

Abstract— The development of software projects

requires the co-ordination of the efforts of a team of
professionals with varying skills. The major problem in
software development is to assign the right personnel to
the right job at the right time and at the right cost. In this
study, we propose a skill-to-time model in which the task
processing time varies in accordance with the level of skill
possessed by the personnel assigned to the task. We cast
the problem as a multi-objective optimization problem
and simultaneously optimize the development cost and
the development time using the Multi-Objective Particle
Swarm Optimization algorithm. The optimization result
is a well-defined and well-spread Pareto front
representing the trade-off between development time and
development cost.

Index Terms— Multi-Objective Optimization,
Multi-Objective Particle Swarm Optimization

I. INTRODUCTION

A. Skill-based allocation
 The problem faced by the management in software
development is one of human resource allocation, or staffing,
i.e., given a group of available developers and a set of project
activities, which developers to activity allocation yields more
value to the organization? In this paper, we propose a
skill-based allocation scheme in which personnel are
allocated to the various tasks in a software development
project in accordance with their skills. The study illustrates
the use of the Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm in simultaneously minimizing the
development cost and the development time.
 The skill-based allocation of personnel to the tasks in
software development projects is a variation of the
well-known scheduling problems. The scheduling problems
focus their attention on the time-table, shifts, breaks, holidays
– with the implicit assumption that a given pool of personnel
possess identical level of skills. The skill-based allocation
problem we consider in this study focuses its attention on the
allocation of staff to the tasks taking into consideration the

Manuscript received December 30, 2009. This work has been supported

by the Open Research Center Project funds from “MEXT” of the Japanese
Government (2007-20011).

T. Gonsalves is with the Department of Information & Communication
Sciences, Sophia University, Tokyo, Japan (phone: 81-3-3238-4143; fax:
81-3-3238-3311; e-mail: t-gonsal@ sophia.ac.jp).

K. Itoh is with the Department of Information & Communication
Sciences, Sophia University, Tokyo, Japan (e-mail: itohkiyo@ sophia.ac.jp).

matching of the staff skills to those required for the
processing of tasks. Several research studies have been
devoted to the staffing problem. Baretto et al. address project
staffing as a constraint satisfaction problem [10] and define
optimizable utility functions, while Acuna and Juristo deal
with the effect of team performance on the overall
development result [1].
 It is extremely difficult to find good solutions to these
highly constrained and complex problems and even more
difficult to determine optimal solutions that minimize costs,
meet employee preferences and satisfy all the workplace
constraints. Different solution techniques are in use –
mathematical programming techniques [6], [11], [12], [28],
heuristics [7], [8], [19], [22], [36] and the AI approach of
using meta- heuristics [2], [3]. Finding an optimal solution to
the skill-based staffing problem proposed in this study
constitutes a multivariate, multimodal, combinatorial
optimization problem involving many constraints, which
clearly, cannot be solved by exhaustive methods.
 A major goal of software engineering is to produce higher
quality software, while keeping effort expenditure and
schedule time to a minimum. This is the motivation of our
research. We design the MOPSO algorithm in such a way that
it allocates the personnel to the development tasks which
minimizes the development cost and the development time.
The Particle Swarm Optimization (of which MOPSO is a
variation) is a simple yet powerful biologically inspired
swarm intelligence paradigm [30], [31] that is rapidly gaining
importance in Computational Intelligence [20], [21]. Its
applications are also rapidly expanding [31]. To the best of
our knowledge, this study is the first attempt to apply the
MOPSO meta-heuristic to optimize the software
development projects cost and time simultaneously.

B. Multi-Objective Optimization
 Most real-world optimization problems have multiple
objectives which are often conflicting. The goal of
multi-objective optimization (MOP) is to optimize the
conflicting objectives simultaneously. In this section, we
define the general form of a MOP and Pareto dominance for
identifying optimal solutions. Towards the end of the section,
we describe the use of Evolutionary Algorithms to solve
MOP problems.
 Most multi-objective optimization algorithms use the
concept of domination. In these algorithms，two solutions are
compared on the basis of whether one solution dominates the
other or not. Assume that there are M objective functions to
be optimized and the problem is one of minimization. A
solution x(1) is said to dominate the other solutions x(2), if
conditions (1) and (2) are both true [17].

Multi-Objective Optimization for Software
Development Projects

Tad Gonsalves and Kiyoshi Itoh, Members, IEEE

1. The solution x(1) is no worse than x(2) in all objectives, or
fj(x(1)) ≯ fj(x(2)) for all j = 1, 2,…M.

2. The solution x(1) is strictly better than x(2) in at least one

objective, or fj(x(1)) < fj (x(2)) for at least one j belonging
to {1,2,..M}.

 lf either of the above conditions is violated，the solution
x(1) does not dominate the solution x(2). The non-dominated
solutions give rise to a Pareto front. The points on the front
are used to select a particular combination of functions that
are in a trade-off balance.

Fig.1. Pareto Dominance (min-min problem)

Figure 1 illustrates the concept of Pareto dominance for the
minimization of two objective functions. Solution S is
dominated by solution P in the f1 objective, while solution T
is dominated by solution R in the f2 objective. The solutions P,
Q, R are Pareto-optimal solutions since none of them is
dominated by any other solutions.

II. SKILL-BASED STAFF ALLOCATION
 In this section, we explain the skill-based allocation
approach in which personnel are assigned to the development
tasks in accordance with their skills. The assignment
according to skills can result in the increase of the expected
task processing time in case of ill-assignment.

A. Skill levels of the staff
 Each personnel hired or employed by the management for
the software development project possesses a varying amount
of skills. The skills represent the knowledge, expertise and
capabilities of the staff in database, Java programming,
teamwork, object-oriented design, requirement elicitation
techniques, test techniques, etc. The skill levels are within the
1 ~ 5 range as shown in Table 1. The cost per day of the
personnel is also listed in Table 1.

Table 1 Developmental personnel and their skill levels

B. Allocation according to skill level
 Each task in the development phase contains a list of skills
that are required to perform that task. Moreover, each skill
has a certain level that has to be met if the task is to be
performed on time. Personnel are allocated to the tasks in
accordance with their skill levels. In our skill-based
allocation model, the task process time varies in proportion to
the match between the skills required to perform the task and
those possessed by the personnel. If q represents the skills
required to perform the task and p the skills possessed, then
the fractional difference between the skills required for the
task and those actually possessed by the assigned personnel is
given by:

 δ = (p-q)／q ; -1< δ ≤ 0 (1)

The estimated processing time, is given by:

 T = To χδ (2)

where, χ represents the extension coefficient determined

by the domain experts’ heuristics and To the original task
processing time. Figure 2 shows the variation of To (=20
days) for three different values of χ . As shown in the diagram,
the task process time decreases as the skills possessed by the
staff allocated to the task match the skills required to process
the task.

Fig.2 Skill-dependent expansion of the task processing time

Developmental skills

P1 P2 P3 P4 P5 P6 P7
Database 3 3 4 3 3 3 4
Java 3 4 3 3 4 4
Negotiation 2 2 3 2 3
Team work 2 2 3 2 3 3
Object oriented design 3 4 4
Telecommunications 3 3 4
Object oriented analysis 3 4 4
Relationship with people 2 3 3
Testing 3 3
Requirements elicitation 3

Skill lelvels total (q) 10 18 27 18 11 7 29
Personnel cost/day (yen) 15,000 25,000 30,000 20,000 10,000 15,000 35,000

Software development personnel and thier skill levels

5

10

15

20

25

30

35

-1 -0.8 -0.6 -0.4 -0.2 0

T
 (d

ay
s)

δ

χ =0.60

χ =0.65

χ =0.70

f1

f2

P

R

Q

S

T

 III. Optimization problem formulation

 In general, a multi-objective minimization problem with M
decision variables and N objectives can be stated as:

 Minimize fi (x) = 1,…, N (3)
 where x = (x1 ,..., xm) ∈ X

 subject to : gj (x) = 0 j = 1,…, M (4)
 hk (x) ≤ 0 k = 1,…, K

 Here, fi is the ith objective function, x is the decision
vector that represents a solution and X is the variable or
parameter space. The functions gj and hk represent the
equality and the inequality constraints, respectively. The
desired solution is in the form of a “trade-off” or compromise
among the parameters that would optimize the given
objectives. The optimal trade-off solutions among the
objectives constitute the Pareto front. MOP deals with
generating the Pareto front, which is the set of non-dominated
solutions for problems having more than one objective. A
solution is said to be non-dominated if it is impossible to
improve one component of the solution without worsening
the value of at least one other component of the solution. The
goal of multi-objective optimization is find the true and
well-distributed Pareto front consisting of the non-dominated
solutions.

A. Objective functions
Project development cost

If the cost per unit time of the jth personnel is PC and the
total number of personnel allotted to the project development
is m, then the total development cost is

 f1 = ∑
=

m

1 j

PC j (5)

Project development duration
 If PTj is the processing time of the jth task in the project and
QTj is the queuing time of the jth task in the project for
resource availability, then the actual duration of the project is
given by:

 f2 = ∑
=

m

1 j

(QTj + PTj) (6)

B. Constraints
 Task precedence relations
 The series of tasks in the software development project
have precedence relations among them. If STj is the starting
time of the jth task and FTj the finishing time, then the
precedence relation of the two consecutive tasks can be
expressed as:

 FT(j-1) < STj ∀j (7)

Personnel Availability
 At a given time, personal can be allocated to a task only if
they are available. The availability hard constraints imply
that no personnel can be simultaneously allocated to more
than one task at a time.

 Pj(t) => τi(t) ≠ Pj(t) => τk(t) ∀i,j,k (8)

III. EVOLUTIONARY ALGORITHMS & MOPSO
 Evolutionary Algorithms (EA) seem to be especially
suited to MOP problems, due to their abilities to search
simultaneously for multiple Pareto optimal solutions and to
perform better global searches of the search space. Many
evolutionary algorithms have been developed for solving
MOP. Examples are: GA [25], NSGA-II [16], a variant of
NSGA (Non-dominated Sorting Genetic Algorithm) [39];
SPEA2 [43-44], which is an improved version of SPEA
(Strength Pareto Evolutionary Algorithm); and PAES (Pareto
Archived Evolution Strategy). These EAs are
population-based algorithms that possess an in-built
mechanism to explore the different parts of the Pareto front
simultaneously. The Particle Swarm optimization (PSO),
which was originally designed for solving single objective
optimization problems, is also extended to solve
multi-objective optimization problems. The extension of
PSO to MOPSO (Multi-objective Particle Swarm
Optimization) is found in [4], [13], [14], [23], [26], [27],
[32-35], [37], [38].

A. PSO
 The Particle Swarm Optimization (PSO) algorithm
imitates the information sharing process of a flock of birds
searching for food. The population-based PSO conducts a
search using a population of individuals. The individual in
the population is called the particle and the population is
called the swarm. The performance of each particle is
measured according to a predefined fitness function. Particles
are assumed to “fly” over the search space in order to find
promising regions of the landscape. In the minimization case,
such regions possess lower functional values than other
regions visited previously. Each particle is treated as a point
in a d-dimensional space which adjusts its own “flying”
according to its flying experience as well as the flying
experience of the other companion particles. By making
adjustments to the flying based on the local best (pbest) and
the global best (gbest) found so far, the
swarm as a whole converges to the optimum point, or at least
to a near-optimal point, in the search space.
 The notations used in PSO are as follows: The ith particle
of the swarm in iteration t is represented by the d-dimensional
vector, xi(t) = (xi1, xi2,…, xid). Each particle also has a position
change known as velocity, which for the ith particle in
iteration t is vi(t) = (vi1, vi2,…, vid). The best previous position
(the position with the best fitness value) of the ith particle is pi
(t-1) = (pi1, pi2,…, pid). The best particle in the swarm, i.e., the
particle with the smallest function value found in all the
previous iterations, is denoted by the index g. In a given
iteration t, the velocity and position of each particle is
updated using the following equations:

 vi(t) = wvi(t-1) + c1r1(pi(t-1) - xi(t-1))
 + c2r2(pg(t-1) - xi (t-1)) (9)

 and

 xi(t) = xi(t-1) + vi(t) (10)

where, i =1, 2,…,NP; t = 1, 2,…,T. NP is the size of the
swarm, and T is the iteration limit; c1 and c2 are positive
constants (called “social factors”), and r1 and r2
are random numbers between 0 and 1; w is the inertia weight
that controls the impact of the previous history.

B. MOPSO
 The Multi-Objective Particle Swarm Optimization
(MOPSO) is an extension of the single objective Particle
Swarm Optimization (PSO). In PSO, gbest and pbest act as
guides for the swarm of particles to continue the search as the
algorithm proceeds. The main difficulty in MOPSO is to find
the best way of selecting the guides for each particle in the
swarm. This is because there are no clear concepts of pbest
and gbest that can be identified when dealing with a set of
multiple objective functions. Our algorithm is similar to the
ones described in [4], [13], [14]. It maintains an external
archive A, containing the non-dominated solutions found by
the algorithm so far.
 The algorithm begins with the initialization of an empty
external archive, A (line 1 in Figure 4). The positions (xi) and
velocities (vi) of a swarm of N particles are initialized
randomly (line 2). The number of Perspectives assigned to
each context and the service time of the contexts are
randomly generated within the given bounds imposed by the
management (Refer to Table 1 for the representation of a
typical particle). The operation of the service system is
simulated by means of the discrete event simulator and the
values of f1 (service cost) and f2 (waiting cost) for each
particle are computed using equations 5 and 6, respectively.
The initial position of each particle is considered to be its
personal best (Pi = xi) as well as the global best (Gi = xi).
 At each iteration t the velocities of the positions of the
particles are updated using equation 9. The velocities of each
particle are forced into the feasible bounds, if they have
crossed the lower or the upper bounds. Similarly, the particle
positions are updated using equation 10 (lines 5-8). This is
followed by the evaluation of the objective functions f1 and
f2 for each of the particles (line 9). Any solutions which are
not weakly dominated by any member of the archive are
added to A (line 12) and any elements of A which are not
dominated by xi are deleted from A.
 The crucial parts of the MOPSO algorithm are selecting
the personal and the global guides. If the current position of
xi weakly dominates Pi or if xi and Pi are mutually
non-dominating, then Pi is set to the current position (lines
15-17). Members of A are mutually non-dominating and no
member of the archive is dominated by any xi. All the
members of the archive are, therefore, candidates for the
global guide. The algorithm pseudo-code is shown in Figure
3.
1: A := ∅
2: { xi, vi, Gi, Pi} i = 1,…,N
3: for t := 1 : G
4: for i := 1 : N
5: for k := 1 : K
6: vik := wvik + r1(Pik − xik) + r2(Gik − xik)
7: xik := xik + vik
8: end
9: yi := f (xi)
10: if xi ≰ u ∀u ∈ A

11: A := {u ∈ A | u ≮ xi }
12: A := A U xi
13: end
14: end
15: if xi ≤ Pi
16: Pi := xi
17: end
18: Gi := select Guide(xi , A)
19: End

Fig.3. MOPSO Algorithm

IV. OPTIMIZATION RESULTS USING MOPSO
 The level of skills and time needed to process the tasks are
shown in Table 2, while the optimized skill-based allocation
of the personnel to the tasks, including the extension of the
processing time as a function of the total level of skills, is
shown in Table 3. The queuing time of each task is obtained
by means of discrete event simulation [9], [24]. The total
development time is the sum of the processing time and the
waiting (queueing) time. The cost per personnel corresponds
to the time the personnel spend on a task to which he/she is
allocated.

Table 2. Skills needed to process tasks

 The Pareto front representing the trade-off between the
software development cost and software development time is
shown in Figure 4.

 Tasks Skills Skill Process

needed for task processing levels time (days)

Java 4
Negotiation 5
Experience in telecommunications 5 60
Object oriented analysis 5
Tests techniques 3
Requirements elicitation techniques 8

Database 3
Analysis Java 3

Team work 4 70
Object oriented design 4
Object oriented analysis 8
Relationship with people 5

Database 7
Design Java 3

Team work 6 80
Object oriented design 7
Object oriented analysis 2

Database 7
Coding Java 7

Team work 3 110
Experience in telecommunications 5

SKILLS NEEDED FOR TASKS PROCESSING

Requirements
elicitation

Table 3. Optimized skill-based personnel allocation

 Tasks Personnel Skill Process time
(days)

Tasks queue Cost

allocation levels /personnel time (days) (Yen)

P2 10 5.63 1.43 140630
P3 14 7.88 0.00 236250
P4 15 8.44 3.66 168750
P5 9 5.06 1.99 50625
P6 16 9.00 2.27 135000

36.00 9.35 731255

P1 11 9.24 0.07 138600
Analysis P2 15 12.60 0.42 315000

P5 10 9.06 0.52 90604
P6 14 12.69 0.83 190270

43.59 1.83 734474

P1 10 8.57 0.20 128570
Design P4 11 9.43 3.36 188570

P5 9 7.71 0.88 77143
P6 10 8.57 1.97 128570
P7 16 13.71 0.24 480000

48.00 6.65 1002853

P1 11 11.52 0.04 172860
Coding P3 13 13.62 0.00 408570

P4 13 13.62 0.88 272380
P5 10 10.48 0.44 104760
P6 16 16.76 0.62 251430

66.00 1.98 1210000

P2 13 17.83 0.37 445710
Testing P4 13 17.83 1.23 356570

P5 9 12.34 0.94 123430
48.00 2.54 925710

total

total

Requirements
elicitation

SKILL-BASED PERSONNEL ALLOCATION

total

total

total

Fig.4. Pareto front : Development cost v/s time

V. CONCLUSION
 Software development problem presents complex
scenarios. In this study, we considered the problem of
allocating the right personnel to the right job at the right time
and at the right cost. We presented the skill-based allocation
model in which the personnel are assigned to the tasks in
accordance with the level of their skills. Any assignment that
produces skill mismatch increases the estimated task
processing time. Although team performance have an impact

on the overall development result, we concentrated on the
allocation of personnel so that their combined skills as a team
matched the skills required to perform tasks in the software
development multi-project scenario.
 We simulated the schedule to determine the allocation of
the limited resources to the sub-tasks and simultaneously
optimized the developmental cost and the development time
using the evolutionary Multi-Objective Particle Swarm
Optimization (MOPSO) algorithm. The optimization result is
a well-defined and well-spread Pareto front representing the
trade-off between development time and development cost.

References

[1] Acuna, S.T., Juristo, N., Modeling Human Competencies in
the Software Process, ProSim’03, Portland, 2003.

[2] Aickelin, U., Dowsland, K., Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem,
Journal of scheduling 3 (2000) 139–153.

[3] Al-Tabtabai, H., Alex, A., Manpower scheduling optimization
using genetic algorithm, in: Proceedings of the 1997 4th
Congress on Computing in Civil Engineering, Philadelphia,
1997, pp. 702–709.

[4] Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A
MOPSO algorithm based exclusively on Pareto dominance
concepts. In: Lecture Notes in Computer Science, Evolutionary
Multi-Criterion Optimization, vol. 410, pp. 459--473. Springer,
Heidelberg (2005)

[5] Alvarez-Valdes, R., Crespo, E., Tamarit, J., Labour scheduling
at an airport refuelling installation, Journal of the Operational
Research Society 50 (3) (1999) 211–218.

[6] Azarmi,N., Abdulhameed, W., Workforce scheduling with
constraint logic programming, BT Technology Journal 13 (1)
(1995) 81–94.

[7] Bailey, J., Alfares, H., Lin, W., Optimization and heuristic
models to integrate project task and manpower scheduling,
Computers and Industrial Engineering 29 (1995) 473–476.

[8] Baker, E., Bodin, L., Finnegan,W., Ponder,R., Efficient
heuristic solutions to an airline crew scheduling problem, IIE
Transactions 11 (2) (1979) 79–85.

[9] Banks, J., Carson II, J.S., Discrete-Event System Simulation.
Prentice-Hall, New Jersey (1984).

[10] Barreto, A., Barros, M., Werner, C., Staffing a Software
Project: a Constraint Satisfaction Approach, EDSER'05, 2005,
St. Louis, Missouri, pp.1-5.

[11] Caprara, A., Focacci, F., Lamma, E., Mello, P., Milano, M.,
Toth,P., Vigo,D., Integrating constraint logic programming
and operations research techniques for the crew rostering
problem, Software Practice and Experience 28 (1) (1998)
49–76.

[12] Cheng, B., Lee, J., Wu, J., A nurse rostering system using
constraint programming and redundant modeling, IEEE
Transactions on Information Technology in Biomedicine 1 (1)
(1997) 44–54.

[13] Coelho, C., Lechunga, M.: MOPSO: A proposal for multiple
objective particle swarm optimization. Proceedings of the 2002
Congress on Evolutionary Computation. pp. 1051--1056. IEE
Press (2002).

[14] Coelho, C., Pulido, G., Salazar, M.: Handling multiobjectives
with particle swarm optimization. IEEE Transactions on
Evolutionary Computation. Vol. 8, pp. 256-- 279 (2004)

[15] Deb, K., Optimization for engineering design: Algorithms and
examples. Prentice Hall, Delhi (1995).

[16] Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist
nondominated sorting genetic algorithm for multiobjective
optimization: NSGA-II. Proceedings of Parallel Problem
Solving from Nature VI Conference. pp. 849–858 (2000)

200

220

240

260

280

300

320

4000000 4500000 5000000 5500000

Development cost (Yen)

D
ev

el
op

m
en

t t
im

e(
da

ys
)

[17] Deb, K., Multi-objective optimization using evolutionary
algorithms, John Wiley & Sons, London, 2001.

[18] Dowsland, K., Nurse scheduling with tabu search and strategic
oscillation, European Journal of Operational Research 106
(2–3) (1998) 393–407.

[19] Emden-Weinert, T., Proksch, M., Best practice simulated
annealing for the airline crew scheduling problem, Journal of
Heuristics 5 (1999) 419–436.

[20] Englebrecht, A.P., Computational Intelligence: An
Introduction, John Wiley & Sons, London, 2002

[21] Englebrecht, A.P., Fundamentals of Computational Swarm
Intelligence. John Wiley & Sons, London, 2005.

[22] Ernst, A. T., Jiang, H., Krishnamoorthy, M., and D. Sier, Staff
scheduling and rostering: A review of applications, methods
and models, European Journal of Operational Research,
Volume 153, Issue 1, 16 February 2004, Pages 3-27.

[23] Fieldsend, J.E., Singh, S.: A multi-objective algorithm based
upon particle swarm optimization, an efficient data structure
and turbulence. Proc. 2002 U.K. Workshop on Computational
Intelligence, Birmingham, U.K. pp. 37—44 (2002)

[24] Fishman, G. S.: Principles of Discrete Event Simulation: John
Wiley & Sons, New York, (1978)

[25] Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for
Multiobjective Optimization: Formulation, Discussion, and
Generalization. Proc. of the Fifth International Conference on
Genetic Algorithms, Morgan Kaufmann, San Mateo, CA
(1993)

[26] Hu, X., Eberhart, R.: Multiobjective optimization using
dynamic neighborhood particle swarm optimization. Proc.
Congr. Evolutionary Computation, vol. 2, pp. 1677--1681,
Honolulu, (2002)

[27] Hui, X., Eberhart, R.C., Shi,Y.: Particle swarm with extended
memory for multiobjective optimization. Proc. 2003 IEEE
Swarm Intelligence Symp. Indianapolis, IN, pp. 193--197
(2003)

[28] Jaumard, B., Semet, F., Vovor,T., A generalized linear
programming model for nurse scheduling, European Journal of
Operational Research 107 (1) (1998) 1–18.

[29] Kennedy J., Eberhart, R.C.: Particle swarm optimization. Proc.
IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp.
1942--1948 (1995)

[30] Kennedy J., Eberhart, R.C.: Swarm Intelligence, Morgan
Kaufmann (2001) 18. Kennedy J., Eberhart, R.C.: Particle
swarm optimization. Proc. IEEE Int. Conf. on Neural Networks,
Piscataway, NJ, pp. 1942--1948 (1995)

[31] Kennedy J., Eberhart, R.C.: Swarm Intelligence, Morgan
Kaufmann (2001)

[32] Knowles, J. Corne, D.: Approximating the nondominated front
using the Pareto archived evolution strategy. Evolutionary
Computing. vol. 8, pp.149 --172 (2000)

[33] Lee, M.A., Esbensen, H.: Evolutionary algorithms based
multiobjective optimization techniques for intelligent systems
design. Biennial Conference of the North American Fuzzy
Information Processing Society, CA, pp. 360-364 (1996)

[34] Li X.: A nondominated sorting particle swarm optimizer for
multiobjective optimization. In: Lecture Notes in Computer
Science, vol. 2723, Proc. Genetic and Evolutionary
Computation—GECCO 2003—Part I, pp. 37—48, Berlin
(2003)

[35] S. Mostaghim and J. Teich, “Strategies for finding good local
guides in Multi-Objective Particle Swarm Optimization
(MOPSO),” Proc. 2003 IEEE Swarm Intelligence Symp.,
Indianapolis, IN, Apr. 2003, pp. 26–33.

[36] Nooriafshar, M. A heuristic approach to improving the design
of nurse training schedules, European Journal of Operational
Research 81 (1) (1995) 50–61.

[37] Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm
optimization method in multiobjective problems. Proc. 2002
ACM Symp. Applied Computing (SAC’2002), Madrid, pp.
603--607 (2002)

[38] Ray, T., Liew, K.M.: A swarm metaphor for multiobjective
design optimization. Eng. Opt., vol.34, no.2, pp.141--153
(2002)

[39] Srinivas, N., Deb, K.: Multiobjective optimization using
nondominated sorting in genetic algorithms. Evol. Comput.,
vol.2, no.3, pp. 221--248 (1994)

[40] E. Zitzler, “Evolutionary algorithms for multiobjective
optimization: Methods and applications,” Ph.D. dissertation,
Swiss Fed. Inst. Technol.(ETH), Zurich, Switzerland, Nov.
1999.

[41] E. Zitzler and L. Thiele, “Multiobjective evolutionary
algorithms: A comparative case study and the strength Pareto
approach,” IEEE Trans. Evol. Comput. vol. 3, pp. 257–271,
Nov. 1999.

[42] E. Zitzler, K. Deb, and L. Thiele, “Comparison of
multiobjective evolutionary algorithms: Empirical results,”
Evol. Comput., 8(2), pp. 173–195, 2000.

[43] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the strength Pareto evolutionary algorithm,” Proc. EUROGEN
2001. Evolutionary Methods for Design, Optimization and
Control With Applications to Industrial Problems, K.
Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T.
Fogarty, Eds., Athens, Greece, Sept. 2001.

[44] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the strength Pareto evolutionary algorithm”, Proceedings of
EUROGEN, 2001.

	INTRODUCTION
	Skill-based allocation
	Multi-Objective Optimization

	skill-based staff allocation
	Skill levels of the staff
	Allocation according to skill level
	Objective functions
	Constraints

	Evolutionary algorithms & mopso
	PSO
	MOPSO

	optimization results using mopso
	conclusion

