

Abstract—We have proposed a data acquisition system

with high speed USB interface using FPGA chip as the
main processing unit. Since the FPGA has a number of
modules on chip, which can operate independently, it can
be utilized for the data acquisition system with
multi-channels for the connection to four ADC signals
with four different protocols of Parallel, SPI, I2C and
one-wire protocol. The system is controlled by the
software written in the visual C++. It allows the user to be
able to interface to a PC for data restoration and
monitoring. We found that this system can perform data
acquisition with high rate data transfer.

Index Terms— Data acquisition, high-speed USB, FPGA.

I. INTRODUCTION

The data acquisition system is broadly utilized in a
number of automatic test and measuring equipments. They
can be used to collect the required data from any peripheral
input devices, such as meters, sensors and etc. via
controlling software [1]. The measured data could be stored
in the PC. Their values can be shown numerically whereas
their relationship can be displayed graphically as a curve on
the screen.

This paper proposed a design of the data acquisition
system using FPGA [2] interfacing to a PC [3]. The system
has capability to receive the digital signals from
multi-channels sensors with four different ADC protocols.

II. OVERALL SYSTEM

The overall system is shown in Figure 1. It presents the
connection to the four different ADC (analog to digital
converter) sensors with four different protocols: Parallel, SPI,
I2C and One-Wire. The FPGA collects the individual data
from all ADC sensors. It processes in the individual
protocols. After that it produces a stream of data through the
output USB port [4], which sends these ADC data to the PC.

We have written a specific application program to control
the PC. This program has a function to communicate to the
FPGA so that the PC could prepare itself for the data transfer.

Manuscript received December 27, 2009.
S. Thanee is a graduate student in Master Degree in the Faculty of

Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand.

S. Somkuarnpanit is now with the Department of Electronics, Faculty of
Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: kssuripo@kmitl.ac.th).

K. Saetang is with the Department of Electronics, Faculty of Engineering
at King Mongkut’s Institute of Technology, Ladkrabang, Bangkok Thailand
(e-mail: kskhanit@kmitl.ac.th).

Figure 1 The overall system diagram.

Firstly, the PC will check the FPGA for data availability on
the system. After that it will send a set of the instructions to
the FPGA for getting these data from USB port. The data
will be interpreted into separate data bytes for the individual
channels. Finally, the data can be shown to the user, and
saved to the main database at the same time.

III. PROCESSING UNIT

The processing unit EP1K10TC144-3 from Altera
Company is employed for this design. It has 2,880 capacity
logic elements or about 50,000 gates, 40,960 internal ram bits
and 102 input/output ports for connecting to the external
hardware. It supports the power supply at 3 levels, which are
5V, 3.3V and 2.5V. The maximum operating frequency is
180 MHz. This design has used VHDL as the language [7, 8]
for writing the code program.

This chip works as the center of the acquisition of the data
from all sensors. Its responsibility is to bridge the signals
between the ADC inputs to the USB connection, namely, to
send/receive the data with the PC. Figure 2 illustrates the
internal modules within the FPGA chip [6]. These modules
can be described as below:

A. Parallel Protocol

This protocol is the traditional type for most ADC’s. It has
the advantage of the high speed throughput. This design uses
ADC0820 for the peripheral device. Figure 3 presents the
simulation of how the FPGA gets data from this ADC. There
are two main steps in the conversion process:

 The FPGA sends the start signal to activate the ADC
then it will wait for the acknowledge signal.

 After finishing the data converting, the ADC will
send the acknowledge signal to the FPGA. Then the
FPGA reads the data from the bus. After that the
FPGA sends the start signal to activate ADC again for
getting the data on next read cycle.

Obviously, this data acquisition is so simple and fast.
Thus, this protocol should be employed with the high speed
system.

FPGA-Based Multi Protocol Data Acquisition
System with High Speed USB Interface

S. Thanee S. Somkuarnpanit and K. Saetang

Figure 2 The modules associated in EP1K10TC144-3.

Figure 3 Simulated communication on SPI protocol.

B. Serial Peripheral Interface (SPI) Protocol

This protocol was developed by Motorola to accomplish
the easy communication, and to reduce the I/O ports. This
design utilizes MCP3201 for building the connection with the
FPGA. Figure 4 shows the simulation how the FPGA obtains
the data from this ADC. The procedures of this data
acquisition are similar to those of the previous protocol. The
FPGA sends the control signal to activate the ADC, and the
ADC will send the acknowledge signal back. After finishing
data conversion, the ADC will send a signal to inform the
FPGA to read the data from its output. The difference from
previous protocol is that the FPGA reads the stream of data in
a serial pattern from the MSB to the LSB, instead.

C. Inter-Integrated Circuit (I2C) Protocol

The I2C communication is the protocol, which is designed
to reduce the I/O ports. It requires only two signal wires,
called SCL and SDA. We use PCF8591 as the ADC with the
I2C for this design. The procedures of this data acquisition are
quite complicated as following steps:

 The FPGA sends a signal to activate the bus, and to
identify the address of the device.

 The FPGA defines the write mode, and sends the
command to the ADC that it wants to get the data.

 The FPGA defines the read mode, and identify from
which channel it want to read.

 The FPGA reads the data from I2C bus.
After this point, the data has been finished reading in one

cycle time. Figure 5 illustrates the example of the data reading
by this protocol. We can see that one reading cycle of this
protocol takes time more than that of the previous proto-

Figure 4 The communications on One-wire protocol.

col. In the other hand it has a good point of using only two
wires in the data communication.

D. One-Wire Protocol

This protocol employs only one signal line in the data
communication. The bus is not active unless all data have not
been transferred. We used the temperature sensor DS1820 as
the input of this One-Wire acquisition data protocol.

The protocol separates the data bit by a time slot. It has a
length between 60-960 s, depending on the user assignment
and the status of the communication between the master and
the slave devices. There are four statuses in the protocol:

 Reset: is used to start the communication.
 Write data “1” to the slave device.
 Write data “0” to the slave device.
 Read data from slave.
The first step for this protocol is the reset from the FPGA

(the master device). It sends a reset signal to the bus, and
waits for the acknowledge signal from the sensor (slave
device). After having received the acknowledge signal, the
FPGA will send the address command to identify the sensor,
and starts the data conversion.

The FPGA waits for the sensors to process the command.
Then it sends the reset signal and identifies the device address
again. Consequently, it sends the reading command to the
sensor to read data from the sensor memory one by one from
the LSB to the MSB. Finally, it sends the reset signal to the
bus and waits for the acknowledge signal. To obtain the next
data, the FPGA will process the same steps again. Figure 7
displays the simulation for the procedures of reset,
acknowledge, and writing data of “1100 1100”.

Figure 5 Simulated communication on I2C protocol

Figure 6 Simulated communication on Control Unit and USB Controller

Figure 7 The communications on One-wire protocol.

E. Control Unit and USB Controller

If there is any data appearing on FIFO buffer, the control
unit will determine from which channel the data are.
Consequently, it will send one-byte data code to the USB port.
This first data byte informs the application program on PC that
the following data are from which channel. Then it will send a
signal to the USB controller again for sending the data in the
FIFO to the USB port byte by byte until the FIFO is empty.
This means the end of the data sending procedure in the
individual channel. If there are another FIFO channel data
waiting to be sent out, the FPGA will repeat the same
procedures. Figure 6 illustrates the simulation for inter
connection between the control unit and the USB controller.

IV. THE PC INTERFACING

The PC interfacing used in this design is the high-speed
USB which can transfer the data at the rate of 480 Mbps. The
transfer operation is achieved via frames; with the time period
of 125 s. Each frame consists of a number of Transactions,
which consists of a number of Packets. These packets include
information about the type of the transaction, the address of
the USB device, and the number of the end points required in
addition to the data and the CRC packets, and a
synchronization packets.

The FT2232H chip from FTDI Corp. [5] has been used to
implement this protocol in the design. It is a dual USB to
parallel FIFO bi-directional data transfer chip with 4 kilobyte
FIFO Tx and Rx buffer, which handles the entire USB
protocol on the silicon level. The manufacturer provides the

Figure 8 The FT2232H/FPGA interfacing

driver D2XX.DLL, which allows full accessibility to all the
chip features. This chip provides an interface between the
FPGA and the USB port with 8 bit bidirectional data bus, five
control signals and one clock signal. Figure 8 illustrates the
FT2232H/FPGA interfacing.

Hardware layer: continuously issues the read request in a
"reading worker thread" that will return one or more data, and
put the data in a stack from which the data acquisition layer
can read it.

Data acquisition layer: When the data requires some kind
of interpretation, each sensor will have a thread that collects
the data, and save them into the PC. When this thread runs, it
moves the data from the queue shared with the hardware layer
into its own container, and updates the current value shared
with the presentation layer.

This application is responsible to read data from each
protocol and presents them to the user in a style of not only a
numeric value, but also a graphic relationship. Since the
one-wire protocol is used for temperature sensors, it will show
the data as the discrete number for the temperature. Figure 9
displays the operation of application program.

V. CONCLUSIONS

From our simulations, we can conclude the advantages
and disadvantages for the individual protocols as shown in
Table1

Figure 9 Figure 9 The sample displays in the application program

TABLE I. PROPERTY COMPARISON FOR INDIVIDUAL PROTOCOL

Items Parallel SPI I2C 1-wire
Sample rate (ksp/s) 667 100 11.1 0.00133
Sample rate (b/s) 5.34106 1.20106 8.88103 21.28
Required Wires 12 3 2 1
Acquired solution Easy Easy Complex Complex
Power (mW) 75 2 5 7.5

We can see that the parallel protocol is the fastest whereas

it used the most connection wires. In the other hand, the I2C
or one-wire protocol requires the number of the signal wires
for the connection only two and one, respectively, whereas the
bit rate is much slower than the parallel ADC. We may use
this for our consideration in using the protocol in most
applications.

Therefore, we could claim that our data acquisition system
is one of the useful solutions for the data acquisition. Having
contained the input channels with all possible ADC protocols,
our system can interface to the ADC input devices with any
protocols to the PC independently. In addition, with an
enormous number of the I/O ports in the FPGA, it is feasible
to add more channels in the future. Eventually, we could
utilize the maximum of 102 I/O ports as the maximum number
for this FPGA.

REFERENCES
[1] Ziad Salem, Ismail Al Kamal, Alaa Al Bashar “A Novel Design of an

Industrial Data Acquisition System”, Proc. of Int. Conf. on Inf. and
Comm. Tech, ICTTA 2006, pp. 2589-2594.

[2] Jorge Yáñez, David Quintana, Camilo Quintáns, José Fariña, Juan J.
Rodríguez-Andina,”FPGA-based system for the education in data
acquisition and signal generation”, Proc. of Ind. Elec. Soc. Conf.,
IECON 2005. pp. 2168-2173.

[3] A. Sagahyroon ,T. Al-khudairi, ”FPGA Based Acquisition of Sensor
Data” Proc. of Int. Conf. on Ind. Tech., ICIT 2004. pp. 1398-1401.

[4] M. Popa, M. Marcu, A. S. Popa,”A Microcontroller Based Data
Acquisition System with USB Interface”, Proc. of Int. Conf. on
Elec., Elec. and Comp. Eng., ICEEC 2004 pp. 206-209.

[5] FTDI Corporation., www.ftdichip.com, Glasgow, UK,

[6] Hamblen J., Furman M., “Rapid Prototyping of Digital Systems”,
Quartus II Edition, Springer Science Business Media, New York, 2006

[7] Douglas L. Perry “VHDL Programming By Example”, 4 ed.,
McGraw-Hill, USA, 2002.

[8] Pong P. Chu “RTL Hardware Design Using VHDL”, 1 ed., John Wiley
& Sons, Hoboken, 2006.

[9] George Shepherd, David Kruglinski “Programming with
Microsoft Visual C++ .NET”, 6 ed., Microsoft Press, Washington,
2003.

