
A Reinforcement Learning System for Transfer

Scheduling of Freight Cars in a Train

Yoichi Hirashima �
Abstract—In this paper, a Q-Learning method for trasfer

scheduling of freight cars in a train is proposed. In the pro-

posed method, the number of freight-movements in order to line

freights in the desired order is reflected by evaluation value for

each pair of freight-layout and removal-destination at a freight

yard. The best transfer scheduling can be derived by selecting

the removal-action of freight that has the best evaluation value at

each freight-layout.

Keywords: Scheduling, Container Transfer Problem, Q-Learning,

Freight train, Marshalling

1 INTRODUCTION

In recent years, logistics with freight train is took attentions in

ecological aspects as compared to goods transportation with

tracks. A freight train consists of several railway cars, and

each car has one or several containers. Commonly, goods are

packed into containers and each container in a freight train has

its own destination. Since freight trains can transport goods

only between railway stations, modal shifts are required for

delivering them to area that has no railway. In intermodal

transports from the road and the rail, containers carried into

the station are loaded on freight cars in the arriving order. The

initial layout of freight cars is thus random. For efficient shift,

the desirable layout should be determined considering destina-

tion of container. Then, freight cars must be rearranged before

jointing to the freight train.

In general, the rearrangement process is conducted in a

freight yard that consists of a main-track and several sub-

tracks. Freight cars are initially placed on sub tracks, rear-

ranged, and lined into the main track. Although similar prob-

lems are treated by mathematical programming and genetic

algorithm[1, 2, 3, 4], they do not evaluate the number of move-

ments of freight cars.

In this paper, a new scheduling method is proposed in order

to rearrange and line freight cars by the desirable order onto

the main track. In the proposed method, the focus is cen-

tered on to reduce the number of car-movements that achieves

desirable order on the main track. The optimal layout of

freight cars in the main track is derived based on the desti-

nation of freight cars. This yields several desirable layouts of�Faculty of Information Science and Technology, Osaka Institute of Tech-

nology, 1-79-1, Kita-yama, Hirakata City, Osaka, 573-0196, Japan. Tel/Fax:

+86-72-866-5187 Email: hirash-y@is.oit.ac.jp

freight cars in the main track, and the optimal layout that can

achieve the smallest number of car-movements is obtained by

autonomous learning. Simultaneously, the optimal sequence

of car-movements that can achieve the desired layout is ob-

tained by autonomous learning. In other words, each freight

car has several desired positions in the main track. Also, the

feature is considered in the learning algorithm, so that, at each

arrangement on sub track, an evaluation value represents the

smallest number of car-movements to achieve the best layout

on the main track. The learning algorithm is derived based on

the Q-Learning[5], which is known as one of the well estab-

lished realization algorithm of the reinforcement learning.

In the learning algorithm, the state is defined by using a layout

of freight cars, the car to be moved, and the destination of the

removed car. An evaluation value called Q-value is assigned

to each state, and the evaluation value is calculated by several

update rules based on the Q-Learning algorithm. Update rules

are independent to each other and the Q-value in one update

rule is referred from another update rule, so that Q-values are

discounted according to the number of car-movements. Con-

sequently, Q-values at each state represent the total number

of car-movements required to achieve the best layout from the

state. Moreover, in the proposed method, only referred Q-

values are stored by using table look-up technique, and the

table is dynamically constructed by binary tree in order to ob-

tain the best solution with feasible memory space. In order to

show effectiveness of the proposed method, computer simula-

tions are conducted for two methods.

2 PROBLEM DESCRIPTION

The yard consist of 1 main track and m sub tracks. Define k as

the number of freight cars placed on the sub tracks, and they

are carried to the main track by the desirable order based on

their destination. In the yard, a locomotive moves freight cars

from sub track to sub track or from sub track to main track.

The movement of freight cars from sub track to sub track is

called removal, and the car-movement from sub track to main

track is called rearrangement. For simplicity, the maximum

number of freight cars that each sub track can have is assumed

to be n, the ith car is recognized by an unique symbol ci (i =1; � � � ; k), and the number of sub tracks is l. Fig.1 shows the

outline of freight yard in the case k = 30;m = n = 6. In the

figure, track Tm denotes the main track, and other tracks A,

B, C, D, E, F are sub tracks. The main track is linked with sub

L

c 1c 2c 3
c 4c 5c 6

c 7c 8c 9
c 10c 11c 12

c 13c 14c 15
c 16

c 17c 18 c 19 c 25c 21c 22
c 23c 24c 20

c26
c 27

c 28

c 29

c 30 aa

bb

cc

dd

ee

ff

Tm A B C D E F

Figure 1: Freight yard

tracks by a joint track, which is used for moving cars between

sub tracks, or for moving them from a sub track to the main

track. In the figure, freight cars are moved from sub tracks,

and lined in the main track by the descending order, that is,

rearrangement starts with c30 and finishes with c1. When the

locomotive L moves a certain car, other cars locating between

the locomotive and the car to be moved must be removed to

other sub tracks. This operation is called removal. Then, ifk � n � m � (n � 1) is satisfied for keeping adequate space

to conduct removal process, every car can be rearranged to the

main track.

In each sub track, positions of cars are defined by n rows.

Every position has unique position number represented by m �n integers. Fig.2 shows an example of position index for k =30;m = n = 6 and the layout of cars for fig.1�
1 2 3 4 5 67 8 9 10 11 1213 14 15 16 17 1819 20 21 22 23 2425 26 27 28 29 3031 32 33 34 35 36

Position index Yard layout
c1c2c3c4c5c6

c7c8c9c10c11c12
c13c14c15c16

c17c18
c25c20c21c22c23

c19 c24
Figure 2: Example of position index and yard state

In Fig.2, the position “aA” that is located at row “a” in the sub

track A has the position number 1, and the position “fF” has

the position number 36. For unified representation of layout

of car in sub tracks, cars are placed from the row “a” in every

track, and newly placed car is jointed with the adjacent freight

car. In the figure, in order to rearrange c25, c24; c23; c22; c21,

and c20 have to be removed to other sub tracks. Then, sincek � n �m� (n� 1) is satisfied, c25 can be moved even when

all the other cars are placed in sub tracks.

In the freight yard, define xi(1 � xi � n �m; i = 1; � � � ; k) as

the position number of the car ci, and s = [x1; � � � ; xk℄
as the state vector of the sub tracks. For ex-

ample, in Fig.2, the state is represented by s =[1; 7; 13; 19; 25; 31; 2; 8; 14; 20; 26; 32; 3; 9; 15; 21; 4; 10; 5; 12; 18; 24; 30; 36; 6℄.
A trial of the rearrange process starts with the initial layout,

rearranging freight cars according to the desirable layout in

the main track, and finishs when all the cars are rearranged to

the main track.

3 DESIRED LAYOUT IN THE MAIN

TRACK

In the main track, freight cars that have the same destination

are placed at the neighboring positions. In this case, removal

operations of these cars are not required at the destination re-

gardless of layouts of these cars. In order to consider this fea-

ture in the desired layout in the main track, a group is orga-

nized by cars that have the same destination, and these cars can

be placed at any positions in the group. Then, for each desti-

nation, make a corresponding group, and the order of groups

lined in the main track is predetermined by destinations. This

feature yields several desired layouts in the main track.

Fig.3 depicts examples of desirable layouts of cars and the

desired layout of groups in the main track. In the figured,

freight cars c1, � � � , c6 to the destination1 make group1, c7,� � � , c18 to the destination2 make group2, c19, � � � , c25 to the

destination3 make group3, and c26, � � � , c30 to the destination4
make group4. Groups1;2;3;4 are lined by ascending order in

the main track, which make a desirable layout. In the figure,

examples of layout in group1 are in the dashed square.

c1c1c1c1c1
c6

c6c6c6c6
...

...

...

...

c7
c18
c19
c25
c26
c30 c2c2c2

c2
c3

c3c3c3 c4c4
c4c4 c5c5
c5

c5group1
group2
group3
group4
(destination1)

(destination2)

(destination3)

(destination4)

� � �desirable layouts for group1
Figure 3: Example of groups

4 REARRANGEMENT PROCESS

The rearrangement process for cars consists of following 4 op-

erations :

(1) selection of a freight car to be rearranged into the main

track,

(2) selection of a removal destinations of the cars on the se-

lected car in (1),

(3) removal of the cars to the selected sub track,

(4) rearrangement of the selected car.

These operations are repeated until one of desirable layouts is

achieved in the main track, and the series of operations from

the initial state to the desirable layout is define as a trial.

In the operation (1), each gourp has the predetermined position

in the main track, candidates of the gargo to be rearranged can

be determined by freight cars that have already rearranged to

the main track. These candidates belongs to the same group,

and can be rearranged by any order.

Now, define r as the number of groups�gl as the number of

freight cars in groupl(1 � l � r), and uj1(1 � j1 � gl) as

candidates of cars to be rearranged to the main track.

In the operation (2), the removal destination of car located on

the car to be rearranged is selected. Then, defining uj2(gl +1 � j2 � gl + m � 1) as candidates of the destination, ex-

cluding the sub track that has the car to be removed, and the

number of candidates is m� 1.

When rearranging car that has no car to be removed on it is

exist, its rearrangement precede any removals. In the case that

several cars can be rearranged without a removal, rearrange-

ments are repeated until all the candidates for rearrangement

requires at least one removal. If several candidates for rear-

rangement require no removal, the order of selection is ran-

dom, because any orders satisfy the desirable layout of groups

in the main track. In this case, the arrangement of cars in

sub tracks obtained after rearrangements is unique, so that the

movements count of cars has no corelation with rearrngement

orders of cars that require no removal.

Fig.4 shows an example of arrangement in sub tracks existing

candidates for rearranging cars that require no removal. In the

figure, r = 2, where c1; c2; c3; c4 are in group1�c5; c6; c7; c8
are in group2, and group1 must be rearranged first to the main

track. In each group, any layouts of cars can be acceptable.

In “Case1” of the example, the rearrangement order of cars

that require no removal is c1; c2; c3; c4, and in “Case2”, the

order is c3; c2; c1; c4. Although 2 cases have defferent orders

of rearrangemt, the arrangements of cars in sub tracks and the

numbers of movements of cars have no difference.

5 LEARNING ALGORITHM

Define cT as the car to be rearranged, s(t) as the state at

time t, sy(t) = [s(t); cT ℄ and Q1; Q2 as evaluation values

for (sy(t), uj1); (sy(t); uj2), respectively. Q1(sy(t); uj1) andQ2(sy(t); uj2) are updated by following rules:Q1(s(t); uj1) 8>>><>>>:maxQ2(sy(t); uj2) a(next operation is removal);maxQ1(sy(t); uj1) b(repetitive rearrangement); (1)

group1group2group3 (c9)
Initial Layout

Case1 Case2

Step1

Step2

Step3

Step4

c1
c1

c1
c1

c1
c1

c1
c1

c1

c2c2 c2c2 c2c2 c2c2
c2

c3c3 c3c3 c3c3 c3c3
c3

c4c4 c4c4 c4c4 c4c4
c4

c5c5 c5c5 c5c5 c5c5
c5

c6c6 c6c6 c6c6c6 c6
c6

c7c7 c7c7 c7c7 c7c7
c7

c8c8 c8c8 c8c8 c8c8
c8

c9c9
c9

c9c9
c9c9c9c9

(c1; c2; c3; c4)

(c5; c6; c7; c8)

Desired
layout

Figure 4: Direct rearrangements

Q2(sy(t); uj2) 8>>>>>>>><>>>>>>>>:
(1� �)Q2(sy(t); uj2) + �[R+maxQ1(s(t+ 1); uj1(t+ 1))℄ a(next operation is rearrangement)(1� �)Q2(sy(t); uj2) + �[R+maxQ2(sy(t+ 1); uj2(t+ 1))℄ b(repetitive removal)

(2)

where � is the learning rate, is the discount factor, and R
is the reward that is given when one of desirable layout is

achieved.

Propagating Q-values by using eqs.(1),(2), Q-values are dis-

counted according to the number of removals of cars. In other

words, by selecting the removal destination that has the largest

Q-value, the number of removals can be reduced. In the learn-

ing stages, each uj (nc + 1 � j � nc + ny � 1) is selected by

the following probability:P (sy; uj) = exp(Qt�1(sy; uj)=T)Xu exp(Qt�1(sy; u)=T) ;(nc + 1 � j � nc + ny � 1) (3)

The proposed learning algorithm can be summarized as fol-

lows:

1. Initialize all the Q-values as 0

START

Initialize Q-values

Rearrange cT
Rearrange cT

Exist free cT ?

Select cT
Save (sy; uj)Save (sy; uj)

Update Q2 by eq.(2)

Update Q1 by eq.(1)

Require removal?

Remove

Update Q1 by eq.(1)

Save (sy; uj)T
Receive reward

Exist cT ?

Exist cT ?

END

yes

no

yes

no

no

yes

no

yes

Figure 5: Flowchart of the learning algorithm

2. When no cars are placed on candidates of cT , all of them

are rearranged

3. If no cars are in sub tracks, go to 9�otherwise go to 4

4. a Determine cT among the candidates by roulette se-

lection (probabilities are calculated by eq. (3)),

b putting reward as R = 0,

c update the corresponding Q1(sy; uj1) by eq. (1),

d store (sy; uj1)
5. If cars to be removed exists, update the correspondingQ2(sy; uj2) by eq. (2a), and store (sy; uj2), otherwise

update the Q(sy; uj2) by eq. (2b) and go to 2

6. a If the car to be removed exists, remove it. The desti-

nation of the car to be removed is determined by

roulette selection (probabilities are calculated by

eq. (3)),

b update the corresponding Q1(sy; uj1) by eq.(1),

c store the state (sy; uj1),
d repeat 6- a� 6- c until all the cars on cT are re-

moved

7. Rearrange the cT
8. If there exist cars, go to 2

9. If all the cars are rearranged, the reward R is given, and

update a Q-value according to the last movement of car.

Also, flowchart of the proposed learning algorithm is shown

in Fig.5.

input:saba = 011001

output : Q1

input:sbbb = 110100

output : 0

0 0

0

1 1

1

sa Qasc Qc
sd Qdse QesQ

(input=saved data)
(input6=saved data)

root

leafleafleafleaf

Figure 6: Structure of look-up table

6 DATA STRUCTURE OF LOOK-UP TABLE

FOR Q-VALUE

In the learning algorithm explained previous section, the ta-

ble lookup method is used for storing and referring Q-values.

Since the state of the sub tracks is replesented by s =[x1; � � � ; xk℄, (1 � xi � n �m; i = 1; � � � ; k), the state space

requires (nm)k memory units to store Q-values for each se-

lection. Thus, the number of memory units increases by the

exponential rate with increase of the total number of cars k.

In realistic problems the number of car is often large, so that

huge memory size is required in order to store Q-values for all

the states. Therefore, in the proposed method, only Q-values

corresponding states that have been searched are stored. Bi-

nary tree is constructed dynamically during the course of the

learning for storing Q-values.

6.1 Specification of a Q-value

In the following, the method to specify a Q-value stored in a

look-up table is explained. The input of the table is (s; uj),
and the output is a Q-value. Assuming I is the order of binary

description of m � n, the Q-value corresponding to a state s is

specified.bi = bi1 � � � biI (bij = 0; 1 j = 1; � � � ; I) is defined as

the binary description of xi (i = 1; � � � ; k). Then, the bi-

nary description of s can be described by b = b1 � � � bk of

order (k + 1)I . That is, a binary tree of depth (k + 1)I can

represent s. At each node of the binary tree, by assigning 0

to left descendant of the node and 1 to right descendant, bij
can specify the descendant at the node of depth I(i � 1) + j.

Each leaf of the tree stores a state and corresponding Q-value.

Given an input to the look-up table, the leaf corresponding to

the input is specified by a search using b. When the input

0

0

0

00

0

1

1

1

1

s = 0 � � �

sfsf

sf

sf ! 00 � � �
QfQf

Qf

sgsg

sg ! 01 � � �
QgQg

sh

sh ! 1 � � �
QhPointer

Pointer

Pointer

Pointer

b11 = 0b12 = 0 b11 = 0b12 = 1 b11 = 1
Figure 7: Construction process of Q-table

corresponds to the value stored by the leaf, the look-up table

outputs the Q-value stored by the leaf. Otherwise, the table

outputs 0. Fig.6 depicts a Q-table constructed by binary tree

in the case of k = m = 2; n = 3; I = 3. In the figure, inputssa = [1; 3℄; sb = [6; 4℄ are given to the look-up table. Sinceba = [011001℄, in the former case, left, right descendants are

specified from the root, the leaf stores the same state as the

input sa, and thus outputs Q1. While, in the latter case, sincebb = [110100℄, right, right descendants are specified, and the

leaf stores sc(6= sb). That is, the state that leaf has is different

from the input, and thus 0 is output from the look-up table.

6.2 Constitution of look-up table

Initially, the tree has only root that has pointer to an empty

leaf. When a Q-value corresponding to the input state is dif-

ferent from initial value, the state and the Q-value are stored

in the leaf. Then, if a new state that has the same b11 as the

stored state, 2 consecutive memory units for storing pointer

to leafs storing data of state and Q-value are newly allocated.

The pointer to the newly allocated memory units is stored in

the ascendant node (in this case, root). These operations are

repeated until bij of the new state is different from that of the

stored state. If the new state has the different bij , 1 mem-

ory unit is newly allocated for storing the new state and Q-

value in addition to 2 memory units for storing pointer to leaf.

The pointer to these 2 memory units is stored to the ascendant

node. Pointers to leafs are stored in accordance with bij in

2 memory units that are newly allocated. For nodes that has

no descendant nodes or leaf, 0 is stored as the initial value to

indicate being empty.

Whenever the state that has updated Q-value appears, the input

and the state stored in the specified leaf are compared. When

they have the same value, the stored Q-value is update. Other-

wise, excluding bij used to specifiy the stored state, 2 memory

units are newly allocated until first difference between 2 states

appears in bij , and then, a unit is allocated as a leaf to store 2

pairs of state and Q-value.

Fig.7 shows an example of the look-up table for the proposed

learning algorithm. In the figure, inputs sf = [1; 3℄; sg =

[2; 1℄; sh = [4; 1℄ are given to the table. Then, binary de-

scriptions of sf; sg; sh are bf = [b11b12b13b21b22b23℄ =001011; bf� = 010001; bg = 100001, respectively. First,sf is stored in the leaf pointed by the root. Next, when sg is

given, 2 memory units are newly allocated. Since b11 of sf is

0, sf and Q� are stored in the left leaf. sf; sg have the sameb11, and thus, 2 memory units are allocated additionally. Since

they have difference in b12, sf and Qf are stored left leaf, andsg and Qg are stored right leaf. Finally, when sh is given, sh
and Qh are stored right leaf at the height 1 according b11 = 1.

The algorithm for look-up table construction is described be-

low.

1. Calculate b from s and initialize i = j = 1
2. If a memory unit corresponding to bij is a leaf then go to

(3), and if it is node then go to (4)

3. update i; j by� j j + 1; i i (j < I);j 1; i i+ 1 (j = I); (4)

and go to (2).

4. Conduct eq.(4) again, allocate 2 nodes for expanding a

tree, and 1 leaf for storing state and Q-value. Then, copy

data from original leaf into corresponding leaf, and store

the pointers indicating a new leaf and nodes into ascen-

dant nodes.

5. If bij has the same number as the state stored in the leaf,

go to (4). Otherwise store the new input and Q-value into

the corresponding leaf.

7 COMPUTER SIMULATIONS

Computer simulations are conducted for m = 12; n = 6; k =36. The initial arrangement of cars in sub tracks is described

in Fig.8, desirable layout considering groups in the main track

is depicted in Fig.9. In this case, the rearrantement order of

groups is group1; group2, group3, group4. Cars c1; � � � ; c9 are

in group1�c10, � � � , c18 are in group2�c19; � � � ; c27 are in

group3�and c28; � � � ; c36 are in group4. Other parameters are

set as � = 0:9; = 0:9; R = 1:0.

Fig.10 shows the results for the case 1. In the figure, hori-

zontal axis expresses the number of trials and the vertical axis

expresses the minimum number of removals of cars to achieve

a desirable layout found in the past trials. Each results is av-

eraged over 10 independent simulations. As the number of

trials increases, the number of removals reduces, and within

1200 trials, all simulations derive the layout of main track,

rearrangement order of cars, removal destination of cars to

achieve the best solution that include one removal. Fig.11

shows one of best layout in the main track obtained by the

proposed method. In the figure, positions of cagos in the same

group are exchanged so that the number of removals required

to achieve the layout of groups in the main track is reduced.

Thus, in the proposed method, the layout of main track, the re-

arrangement order of cars, and the removal destination of cars

are simultaneously optimized by the autonomous learning.

c1
c2
c3 c4

c5
c6 c7

c8
c9c10

c11
c12
c13 c14

c15 c16
c17
c18 c19

c20
c21 c22

c23
c24 c25

c26
c27 c28

c29
c30 c31

c32
c33 c34

c35
c36

Figure 8: Initial layout

Main
track 1 2 3 4 5 6 7 8 9 10 11 12

c 36

c 28
...

...

...

...

c 27

c 19

c 18

c 10

c 9

c 1

g
ro

u
p

4

g
ro

u
p

3

g
ro

u
p

2

g
ro

u
p

1
Desired
layout

Figure 9: Yard setting

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

最
小
貨
車
移
動
回
数

試行回数

ave_step

10

20

30

40

M
in

im
u

m
st

ep
s

0 200 400 600 800 1000 1200

Trials

Figure 10: Minimum steps averaged over 10 simulations

8 CONCLUSIONS

A new scheduling method has been proposed in order to re-

arrange and line cars in the desirable order onto the main

track. The learning algorithm of the proposed method is de-

rived based on the reinforcement learning, considering group

of cars. In order to obtain the best solution with feasible mem-

ory space, in the proposed method, only referred Q-values are

c3
c4c5c6c2c1
c8
c7c9 c17

c12

c 13c11c14c 16
c10
c15
c18

c21
c25

c22
c27

c23c24c19
c26c20

c28
c29c31
c32
c33

c 34
c30
c36c35

group1 group2 group3 group4

Figure 11: Final layout

stored in look-up tables constructed dynamically by using bi-

nary tree. In computer simulations, by using the proposed

method, the layout of main track, the rearrangement order of

cars, and the removal destination of cars to achieve the optimal

solution has been obtained simultaneously.

References

[1] L.G. Kroon, R.M. Lentink and A. Schrijver : Shunting of

passenger train units: an integrated approach, Transporta-

tion Science Vol. 42, pp. 436–449 (2008)

[2] N. TOMII, and Z. L. Jian : Depot shunting scheduling

with combining genetic algorithm and PERT, Proceedings

of 7th International Conference on Computer Aided De-

sign, Manufacture and Operation in the Railway and Other

Advanced Mass Transit Systems, pp. 437–446 (2000)

[3] S. He, R. Song and S.S. Chaudhry : Fuzzy dispatching

model and genetic algorithms for railyards operations, Eu-

ropean Journal of Operational Research, Vol. 124, No. 2,

pp. 307-331 (2000)

[4] E. Dahlhaus, F. Manne, M. Miller and J. Ryan : Algo-

rithms for Combinatorial Problems Related to Train Mar-

shalling, In Proceedings of AWOCA 2000, pp7–16 (2000)

[5] Watkins, C. J. C. H., Dayan, P., Q-learning, Machine

Learning, Vol.8, pp. 279–292, 1992.

