

Abstract— In this paper a hardware implementation of a high

throughput 128- bits Advanced Encryption Standard (AES)
algorithm on a single chip of Xilinx Spartan III XC3S1000 FPGA
has been presented. The bus width of the architecture is 32 bit.
Pipelining method has been used in this design in order to
achieve a higher speed. SubBytes method has been implemented
using both composite field method and fixed Rom for further
analysis and comparison of performance. Through a perfect
combination of different methods of SBox and key Expansion, a
notable speed has been achieved in the range of 1.11 Gbps to 3.22
Gbps. An in depth analysis became possible as the whole
architecture was tested in four combination (composite field and
Rom for both sub bytes and key expansion). All the methods have
been discussed with a proper statistical analysis and performance
charts.

Keyword: AES, High Throughput, Pipelining, SBox, MixColumn.

I. INTRODUCTION

HE Advanced Encryption Standard (Rijndael Block
Cipher) became the new US Federal Information

Processing Standard on November 26, 2001[1] in order to
replace the Data Encryption Standard (DES) which was used
for more than 20 years as a common key block cipher for
FIPS. After that, several hardware implementations for FPGA
and ASIC have been introduced [2], [3], [4], [5].

The design proposed in this paper is an AES
encryption/Decryption core with 128-bit keys. Different
techniques of implementing the blocks and pipelining are
discussed. The arithmetic block, SubBytes, has been
implemented in two ways. One is Look up table and the other
is composite field technique. As the Key Expansion block
contains the SubBytes as well, there would be two ways for
implementing this block. So, there are four ways of
implementing the whole encryption technique which will be
compared at the end.

The rest of the paper is organized as follows: The second
section is a brief introduction of AES encryption and
decryption algorithm. The third part explains the design of

Manuscript was submitted on 7 Jan, 2010.
Authors are the students of Department of Electronic & Electrical
Engineering, University Of Sheffield, UK (degree to be conferred).
 Tanzilur Rahman’s degree major is Electronic Engineering. Contact:
tanzil_dhk@yahoo.com
Shengy Pan has major in Data Communication. Mail him at:
psyking841@hotmail.com
Qi Zhang also has major in Data Communication and he can be reached at:
carbenzq@googlemail.com.

pipelining level. All the results are presented in section five

and the sixth section concludes the paper.

II. AN INTRODUCTION TO AES ENCRYPTION/DECRYPTION
ALGORITHM

The principle design of Advanced Encryption Standard

(AES) is based on substitution permutation network, which
can take a block of the plaintext and the key as inputs. AES
consists of four separate blocks which are repeated for 10
rounds by applying the inputs in several alternative layers to
produce the cipher text block. For the first nine rounds all four
blocks are repeated but for the final round the MixColumns
block is excluded.

Fig. 1. The basic block of the AES core

 Fig.1 shows the basic building block of the AES core

which contains four separated blocks, SubBytes, ShiftRows,
MixColumns and AddRoundKey. There is a 32-bit pipelining
register in between each of these blocks. This full block is
repeated ten times in the AES core to get the whole result.

III. INDIVIDUAL BLOCK ARCHITECTURE

A. SubBytes

There are two approaches to implement the sub byte
transform. One is by using look up table (LUT) to get the sub
byte value for each input; the other is to calculate the sub byte
value by mathematical equations.

Due to all the operations are in finite field GF (28), there are
256 different sub byte values in total [7], [8]. All the values
can be stored in a ROM as a table. When sub byte is in
process, the replacement of original value is achieved by look
up this table in rom. Therefore, sub byte with LUT is simple to
design.

Design of a High Throughput 128-bit AES
(Rijndael Block Cipher)

 Tanzilur Rahman, Shengyi Pan, Qi Zhang

T

Sub byte can also be implemented by combinational logic
gates. An input in the form of GF(28) is a 8 bit value. It costs a
lot of hardware resource to transform the value in GF(28)
straight. The basic idea to simplify the design and reduce the
latency is that decomposing one value in GF(28) into GF((24)2)
and then implementing the transform in GF(24). After that,
GF((24)2) value is composed into GF(28). Finally, sub byte
transform is achieved. The procedure is expressed in equation
from (1) to (7).

8 4() , (2), , (2)h l h lmap a a x a a GF a a GF ------- (1)

1() () ()h l h l h h la a x a a x a a d x a a d
------- (2)

2 2 1(({ }) ())h h l ld a e a a a ------- (3)

1 8 4(), (2), , (2)h l h la map a x a a GF a a GF ---- (4)

Where and represent finite field multiplication and

addition (XOR) respectively.
The finite field multiplication in GF (24) can be expressed

as (5). Equation (6) and (7) are the square and inverse
transform in GF (24) respectively.

4

4() () () () ()mod (), (), (), () (2)q x a x b x a x gb x m x a x b x q x GF
------ (5)

2 4
4() () mod (), (), () (2)q x a x m x a x q x GF ----- (6)

1 4
4() () mod (), (), () (2)q x a x m x a x q x GF ----- (7)

Based on these equations the sub byte transform is done by

mathematical operation.
If we think of one value only, the calculation method of the

transform is slower than the LUT one. However, considering
multiple values transform, only one value can be found by
LUT at each time which is not suitable for mass data
transform. Although multiple tables can be designed in the
system, the resource cost is excessive. On the other hand,
calculating method is more suitable for mass values transform.
Taking vantage of pipeline structure, registers can easily be
introduced between logic gates which means as long as the
pipeline is full, the transform results can be received
continuously at each clock cycle.

The pipeline and system structure of round 1 to 9 are shown
in Fig.2. From that figure, it can be seen that two 4 bit
registers are introduced for the sub-pipeline of sub byte
transform. Another two 8 bit registers refer to pipeline for the
round transform. According to the synthesis report, the
minimum period is reduced from 28.240ns to 9.703ns and the
frequency is three times to that of the original design.

SubBytes block with LUT method is easy to design and
faster than the composite field method without pipeline.
However, it takes more slices and is difficult to increase speed
this way.

Sub byte with composite method takes fewer slices than the
LUT one. The frequency can be increased by sub-pipeline
structure. The average delay of the logic levels should be
considered during project design.

Pipeline and sub-pipeline structure increase the maximum
frequency significantly whereas the slices cost almost the
same. The average delay in between blocks should be
controlled by sub-pipeline to reduce the maximum delay to
average latency time. In this project, the maximum frequency
increased from 35.411 MHz to 103.061MHz by inserting 4
registers. Therefore taking the vantage of pipelined design,
AES can be implemented in FPGA for high throughput
purpose. Comparing with a design without sub-pipeline, the
sub-pipeline design improves the performance remarkably.

Fig. 2. The pipelined structure of rounds 1 to 9 using composite field

method in SubBytes block

B. ShiftRows

It is a transposition step on the row of the state where each
row of the state is shifted cyclically by certain number of
steps. The first row (row 0) is unaltered. The second row (row
1) is shifted by one byte, the third row is shifted by two bytes
and final row is shifted three bytes. It also ensures that each
byte in each row does not interact solely with their
corresponding bytes.

There are two schemes to execute the ShiftRows block. The
first one is shown in Fig 3 where a mod 4 counter and two
128-bit registers are used. Each of E0 to E15 stands for 8-bit
data element. The data comes into the ShiftRows block in the
form of 32 bits and thus it takes 4 clock cycles to get one set
of data. It requires a mod 4 counter to identify which column
is coming into the ShiftRows block so that the first column
can be marked as 00, the second one as 01, and so on. The
data comes into the Register 1 in 4 clock cycles. In the fifth
clock cycle, the elements in register 1 would be put into the
corresponding position in register 2 according to the principle
of ShiftRows. At the same time (the fifth clock cycle) first 32
bits of next 128-bit data would be read into E0-E3 again. At
the sixth clock cycle, first 32 bits of the register 2 can be taken
out. In general, there need 4 clock cycles to put data into
register 1, 4 clock cycles to get out of data from register 2, 1
cycle for “shifting”, and 6 clock cycles latency to get the first
32 bit output. So the counter is not only for identifying the
data but also for notifying the registers to get in and output
data and shift.

Fig. 3. The ShiftRows block using a counter

Following the second scheme, row shifting is done using

shift register. This method is shown in the picture below:

Fig. 4. The ShiftRows block using shift registers

R1, R2, R3 and R4 are shift registers which can shift

element to the right hand side at each clock cycle. A1, A2, A3
and A4 are the address lines which can pick up the elements
from the position in shift registers according to the address.
The data will be transferred to the new column. Data
continuously moves into the 4 registers column by column.
After 4 clock cycles the first 4 elements of each shift register
will be full and at the same time addresses are given to A1-A4.
Since the first row is never shifted, A1 will always be 011,
which means E3 is always picked up to E0. A2 picks up the
elements from addresses ”010”,”010”,”010”,”110” at each

clock cycle, A3 picks up the elements from “001”, “001”,
“101”, “101”, A4 picks up the elements from “000”, “100”,
“100”, “100”.

This is the scheme that we first took into consideration but
it’s complicated to program and also takes more slices than the
first one does. Since the first scheme is a more efficient way to
do ShiftRows, it has been used in our architecture.

C. MixColumns

MixColumns and inverse MixColumns can be expressed as
modular multiplication with constant polynomials and
constant matrix multiplication [6]. We merged the two circuits
(MixColumns and inverse MixColumns) into one because
inverse MixColumns matrix contains a full MixColumns
matrix [5]. Through matrix manipulation it is possible to show
that the inverse MixColumn is just addition (XOR) of
MixColumns and element matrices (Fig. 5). In this merged
version, the numbers of XOR logic gates are decreased by 2/3
(from 592 XORs to 195 XORs) with only 2 XOR gates of
additional delay [5]. But the question is whether this
additional delay is affordable with our high throughput part of
fully unrolled version of AES. The comparison shows that the
normal MixColumns and inverse MixColumns in separate
gives 15% less delay with consuming 30% more area.
Therefore it is easy to decide to use this merged version.

Fig. 5. Merged circuit for MixColumns and inverse MixColumns

 In this version, the number of slices used is only 69 which
is less than 1% and the XORs used are 60 whereas the sliced
flip flops are 64 in number causing 6.109ns delay. Table I
shows all the statistics of the MixColumns block.

TABLE I
The statistics of MixColumns Block

option Gates

(merged)
Gates
(individual)

Delay
(merged)

Delay
(individual)

data 193 592 6.109ns 5 ns

D. AddRoundKey

In this block each byte of states are combined with the
subkey where each subkey is derived from the cipher key
using key schedule. The subkey and the state are of the same

size. The subkey is added by combining each byte of the state
with the corresponding byte of the sub key through bitwise
XOR manipulation.

E. KeyExpansion

128 bit key is taken as input in this block and expanded for
all the rounds and stored .The keys are then used for every
round. Key schedule part is dependent on the sub bytes. The
sub byte is calculated both using composite filed and LUT
(look up table) method. The LUT is definitely not area
efficient rather time efficient whereas the composite field sub
bytes technique is just opposite.

The area*delay curve comes up with the right solution to be
chosen. Without making any decision beforehand on which
key expansion should be used, both the key expansion have
been used in the core AES in different combination (Table III)
with different sub bytes. This makes it easy to analyze the
performance of each combination. The key expansion in total
takes 12 clock cycles to be completed but data encryption is
possible to start right after 4th cycle because of the availability
of first few round’s keys. All the statistics are shown in table
II.

TABLE II
The Statistics of KeyExpansion Block

Method 256x8-

bit
ROM

XORs Slices Minimum
period

Memory
based

40 1312 5092 6.279 ns

Composite
field

no 3790 2335 22ns
(combinational
delay)

IV. THE SUB-PIPELINED ARCHITECTURE

Generally there are three ways to optimize the architecture.
These three methods are based on pipelining, sub-pipelining
and loop-unrolling. Pipelining is actually inserting rows of
registers in between each round unit. Sub-pipelining is
similarly inserting rows of registers among combinatorial
logics, but the difference with the earlier one is that the
registers are inserted in both inside and between the round
units. These two methods lead multiple blocks of data to be
processed simultaneously. On the other hand, just one block of
data can be processed at a time, but multiple rounds are
processed at one clock cycle in loop-unrolling method. From
this brief explanation, it is obvious that the sub-pipelining can
achieve the maximum speed among these three methods. The
aim of this project is to design a high throughput hardware
component and hence we used sub-pipelining method in our
architecture.

V. PERFORMANCE ANALYSIS

Performance has been increased through pipelining of the
full rounds (pipeline register in between two consecutive

rounds) and pipelining the block inside every round (pipeline
register in between every single block). Moreover the sub
bytes function has been calculated in two different methods
(LUT and composite field) giving us the opportunity to
measure and compare the performance in a number ways.

TABLE III

The total statistics of the AES core

Combination of different
method applied

Slices Throughput Through
put/Slice
(bit/slice)

Composite field
SubBytes for both Key
Expansion and SubBytes

5207 1.11Gbits 213174.6

Composite field
SubBytes for
KeyExpansion and look
up table for SubBytes

6385 2.32Gbits 363351.6

Composite field for
SubBytes and look up
table for Key Expansion

6659 1.11Gbits 166691.7

Look up table for both
Key Expansion and
SubBytes

7606 2.19Gbits 287930.6

Sub-pipelined SubBytes 6605 3.22Gbits 484210.5

Max output 8.856ns

 Considering to the statistics above, the bar chart of these

five different structures of AES core is shown in Fig. 6. The y-
axis determines the “Throughput /Slices” in each structure and
it is obvious that the fifth one which is the sub-pipelined
structure, has the highest rate of “Throughput/Slices”.

Fig 6. The Bar-chart of five different structure of AES core

(Throughput/Slices)

VI. CONCLUSION

The detail analysis on using different SBox method has
made the decision easy to follow the right one. The speed has
been increased substantially through sub pipelining in the
SubBytes block.

In the ShiftRows part, comparatively simpler method is
followed to implement. However, further research can be done
to implement it by using an improved shift-register.
 Pipeline and sub-pipeline structure has increased the
maximum frequency significantly. The average delay in
pipeline should be controlled by sub-pipelining to reduce the
maximum delay to average latency time. In this project, the
maximum frequency increased from 35.411 MHz to
103.061MHz by inserting 4 registers. Therefore, taking the
vantage of pipeline design AES can be implemented in FPGA
for high throughput purpose. Comparing with a design without
sub-pipeline, the sub-pipeline design improves the
performance remarkably.

APPENDIX

MixColumns matrix:

 ACKNOWLEDGMENT

We are grateful to Dr. Benaissa and Dr. Luke Seed who
supervised the project and helped us with proper guidelines
and information. We would also like to thank Arefeh Taghi
Khani, Murali Krishna and Chu who helped us a lot during the
project.

REFERENCES

[1] National Institute of Standards and Technology (U.S.), Advanced
Encryption Standard. Available at:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[2] Xinmiao Zhang,and Keshab K. Parhi, “High Speed VLSI Architecture
for the AES Algorithm”, IEEE Transactions on very Large Scale
Integration (VLSI) Systems, vol. 12, NO. 9, September 2004.

[3] A. Hodjat and I. Verbauwhede, “A 21.54 Gbit/s Fully Pipelined AES
Processor on FPGA”, Proceedings of the 12th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines(FCCM 2004),
pp. 308- 309,April 2004.

[4] I. Verbauwhede, P. Schaumont, H. Kuo, “Design and Performance
testing of a 2.29 Gb/s Rijndael Processor”, IEEE Journal of Solid-State
Circuits (JSSC), March 2003.

[5] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh, “A
Compact Rijndael Hardware Architecture with SBox Optimization”,
ASIACRYPT 2001, LNCS 2248, pp.239-254.

[6] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, NIST AES
Proposal, June 1998.

[7] Atri Rudra1, Pradeep K. Dubey1, Charanjit S. Jutla2, Vijay
Kumar_,1,Josyula R. Rao2, and Pankaj Rohatgi2, “Efficient Rijndael
Encryption Implementation with Composite Field Arithmetic”,
Cryptographic Hardware and Embedded Systems — CHES 2001,vol.
2162, Jan. 2001, pp. 171-184

[8] R. W. Ward, Dr. T. C. A. Molteno, “Efficient Hardware Calculation of
Inverses in GF (28)”, Proceedings of the 10th Electronics New Zealand
Conference (ENZCon'03), September, 2003.

