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Abstracts-- Fixed controllers can become even 
unstable, with large changes in system 
parameters. This problem can be avoided 
using robust control and adaptive control 
design techniques. To obtain robust 
performance, it is desirable that the closed 
loop poles of the perturbed structure remain at 
prespecified locations for a range of system 
parameters. In the present study, the 
controllers based on adaptive and robust pole 
placement method are implemented on smart 
structures. It was observed that, adaptive pole 
placement controllers are noise tolerant but 
require high actuator voltages to maintain 
stability. However, robust pole placement 
controllers require comparatively small 
amplitude of control voltage to maintain 
stability, but are noise sensitive.  
 
Index Terms – Pole placement, active control, 
adaptive control, robust control 
 
 

I. INTRODUCTION 
 

Un-modeled dynamics, component 
degradation, changing configuration and 
changing payloads can destabilize a fixed gain 
controller based on original system (i.e. nominal) 
model. This led to adaptive and robust control 
techniques. An intensive effort is being done to 
implement the adaptive control techniques to 
adaptive vibration control of smart structures.  
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In this direction, Zeng et al [1] applied 
output feedback variable structure adaptive 
control to a flexible spacecraft. By using the 
neural network based adaptive control 
strategy; Yaun et al [2] controlled the 
composite beam vibrations subjected to 
sudden de-lamination. . Shaw [3] used self 
tuning regulators combined with Minimum 
variance controller to control a spring mass 
system.  

 
Using classical positive position feedback 

control strategy, Rew et al [4] suppressed 
multi-modal vibrations of flexible structures.. 
By using the adaptive predictive control 
strategy, Bai et al [5] suppressed rotor 
vibrations. More recently, Lim et al [6] used 
adaptive bang-bang control for the vibration 
control of civil structures while seismic 
vibrations occur. Lee and Eillot [7] controlled 
a flexible smart beam subjected to step 
disturbance using adaptive feed forward 
control. Crassidis et al [8] controlled the 
vibrations of a beam using H infinity control 
theory. Other researchers like Liu et al. [9] 
also applied H infinity robust control theory 
for control of plate vibration by covering it 
with a controllable constrained layer damping 
layer. In 2004, Xie et al. [10] also applied H 
infinity robust control theory for vibration 
control of a thin plate covered with a 
controllable constrained layer damping layer. 
 

Robust performance means that the 
performance parameters like percentage 
overshoot and settling times remains almost 
same, even though the system parameters are 
perturbed from nominal values. This can be 
achieved by fixing the closed loop (CL) poles 
at certain fixed position. With this, the settling 



time of the disturbed system remains near a 
particular value, even if the system parameters 
are subjected to change. Two inverted L – 
structures, with different geometries are taken for 
study. The tip load keeps on varying to change 
the system parameters. The CL poles are fixed in 
the complex plane so that desired robust 
performance is obtained.  
 
II. MATHEMATICAL MODELING OF SMART 

STRUCTURES 
 
A. FEM Modeling 
 
The schematic diagram of the proposed structure 
(i.e. inverted L) is shown in the fig 1. The 
structure is mounted with two piezoelectric 
patches bonded on its surface acting as sensors 
and actuators. One of which are used as actuator 
and the other one as a sensor. The geometrical 
and mechanical properties of the structure are 
listed in table I. The Lagrange’s equations of 
motion for linear systems are given as below 
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where Δ(t), 
. ..

(t) and  (t)Δ Δ  are the physical 
displacement, velocity and  acceleration 
respectively.  Fig.1 shows the geometry and 
boundary conditions of the structural system. The 
eigenvalue problem can be solved to give the 
natural frequencies and mode shapes for various 
tip loads ranging from 0g – 20g. These modal 
parameters can be used to construct the system 
matrices [9, 10]. 
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Fig.1: Schematic diagram of the inverted L structure 
 
 

Table I: Geometrical and mechanical properties of the 
structure 

Material  

Property Steel  PZT 
Length of Horizontal limb(mm) LH= 100 ------- 
Length of Vertical Limb(mm) LV=100 -------- 

Thickness(mm) ts=1 tp=1 
Length(mm) --- lp=20 
Width(mm) B=10 b=10 

Young’s Modulus(Mpa) Es=210 Ep=64 
Density(Kg/m3) ρs =7800 ρp=5670 

Distance of sensor from Free end 
i.e. x (mm) 

60 

Distance of actuator from Fixed end 
i.e. y (mm) 

20 

Distance of primary source of 
disturbance from jointed point 

 i.e. z (mm) 

20 

 
B.  Piezoelectric Sensing and Actuation 
 

When bending moment is given to the 
structure mounted with PZT patch, certain 
electrical charge is developed in the patch 
[11]. Certain voltage is developed by this 
charge. This developed voltage is a function 
of the strain developed in the flexible structure 
on which this PZT patch is attached. On the 
other hand if a voltage V is applied to a patch 
attached on a distributed structure, a bending 
moment is produced [12]. This bending 
moment is used to reduce the vibrations. 
 

III. ADAPTIVE POLE PLACEMENT 
FEEDBACK CONTROLLERS 
 

In transfer function form, the structural 
system can be represented as a ratio of two 
polynomials G=B/A. An output feedback is 
applied to the system which has a transfer 
function given by H=G/F. The overall transfer 
function of the system is given by 
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which has CL zeros in P and CL poles in Q. 
The co-efficient of the polynomial equation Q 
are called the coefficients of CL characteristic 
equation. Since a s and b s are not available 
but their estimate is available i.e. α s and β s. 
This type of controller in which controller 
parameters are based on the CL poles is called 
Adaptive Pole Placement Controller (APPC). 
 
 



IV ROBUST POLE PLACEMENT CONTROL 
 
It is well known that in order to design a 

robust controller the choice of CL poles depends 
critically on plant transfer function. An arbitrary 
choice of stable CL poles can lead to a very poor 
controller design for certain plants. The present 
approach seeks to find controllers which 
minimize (in some sense) the sensitivity of CL 
poles to perturbations in plant or system 
parameters. In the present work, only Single-
Input, Single-Output case is analyzed and 
implemented.  
 

Let q=[q0  q1 …….q2n-1 ] be the polynomial 
co-efficient of Q(z-1). Defining v =[a0 a1 ….. an b0  
b1 ….bn] as the system vector, x =[h0  h1 ….hn-1 g0  
g1 …..gn-1] as the controller vector and θ as a 2n x 
(2n+2) matrix of shifted controller parameters 
(Sylvester form) i.e. 
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Then it is very straight forward to write the 
CL pole placement equation as           θ v =q. The 
pole placement problem becomes that of 
determining the controller vector x (whose 
components are in θ) such that θ v =q. When the 
system vector v is uncertain (i.e. assumed to lie in 
a range), the controller x obtained from the above 
equation may not be able to stabilize the CL 
system for perturbations of v from its nominal 
value [17]. 
 

In order to develop a robust solution, it will 
initially assumed that a s and b s have 
independent interval coefficients; hence the 
system vector v becomes an interval vector    [v- , 
v+]. If we assume that there is certain flexibility in 
desired pole locations so that q becomes an 
interval vector [q- , q+]. The controller can be 
designed by choosing the nominal system vector 
v0

, a nominal desired pole vector q0, system error 
vector μ and a pole assignment flexibility error 
vector ε as follows [17] 
 

- 0 + 0

- 0 + 0

v =v -μ   and v =v +μ 
q =q -ε   and q =q +ε 

                                  (4) 

Then the set of all robust pole placement 
controllers is given by 
 

{ }0 0S x: θ(x) v  -  q  ε  v: v-v μ≤ ∀ ≤�       (5) 

where the mod operation is taken to be 
component wise. To find a time invariant 
robust controller in S that will take every 
system vector ∈ - +v [v , v ] and map into any 
CL system vector ∈ - +q [q ,q ] can be posed as 
robust pole placement problem as 
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where x0
  can be any desired controller. x0  can 

be found by solving the pole-placement 
problem for the nominal system and nominal 
desired pole positions. i.e.  θ0 v0 =q0. The 
robust pole-placement seeks to find controller 
vector x* which guarantees that the CL 
polynomial coefficients q remain within the 
prescribed regions for all prescribed 
uncertainties in the system vector v. In order 
to present the above optimization problem into 
more tractable mathematical optimization 
form, the following results are needed. 
 

Fig 2 shows the flow Chart for 
implementing the robust pole placement 
controller. The nominal system is chosen 
corresponding to structure-I and zero gram tip 
load. Then a certain initial region for pole 
perturbation i.e ε is specified. After that 
system parameter error interval vector μ is 
specified corresponding to 5g tip load. Now 
the robust controller is calculated. If no 
feasible controller is obtained, the pole 
perturbation vector ε is enlarged till feasible 
controller is obtained. Then the desired 
simulations are carried out to check the 
performance parameters of the system. If the 
desired performance is obtained, in the next 
iteration, system parameter error interval 
vector   μ is enlarged until all the systems 
corresponding to various tip loads come in the 
domain of the robust controller. Finally the 
calculated continuous time controller is 
transformed into digital controller 
corresponding to a desirable sampling rate 
[19]. 



 
Find  the  transfer  function  of  the  inverted  L structure
with  tip  load  ranging   from   0g   to  20g  with  a step of 5g
with   the   help   of   Finite element  techniques   i.e.  a's
(denominator  coefficients ) and  b's (numerator
coefficients)
Set   the   nominal   system  corresponding  to  0g  tip  load,

      Set   y=0   , dy=0 and  P = 5g

Set  the   epsilon=0  and  initial  range  of  flexibility  i.e.
d_epsilon  in    the  desired   pole   locations  so that
desired performance robustness  can   be achieved

Find  the  open  loop  poles  of  the  nominal  system  (i.e.  with   0g   tip load)  in   analog
domain

Find  the  real  and  imaginary   part  of   the open   loop  poles corresponding  to  zero  gram  tip
load

Veryfy  the  stability  of  the  closed  loop  system  for all   the  systems with   tip   loads ranging
from 0g to 20 g   by   simulations corresponding  to  above  characteristic  equation

y  +  dy

Find   controller  parameter  vector for  the   above  specified   range   of   system   parameter
error   interval   vector   µ   and   pole   perturbation  interval   vector  epsilon  (eq.  27)

Are   all   the   systems  stable  ?

For these closed loop poles find the characteristic equation of the system  (eq. 9)  and
corresponding  to  this  find  the  controller  parameters  for  the  structure  with  different  tip

loads  from  0g - 20g

Set  the imaginary  part  of  closed  loop poles  as  y times  the  imaginary  part  open  loop
poles  corresponding   to 0g

Calculate   the  range  of   system error  interval   vector   µ   between  system  with   P gram   tip
load   and  nominal  system

Is the  optimization   feasible  ?

Set  the  nominal  desired  NOMINAL pole  vector  q0   (i.e the  coefficients  of  the  characteristic
equation)  base  on  the  recent  value  of  y  and  set the increment   d_epsilon  as  the side  of  a

square  in  which  a  particular  pole  can  perturb

epsilon  =  spsilon  +  d_epsilon

Enlarge   the   system  parameter error  interval  vector  with    µ  =  µ +  dµ   by  incrementing  P
=  P  + dP

Is  the  performance  acceptable  ?

STOP

Simulate   all  the  systems from  nominal  system  to  that  corresponding  to  tip  loads  with
this  controller   corresponding   to    pole   perturbation  vector  epsilon

Conclude  the  range  of  pole  interval  vector   and  system   parameter error   interval  vector µ
for  which  the  robust  controller   is  feasible
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Fig 2 Flow Chart for implementing the Robust pole Placement Control 



V. IMPLEMENTATION AND VERIFICATION 
OF CONTROL SYSTEMS 

 
A. Experimental Setup and Procedure 
 

The schematic view of the inverted L 
structure along with the hardware is shown in the 
fig 3. The inverted L structure is equipped with 2 
PZT patches. To bear the computational burden 
LABVIEW based real time engine 8187 RT is 
used.  
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Fig 3 Schematic diagram of the experimental setup 
 
 
B. Simulations and Experimental Results 

 
First the nominal system is taken pertaining to 

0g tip load. CL system poles are fixed taking the 
system parameters into account. The controller is 
then designed by solving the Diophantine 
equation. The tip load is changed from 0g to 15g 
for the first structure and 0g to 60g for second 
structure. Maximum available actuator voltage is 
taken as the 220 volt. 

 
C.  Performance of Adaptive Pole   
      Placement Controller  

 
First of all numerical simulations are carried 

out to understand the dynamics of the CL system 
with adaptive pole placement controller (APPC) 
and robust pole placement controller (RPPC) 
afterwards experimental implementation was 
done. Part (a) of fig. (4) Shows the response of 
the adaptive control system for structure-I with 
zero gram tip load. The OL and CL response is 
almost the same i.e. no control effectiveness. This 
is in contrast to the response of the same 
structural system if non-adaptive controller is 
applied. This means that any arbitrary pole 
locations of the CL poles, system gives severely 
deteriorated performance of adaptive control 
system for the nominal system (i.e. at 0g tip 
load). But, if the imaginary part of the CL pole 
locations is made smaller, performance improves. 

The optimal performance is obtained when the 
CL pole is 0.85 times the imaginary part of the 
OL pole locations (i.e. with a large movement 
of the pole position towards origin on vertical 
axis); this defect was clearly eliminated (fig 
4b). Similar deterioration in performance was 
observed if the tip load was changed from 0g 
to 15g (fig 5a). The transition response is not 
so good. The amplitude of the CL system 
increases as compared to OL system during 
initial time steps. Also the CL settling time is 
large (i.e. 2.5 second ) as compared with the 
second case ( with CL settling time of 1.3 
second) where the imaginary part of the CL 
pole locations are made 0.85 times the 
imaginary part of the OL pole locations (fig 
5b). Obviously, higher control voltages will be 
needed in the later case. By constraining the 
control voltage to a certain magnitude which 
is available practically, this problem can be 
solved. By observing the response in 
frequency domain (fig 5c), it is observed that, 
although the first mode amplitude is reduced, 
the second mode gets excited. However, by 
using optimal location of CL poles, better 
performance gets resulted (fig 5d). 
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Fig 4 Effect of different positions of closed loop poles 
on the performance of adaptive controller for nominal 

system (0g tip load) 
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Fig 5 Effect of different positions of closed loop poles on 

the performance of adaptive controller at 15g tip load 
 
 

D.  Performance of Robust Pole Placement 
Controller  
 

Table II shows the limiting amplitude of the 
actuator voltages for both the structures at 
different tip loads for adaptive pole placement 
controller (APPC) and robust pole placement 
controller (RPPC). For both the structures APPC 
requires high voltage for stable operations.  
 
 
TABLE II Performance comparison of adaptive and robust pole placement 

control 
 

Maximum 
Actuator Voltage 
(volts) required 

No. 
of 
the 

struc
ture 

Ori
gin
al 

Wei
ght 
(O
W) 

Tip 
Load 

OW/B
M 

APPC RPPC 

0g 578 --- --- 
5g 867 150 30 
10g 1156 180 60 
15g 1441 220 100 

Struc
ture 

I 
 

10.5
g 

20g --- UNSTAB
LE 

UNSTAB
LE 

0g 1127 -- -- 
14g 1433 190 30 
30g 1741 640 25 

Struc
ture 
II 

57.3
g 

60g 2356 130 30 

 

E. Performance Comparison of Adaptive and 
Robust Pole Placement Controller  

 
The structure was excited by a constant 

velocity excitation. A steel ball was thrown 
from a certain height near the tip or at the mid 
of the horizontal limb. A certain auto-
regressive model of order 12 was used to 
model the measurement noise. Excellent CL 
results were obtained (fig 6). So, if the noise 
can be modeled properly, RPPC is the best 
choice for both light weight as well as heavy 
structures. 
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Fig 6 Performance of robust controller at 15g tip load 

WITH modeling the measurement noise (Experimental) 
 

 
VI CONCLUSION 

 
Robust and adaptive control design 

techniques give controllers which are effective 
and stable for certain range of system 
parameters. Adaptive pole placement control 
is a suitable alternative for vibration control of 
light weight flexible structures only, since it 
requires very large amplitude of control 
voltages for maintaining stability, if applied to 
heavy structures. It works better, even if, 
certain amount of un-modeled noise is present 
in the system. However, if the exact noise 
model is available by using high quality 
hardware, robust pole placement control is the 
best alternative. It requires comparatively very 
less control voltage amplitudes and works for 
light as well as heavy structures. The position 
of closed loop poles for designing the pole 
placement based controllers is an important 
issue. Study can easily be extended to MIMO 
cases easily.  
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