
 
 

 

 
Abstract— The development of software projects 

requires the co-ordination of the efforts of a team of 
professionals with varying skills. The major problem in 
software development is to assign the right personnel to 
the right job at the right time and at the right cost. In this 
study, we propose a skill-to-time model in which the task 
processing time varies in accordance with the level of skill 
possessed by the personnel assigned to the task. We cast 
the problem as a multi-objective optimization problem 
and simultaneously optimize the development cost and 
the development time using the Multi-Objective Particle 
Swarm Optimization algorithm. The optimization result 
is a well-defined and well-spread Pareto front 
representing the trade-off between development time and 
development cost. 

 

  
 

Index Terms— Multi-Objective Optimization, 
Multi-Objective Particle Swarm Optimization 
 

I. INTRODUCTION 

A.  Skill-based allocation 
   The problem faced by the management in software 
development is one of human resource allocation, or staffing, 
i.e., given a group of available developers and a set of project 
activities, which developers to activity allocation yields more 
value to the organization? In this paper, we propose a 
skill-based allocation scheme in which personnel are 
allocated to the various tasks in a software development 
project in accordance with their skills. The study illustrates 
the use of the Multi-Objective Particle Swarm Optimization 
(MOPSO) algorithm in simultaneously minimizing the 
development cost and the development time.      
   The skill-based allocation of personnel to the tasks in 
software development projects is a variation of the 
well-known scheduling problems. The scheduling problems 
focus their attention on the time-table, shifts, breaks, holidays 
– with the implicit assumption that a given pool of personnel 
possess identical level of skills. The skill-based allocation 
problem we consider in this study focuses its attention on the 
allocation of staff to the tasks taking into consideration the  
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matching of the staff skills to those required for the 
processing of tasks. Several research studies have been 
devoted to the staffing problem. Baretto et al. address project  
staffing as a constraint satisfaction problem [10] and define 
optimizable utility functions, while Acuna and Juristo deal  
with the effect of team performance on the overall 
development result [1]. 
   It is extremely difficult to find good solutions to these 
highly constrained and complex problems and even more 
difficult to determine optimal solutions that minimize costs, 
meet employee preferences and satisfy all the workplace 
constraints. Different solution techniques are in use – 
mathematical programming techniques [6], [11], [12], [28],  
heuristics [7], [8], [19], [22], [36] and the AI approach of 
using meta- heuristics [2], [3]. Finding an optimal solution to 
the skill-based staffing problem proposed in this study 
constitutes a multivariate, multimodal, combinatorial 
optimization problem involving many constraints, which 
clearly, cannot be solved by exhaustive methods.  
   A major goal of software engineering is to produce higher 
quality software, while keeping effort expenditure and 
schedule time to a minimum. This is the motivation of our 
research. We design the MOPSO algorithm in such a way that 
it allocates the personnel to the development tasks which 
minimizes the development cost and the development time. 
The Particle Swarm Optimization (of which MOPSO is a 
variation) is a simple yet powerful biologically inspired 
swarm intelligence paradigm [30], [31] that is rapidly gaining 
importance in Computational Intelligence [20], [21]. Its 
applications are also rapidly expanding [31]. To the best of 
our knowledge, this study is the first attempt to apply the 
MOPSO meta-heuristic to optimize the software 
development projects cost and time simultaneously. 
 

B.  Multi-Objective Optimization 
     Most real-world optimization problems have multiple 
objectives which are often conflicting. The goal of 
multi-objective optimization (MOP) is to optimize the 
conflicting objectives simultaneously.  In this section, we 
define the general form of a MOP and Pareto dominance for 
identifying optimal solutions.  Towards the end of the section, 
we describe the use of Evolutionary Algorithms to solve 
MOP problems. 
     Most multi-objective optimization algorithms use the 
concept of domination. In these algorithms，two solutions are 
compared on the basis of whether one solution dominates the 
other or not. Assume that there are M objective functions to 
be optimized and the problem is one of minimization. A 
solution x(1) is said to dominate the other solutions x(2), if 
conditions (1) and (2) are both true [17]. 
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1. The solution x(1) is no worse than x(2) in all objectives, or 
fj(x(1)) ≯ fj(x(2))  for all j = 1, 2,…M. 

 
2. The solution x(1) is strictly better than x(2) in at least one 

objective, or fj(x(1)) < fj (x(2)) for at least one j belonging 
to {1,2,..M}. 
 

      lf either of the above conditions is violated，the solution 
x(1) does not dominate the solution x(2). The non-dominated 
solutions give rise to a Pareto front. The points on the front 
are used to select a particular combination of functions that 
are in a trade-off balance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Pareto Dominance (min-min problem) 
 
 

Figure 1 illustrates the concept of Pareto dominance for the 
minimization of two objective functions. Solution S is 
dominated by solution P in the f1 objective, while solution T 
is dominated by solution R in the f2 objective. The solutions P, 
Q, R are Pareto-optimal solutions since none of them is 
dominated by any other solutions. 
 

II. SKILL-BASED STAFF ALLOCATION 
   In this section, we explain the skill-based allocation 
approach in which personnel are assigned to the development 
tasks in accordance with their skills. The assignment 
according to skills can result in the increase of the expected 
task processing time in case of ill-assignment.  
 

A. Skill levels of the staff 
    Each personnel hired or employed by the management for 
the software development project possesses a varying amount 
of skills. The skills represent the knowledge, expertise and 
capabilities of the staff in database, Java programming, 
teamwork, object-oriented design, requirement elicitation 
techniques, test techniques, etc. The skill levels are within the 
1 ~ 5 range as shown in Table 1. The cost per day of the 
personnel is also listed in Table 1. 
 

 

 

 

 

 

 

Table 1 Developmental personnel and their skill levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Allocation according to skill level 
    Each task in the development phase contains a list of skills 
that are required to perform that task. Moreover, each skill 
has a certain level that has to be met if the task is to be 
performed on time. Personnel are allocated to the tasks in 
accordance with their skill levels. In our skill-based 
allocation model, the task process time varies in proportion to 
the match between the skills required to perform the task and 
those possessed by the personnel. If q represents the skills 
required to perform the task and p the skills possessed, then 
the fractional difference between the skills required for the 
task and those actually possessed by the assigned personnel is 
given by: 

 
                              δ = (p-q)／q   ;  -1< δ ≤ 0                      (1) 
 
The estimated processing time, is given by: 
 
                                           T = To χδ                                                    (2) 

 
where, χ  represents the extension coefficient determined 

by the domain experts’ heuristics and To the original task 
processing time. Figure 2 shows the variation of To  (=20 
days) for three different values of χ . As shown in the diagram, 
the task process time decreases as the skills  possessed by the 
staff allocated to the task match the skills required to process 
the task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Skill-dependent expansion of the task processing time  

 

Developmental skills

P1 P2 P3 P4 P5 P6 P7
Database 3 3 4 3 3 3 4
Java 3 4 3 3 4 4
Negotiation 2 2 3 2 3
Team work 2 2 3 2 3 3
Object oriented design 3 4 4
Telecommunications 3 3 4
Object oriented analysis 3 4 4
Relationship with people 2 3 3
Testing 3 3
Requirements elicitation 3

Skill lelvels total (q) 10 18 27 18 11 7 29
Personnel cost/day (yen) 15,000 25,000 30,000 20,000 10,000 15,000 35,000
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               III. Optimization problem formulation 
 
    In general, a multi-objective minimization problem with M 
decision variables and N objectives can be stated as: 

 
                Minimize fi (x)  = 1,…, N                      (3) 
                 where x = (x1 ,..., xm ) ∈ X 

 
          subject to :   gj (x)    = 0      j = 1,…, M                      (4) 
                               hk (x)    ≤ 0   k = 1,…, K 

 
      Here,  fi is the ith objective function, x is the decision 
vector that represents a solution and X is the variable or 
parameter space. The functions gj and hk represent the 
equality and the inequality constraints, respectively. The 
desired solution is in the form of a “trade-off” or compromise 
among the parameters that would optimize the given 
objectives. The optimal trade-off solutions among the 
objectives constitute the Pareto front. MOP deals with 
generating the Pareto front, which is the set of non-dominated 
solutions for problems having more than one objective. A 
solution is said to be non-dominated if it is impossible to 
improve one component of the solution without worsening 
the value of at least one other component of the solution. The 
goal of multi-objective optimization is find the true and 
well-distributed Pareto front consisting of the non-dominated 
solutions. 

 

A. Objective  functions 
Project development cost 

If the cost per unit time of the jth personnel is PC and the 
total number of personnel allotted to the project development 
is m, then the total development cost is 

                                      f1  = ∑
=

m

1  j

PC j                                                   (5) 

 
Project development duration  
    If PTj is the processing time of the jth task in the project and 
QTj is the queuing time of the jth task in the project for 
resource availability, then the actual duration of the project is 
given by: 

                                 f2   = ∑
=

m

1  j  

(QTj + PTj )                               (6) 

 

B.  Constraints 
 Task precedence relations 
    The series of tasks in the software development project 
have precedence relations among them. If STj is the starting 
time of the jth task and FTj the finishing time, then the 
precedence relation of the two consecutive tasks can be 
expressed as:   

    
                                   FT(j-1) <  STj  ∀j                                (7) 

 
Personnel Availability  
    At a given time, personal can be allocated to a task only if 
they are available. The availability hard constraints imply 
that no personnel can be simultaneously allocated to more 
than one task at a time.   

 

                 Pj(t) => τi(t) ≠  Pj(t) => τk(t)   ∀i,j,k                (8) 
 
  

III. EVOLUTIONARY ALGORITHMS & MOPSO 
     Evolutionary Algorithms (EA) seem to be especially 
suited to MOP problems, due to their abilities to search 
simultaneously for multiple Pareto optimal solutions and to 
perform better global searches of the search space. Many 
evolutionary algorithms have been developed for solving 
MOP. Examples are: GA [25], NSGA-II [16], a variant of 
NSGA (Non-dominated Sorting Genetic Algorithm) [39]; 
SPEA2 [43-44], which is an improved version of SPEA 
(Strength Pareto Evolutionary Algorithm); and PAES (Pareto 
Archived Evolution Strategy). These EAs are 
population-based algorithms that possess an in-built 
mechanism to explore the different parts of the Pareto front 
simultaneously. The Particle Swarm optimization (PSO), 
which was originally designed for solving single objective 
optimization problems, is also extended to solve 
multi-objective optimization problems. The extension of 
PSO to MOPSO (Multi-objective Particle Swarm 
Optimization) is found in [4], [13], [14], [23], [26], [27], 
[32-35], [37], [38].   
 

A. PSO 
    The Particle Swarm Optimization (PSO) algorithm 
imitates the information sharing process of a flock of birds 
searching for food. The population-based PSO conducts a 
search using a population of individuals. The individual in 
the population is called the particle and the population is 
called the swarm. The performance of each particle is 
measured according to a predefined fitness function. Particles 
are assumed to “fly” over the search space in order to find 
promising regions of the landscape. In the minimization case, 
such regions possess lower functional values than other 
regions visited previously. Each particle is treated as a point 
in a d-dimensional space which adjusts its own “flying” 
according to its flying experience as well as the flying 
experience of the other companion particles. By making 
adjustments to the flying based on the local best (pbest) and 
the global best (gbest) found so far, the  
swarm as a whole converges to the optimum point, or at least 
to a near-optimal point, in the search space.  
    The notations used in PSO are as follows: The ith particle 
of the swarm in iteration t is represented by the d-dimensional 
vector, xi(t) = (xi1, xi2,…, xid). Each particle also has a position 
change known as velocity, which for the ith particle in 
iteration t is vi(t) = (vi1, vi2,…, vid). The best previous position 
(the position with the best fitness value) of the ith particle is pi 
(t-1) = (pi1, pi2,…, pid). The best particle in the swarm, i.e., the 
particle with the smallest function value found in all the 
previous iterations, is denoted by the index g. In a given 
iteration t, the velocity and position of each particle is 
updated using the following equations: 
  

      vi(t) = wvi(t-1) + c1r1(pi(t-1) - xi(t-1)) 
                                             + c2r2(pg(t-1) - xi (t-1))         (9) 

 
 and 

                             xi(t) = xi(t-1) + vi(t)                        (10) 



 
 

 

 
where, i =1, 2,…,NP; t = 1, 2,…,T. NP is the size of the 
swarm, and T is the iteration limit; c1  and c2 are positive 
constants (called “social factors”), and r1 and r2 
are random numbers between 0 and 1; w is the inertia weight 
that controls the impact of the previous history.  
 

B. MOPSO 
    The Multi-Objective Particle Swarm Optimization 
(MOPSO) is an extension of the single objective Particle 
Swarm Optimization (PSO). In PSO, gbest and pbest act as 
guides for the swarm of particles to continue the search as the 
algorithm proceeds. The main difficulty in MOPSO is to find 
the best way of selecting the guides for each particle in the 
swarm. This is because there are no clear concepts of pbest 
and gbest that can be identified when dealing with a set of 
multiple objective functions. Our algorithm is similar to the 
ones described in [4], [13], [14]. It maintains an external 
archive A, containing the non-dominated solutions found by 
the algorithm so far.     
     The algorithm begins with the initialization of an empty 
external archive, A (line 1 in Figure 4). The positions (xi) and 
velocities (vi) of a swarm of N particles are initialized 
randomly (line 2). The number of Perspectives assigned to 
each context and the service time of the contexts are 
randomly generated within the given bounds imposed by the 
management (Refer to Table 1 for the representation of a 
typical particle).  The operation of the service system is 
simulated by means of the discrete event simulator and the 
values of f1 (service cost) and f2 (waiting cost) for each 
particle are computed using equations 5 and 6, respectively. 
The initial position of each particle is considered to be its 
personal best (Pi = xi ) as well as the global best (Gi = xi ).  
    At each iteration t the velocities of the positions of the 
particles are updated using equation 9. The velocities of each 
particle are forced into the feasible bounds, if they have 
crossed the lower or the upper bounds. Similarly, the particle 
positions are updated using equation 10 (lines 5-8). This is 
followed by the evaluation of the objective functions f1  and 
f2  for each of the particles (line 9).  Any solutions which are 
not weakly dominated by any member of the archive are 
added to A (line 12) and any elements of A which are not 
dominated by xi are deleted from A.  
    The crucial parts of the MOPSO algorithm are selecting 
the personal and the global guides. If the current position of 
xi weakly dominates Pi or if xi and Pi are mutually 
non-dominating, then Pi is set to the current position (lines 
15-17). Members of A are mutually non-dominating and no 
member of the archive is dominated by any xi. All the 
members of the archive are, therefore, candidates for the 
global guide. The algorithm pseudo-code is shown in Figure 
3. 
1:  A :=  ∅       
2:  { xi, vi, Gi, Pi}  i = 1,…,N     
3:  for t := 1 : G       
4:     for i := 1 : N      
5:  for k := 1 : K      
6:      vik := wvik + r1(Pik − xik) + r2(Gik − xik)   
7:      xik := xik + vik 
8:  end 
9:  yi := f (xi)      
10: if xi  ≰ u ∀u ∈ A     

11:     A := {u ∈ A | u ≮ xi }      
12:      A := A U xi       
13:     end 
14:   end 
15:      if xi  ≤  Pi       
16:          Pi :=  xi  
17:      end 
18:      Gi := select Guide(xi , A) 
19:  End 

 
Fig.3. MOPSO Algorithm 

 

IV. OPTIMIZATION RESULTS USING MOPSO 
     The level of skills and time needed to process the tasks are 
shown in Table 2, while the optimized skill-based allocation 
of the personnel to the tasks, including the extension of the 
processing time as a function of the total level of skills, is 
shown in Table 3. The queuing time of each task is obtained 
by means of discrete event simulation [9], [24]. The total 
development time is the sum of the processing time and the 
waiting (queueing) time. The cost per personnel corresponds 
to the time the personnel spend on a task to which he/she is 
allocated.  
 
 

Table 2. Skills needed to process tasks 
 
 
 
 
    The Pareto front representing the trade-off between the 
software development cost and software development time is 
shown in Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Tasks Skills  Skill Process

needed for task processing levels time (days)

Java 4
Negotiation 5
Experience in telecommunications 5 60
Object oriented analysis 5
Tests techniques 3
Requirements elicitation techniques 8

Database 3
Analysis Java 3

Team work 4 70
Object oriented design 4
Object oriented analysis 8
Relationship with people 5

Database 7
Design Java 3

Team work 6 80
Object oriented design 7
Object oriented analysis 2

Database 7
Coding Java 7

Team work 3 110
Experience in telecommunications 5

SKILLS  NEEDED  FOR  TASKS  PROCESSING

Requirements
elicitation



 
 

 

Table 3. Optimized skill-based personnel allocation 

    Tasks Personnel Skill Process time
(days)

Tasks queue Cost

allocation levels /personnel time (days) (Yen)

P2 10 5.63 1.43 140630
P3 14 7.88 0.00 236250
P4 15 8.44 3.66 168750
P5 9 5.06 1.99 50625
P6 16 9.00 2.27 135000

36.00 9.35 731255

P1 11 9.24 0.07 138600
Analysis P2 15 12.60 0.42 315000

P5 10 9.06 0.52 90604
P6 14 12.69 0.83 190270

43.59 1.83 734474

P1 10 8.57 0.20 128570
Design P4 11 9.43 3.36 188570

P5 9 7.71 0.88 77143
P6 10 8.57 1.97 128570
P7 16 13.71 0.24 480000

48.00 6.65 1002853

P1 11 11.52 0.04 172860
Coding P3 13 13.62 0.00 408570

P4 13 13.62 0.88 272380
P5 10 10.48 0.44 104760
P6 16 16.76 0.62 251430

66.00 1.98 1210000

P2 13 17.83 0.37 445710
Testing P4 13 17.83 1.23 356570

P5 9 12.34 0.94 123430
48.00 2.54 925710

total

total

Requirements
elicitation

SKILL-BASED  PERSONNEL  ALLOCATION

total

total

total

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Pareto front : Development cost v/s time 
 

V. CONCLUSION 
     Software development problem presents complex 
scenarios. In this study, we considered the problem of 
allocating the right personnel to the right job at the right time 
and at the right cost. We presented the skill-based allocation 
model in which the personnel are assigned to the tasks in 
accordance with the level of their skills. Any assignment that 
produces skill mismatch increases the estimated task 
processing time. Although team performance have an impact 

on the overall development result, we concentrated on the 
allocation of personnel so that their combined skills as a team 
matched the skills required to perform tasks in the software 
development multi-project scenario.  
    We simulated the schedule to determine the allocation of 
the limited resources to the sub-tasks and simultaneously 
optimized the developmental cost and the development time 
using the evolutionary Multi-Objective Particle Swarm 
Optimization (MOPSO) algorithm. The optimization result is 
a well-defined and well-spread Pareto front representing the 
trade-off between development time and development cost.  
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