time. We considered the cases using one or more 
reference images. We quickly ruled out the use of one 
reference image, because occlusion artifacts were too severe 
with only one reference image. After considering a 
greater-than-one image approach, we settled on the 
three-image approach. Using three images eliminates most 
visibility artifacts, while limiting both the cost of warping 
and the length of time that reference images remain in use. 

Another reason is related to the working set management 
[1]. The selected sampled set is a kind of unorganized 
scattered data set. From the performance of the system 
perspective, the unorganized set affects other problems as 
follows: 

First, it is too difficult to pick reference-frame viewpoints 
that lie on the user’s path through space: A reference frame 
can be determined with a viewpoint near a previous viewer 
position. If we consider two reference images based warping, 
the second reference image is selected with a viewpoint near 
a ‘future’ view position. In most systems with an unorganized 
data set [1, 6], the future viewpoint is determined using a 
motion prediction algorithm. When the viewer passes this 
‘future’ viewpoint, the system starts using a new ‘future’ 
reference image and discards the old ‘past’ reference image. 
However, generally, motion prediction is not perfect. As the 
prediction interval grows longer, the expected magnitude of 
the error in the prediction also grows. The characteristics of 
the prediction error will vary depending on how viewpoint 
motion is controlled. 

Similarly, establishing cache mechanism for interactive 
walkthrough is also hard with the unorganized data set. The 
problem is related to pre-load and cache images from the disk 
for rendering novel views as a user navigates interactively 
through the IBR environment. In order to do this, we have to 
develop a time-critical algorithm that loads and caches data. 
The exhaustive search of the unorganized data set is not 
suitable for a time-critical algorithm. 

Eventually, the above problems can be solved by 
organizing the data set. In a viewpoint picking and caching, 
the obvious problem is to find the nearest reference frame at a 
viewpoint. The organization of the scattered data in a metric 
manner is considered as follows: 
Denote the Euclidean distance between two points p and q by 
dist(p, q) in R2. Let P = {p1, p2, … , pn} be a set of n distinct 
points in the plane; We can define the subdivision of the 
plane into n cells, with the property that a point q lies in the 
cell corresponding to a site pi if and only if dist(q, pi) < dist(q, 
pj) for each pj ∈P with j≠i. A subdivided plane with the 
property is known as Voronoi diagram.  From the Voronoi 
diagram of the sample data set, the nearest reference 
viewpoint can be estimated. As mentioned before, since a 
single reference image causes severe occlusion artifacts, 
other reference images are also needed. The dual of the 
Voronoi diagram - Delaunay triangulation, is suitable for this 
mechanism. By constructing the triangulated structure, the 
post-rendering warping can be accomplished effectively by 
fetching the three vertices (reference images) of a triangle. 

 

B. Triangulated Views Selection 
With respect to a single reference image based warping, 

the best view selection can be defined as finding a set of a 
single reference image which can warp the entire 
walkthrough space. However, the selection of the 
triangulated data set is totally different. Here one has to 
consider how to select three reference images which enable 
one to represent all positions in each triangle fully with the 
minimum triangles. Considering determination of a single 
optimized triangle, the number of cases is nC3, which means 
the time complexity is O(n3). Accordingly, the optimization 
about full space is a more difficult and complex problem. In 
addition, since the triangle has 3 vertices and the vertices 
hold some adjacent triangles, the selection of a vertex implies 
that every triangle that has the vertex selects the position as a 
best view position with respect to all the positions which the 
triangles contain. 

To solve the problem, it can also be expressed in other 
ways: Given an initial dense triangle data set, it transforms 
the data set into the approximated data set with provable 
guarantees. We found a similar problem in computer 
graphics, which uses mesh simplification.  
Among the previous approaches in mesh simplification, the 
edge decimation method shows very good simplification 
quality though the algorithm speed is slow. So, we adopt 
mesh decimation method for sampling. 
 

C. Triangulated Views-Selection based on Edge Collapse 
Our simplification algorithm is based on the iterative 

contraction of vertex pairs, which has generally been used in 
previous work. A pair contraction, which we will write 
as v)v,v( 21 → , moves the vertices 1v  and 2v  to the new 

position v , connects all their incident edges to 1v , and 

deletes the vertex 2v . Subsequently, any edges or faces 
which have become degenerate are removed. The effect of a 
contraction is small and highly localized. If )v,v( 21  is an 
edge, then one or more faces will be removed (see Figure 3). 

contract

Before After

1v
2v v

 
Fig. 3. Edge collapse. The highlighted edge is contracted into 
a single point. The shaded triangles become degenerate and 
removed during the contraction. 
 
The next consideration is how to select the next edge to 
collapse. The trick to producing good optimized results is to 
select the edge that, when collapsed, will cause the smallest 
visual quality change to the entire warped position. The 
proposed collapse process can be divided into two steps: 
 

a. compute all edge collapse cost, 
b. perform the edge collapse operation 
 
To define the cost, we attempt to characterize the error at 
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each edge. The error at an edge means the average error of the 
updated triangles which are jointed by the single point when 
the edge is contracted into a single point. The smaller error at 
an edge specifies the elimination of the edge has little effect 
on the visual quality of each warped position within the 
triangles. In this case, the collapse operator does not affect 
the original triangle structures. By performing the edge 
collapse hypothetically, we can derive the cost error. The 
overall procedure of computing edge collapse cost is 
described in Figure 4. 

 

v1 v2 v

 
(a)                                              (b) 

T1

T2

v1 v2

 
(c)                                               (d) 

v v

 
(e)                                               (f) 

 
Fig. 4. The procedure of computing edge collapse cost. (a) 
select a valid pair, (b) compute the contraction target v  for 
each valid pair )v,v( 21 , (c) remove any triangles (T1 and 

T2) that have both 1v  and 2v  as vertices hypothetically, (d) 

update the remaining triangles that use 1v  as a vertex to use 

2v  instead hypothetically, (e) change the value of v  into the 

value of 1v  hypothetically, (f) remove vertex 2v  
hypothetically and compute the error of the updated triangles 
which are jointed by the contraction target v . The error 
becomes the cost of edge )v,v( 21 . This procedure is 
repeated until all valid pairs are visited. 

 
The initial computed cost is placed in a heap, which places 
the minimum cost pair at the top. The edge collapse operation 
iteratively removes the pair )v,v( 21  of least cost from the 
heap, contracts this pair and updates the costs of all valid 
pairs involving 1v . 
In order to perform the contraction v)v,v( 21 → , we must 
choose a position for v . The candidates for the new position 
v  are all vertices connected with the vertices 1v  and 2v . It 
would be nice to find a position for v  which minimizes error 
function ( )vΔ . Eventually the determination of new position 
v  depends on which candidate position has minimum 
average error. However, since the computational cost for 

finding new position is too high, we use a simple scheme 
which selects either 1v , 2v  or ( ) 2vv 21 +  depending on 
which one of these produces the lowest value of ( )vΔ . 

D. Estimating the Reconstruction Error 
To estimate the cost of each edge, the average error of the 
updated triangles is utilized. The error of each triangle can be 
estimated by the average error of the warped images with 
respect to the overall position in a triangle. However, since 
the cost of computing overall position in each triangle is too 
high, we use the centroid (center of gravity) of the triangle as 
a representative destination frame to approximate error value. 

Every pixel i from every selected reference frame is 
warped to its new location in the destination image. For every 
destination pixel j with coordinates (uj, vj), let the source map 
Mj={i0, i1, i2…} be the set of pixels from different source 
images which map to (uj, vj). Among the warped pixels, the 
front most pixel imax with the maximal Z value z(imax) from 
among Mj must be determined. Subsequently, we construct 
the blend map '

jM  which is the subset containing all pixels 

at a depth within a ε-interval around zmax: 
 

 
}|)()(| |{ max

' ε<−∈= izizMiM jj . (1) 

 
The final color of the pixel is determined by blending from all 
pixels in 'M  using a weighted sum: 
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(2) 

 
The weights account for the importance of each source image 
with respect to the final image and can be chosen as the 
inverse distance between the destination view point and the 
view point associated with the source pixel. 

To evaluate the performance of the 3D warping algorithm, 
we need a quantitative way to estimate the quality of the 
warped images. Two general approaches to this are to 
compute error statistics with respect to some ground truth 
data and to evaluate the synthetic images obtained by 
warping the reference by the computed disparity map. In our 
case, since we already sampled all images at every sample 
position, the evaluation of the performance is achieved by 
ground truth data using the following two quality measures: 
 

a. RMS (root-mean-squared) error between the 
computed warped image )(B

jd  and the sampled 

ground truth image )(T
jd , 
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where N is the total number of pixels in the destination 
image. 

 
b. Percentage of bad matching pixels, 
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where dδ  is a disparity error tolerance. 
 
Accordingly, the total reconstruction error can be 

expressed as follows: 
 

.BRE βα +=  (5) 

 
We select the weight of RMS (α ) as 10.0 and the weight of 
percentage of bad matching pixels ( β ) is 0.1. We think the 
bad matching pixels have a great influence on the quality of 
scene and adjusted the parameters until we found an adequate 
weighting value. In addition, the disparity error tolerance dδ  
sets to 15.0. 

IV. EXPERIMENTAL RESULTS 
The proposed algorithm was implemented on a Pentium IV 

PC with a 1.7GHz CPU and 521Mbyte memory. We captured 
a synthetic environment using 3D Studio Max. We captured 
three views at a location with 90° FOV and acquired a dense 
Sea of Images through a large environment, which yields an 
image every couple of inches (see Figure 5)[4].  

Four color and depth map images at the same camera 
position were stitched into a panoramic image. At that time, 
we captured the rays with regular angular resolution.  The 
amount of the test data is 450 images which are 15 stitched 
images with respect to 30 paths. The sample data in Figure 6 
shows one of the synthesized panoramic images. 

 

 
Fig. 5. A scene environment which we utilize for 
experiments. We captured 15 stitched images with respect to 
30 paths. 
 

(a) (b) (c) (d) 

 

(e) 
Fig. 6. Sample image of input panorama sequence. We have 
captured four views at the same location as illustrated in (a), 

(b), (c) and (d) respectively. The (e) is a result of stitching 
with them. 
 

In order to verify the effectiveness and robustness of the 
edge collapse scheme for triangle views selection, several 
experiments were performed. The performances of the 
experiment results are evaluated by the reconstruction error 
as shown in section 3.4. To compare the result of the 
decimation, we also estimate the errors on other two test data. 
First, we triangulate initial dense data sample (a) and estimate 
the reconstruction error. In this case, it is needless to say that 
the reconstruction error of the triangle data of the initial 
sample is superior to the result of the proposed method. This 
experiment plays a role in determining the criterion on the 
best reconstruction quality. Second, we compared the 
proposed method (c) with the uniform sampling method (b) 
(when given the same number of decimated samples).  For 
the uniform sampling, multiple path-based capture 
configuration is utilized[4]. Table 1 shows the experimental 
results on the triangle views selection based on edge collapse. 

 

Table 1 Experimental results on the best triangle views 
selection algorithm. 

Test sample # of 
sample

# of 
triangle mean error std. 

deviation 

Initial sample (a) 450 836 1.360674 0.056641 

Uniform sample 
(b) 21 24 2.461836 0.618503 

Edge collapse (c) 21 30 1.769296 0.278682 

 
The test scene is captured with reference depth images 

according to the multiple path based capture configuration. 
The scene is synthetic and contains 48,000 primitives. This is 
a relatively simple model, but the performance of 
walkthrough is the same without the scene complexity. 
Figure 7 shows a sequence of images rotating from one point 
and Figure 8 shows novel views generated by translating 
along the arbitrary direction. To prevent the dense selected 
sample, we permit a reasonable error value as 1.85. So we are 
quite willing to improve the reconstruction quality by 
adjusting the lower quality threshold. In the circumstances, 
the initial images are reduced to 21 reference images from the 
proposed sampling methods. 
 

 
Fig. 7. Sequence of images rotating from one point. 
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Fig. 8. Sequence of images by translating along the arbitrary 
direction. 

V. CONCLUSION 
In this paper, we provided a new method of decremental 

sampling for determining the optimal triangulated data set. 
Compared with the traditional incremental sampling, the 
proposed decremental sampling has more practical 
considerations under the non-uniform sampling 
circumstances. Especially, considering that the general 3D 
image warping based reconstruction is achieved by referring 
the multiple views, we have established a new framework on 
decremental sampling for this purpose with a triangle mesh 
optimization mechanism. We were able to reduce the 
sampling rate by 85% with respect to the capture rate of every 
couple of inches in experiment without sacrificing the quality 
of the warped images.  
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