

Abstract—A Clustering & Mapping (CM) Algorithm, which

can automatically divide task graphs into clusters and map
tasks onto homogeneous cluster-based Network-on-Chip
architectures, is presented in this paper. It performs
task-duplication-based lineal clustering to group tasks into a
series of clusters, and utilizes a heuristic task mapping process
to allocate ready clusters onto the platform efficiently. Then a
pipeline-based static task scheduling stage is used to enhance
the throughput for streaming applications. CM can fully
exploit the parallel characteristics within task graphs,
minimize the inner-cluster communication delay upon the
cluster-based NoC platform and utilize the individuality among
generated clusters to further reduce the inter-cluster
communication cost. The results generated by this algorithm
are verified by a cycle-accurate simulator written in SystemC.
Experiments show that significant communication time savings
can be achieved by using the Clustering & Mapping algorithm
when employed to the task graphs of 36, and 72 tasks.
Compared to the results generated by PHTM and EACS, 48%
and 56% time savings on average can be observed without
obviously harming energy performance.

Index Terms—Network-on-Chip, Mapping, Scheduling,

Pipeline, Clustering.

I. INTRODUCTION
The development of semiconductor technologies indicates

that future SoC applications will require huge computation
and communication capabilities and will inevitably consist
of multiple processing cores integrated by on-chip
communication architectures. This great number of
processing cores has brought great challenges in many
aspects, such as the scalability, communication performance
and power efficiency. In this context, Network-on-Chip
(NoC), which is proposed to replace the traditional
bus-based on-chip communication architecture, provides a
structured way of realizing inter-core communications on
silicon.

With the increase of the network scale, however, the
hardware cost of too many on-chip routers upon nodes, and
NIs (Network Interface) whose area and power cost may be
comparable with the IP cores, will be expensive. The
bandwidth of router ports might not be sufficiently enjoyed
with every router port of the same bandwidth either. To
avoid these problems, an improved NoC architecture with

Manuscript received October 31, 2009.
F. Fu, Y. Bai, X. Hu, J. Wang, and M. Yu are with the Microelectronics

Center, Harbin Institute of Technology, Harbin, Heilongjiang Province
150001, P.R China (fff1984292@163.com, abayax@gmail.com,
xinanhu@hit.edu.cn, jxwang@hit.edu.cn, myyu@hit.edu.cn).

cluster-based granularity [3, 4, 5, 12] is presented. In this
architecture, a cluster is a set of IP cores that couple tightly
with each other and is connected to a router node on the
network. The inter-cluster communication is handled by
NoC components such as the NIs and routers while for
inner-cluster communication, on-chip bus is still utilized
since it is more efficient than expensive routers and it can
gather communication demands among a cluster of IP cores
to fully exploit the bandwidth of routers ports. To achieve
this NoC implementation, a target application composed of a
set of existing tasks must be mapped onto a customized NoC
platform, as is shown in Fig. 1-e. It is a significant step as
well as an open problem for the NoC design.

Based on this promising cluster-based NoC architecture,
in this paper, a Clustering & Mapping Algorithm is
proposed to enhance the communication efficiency and
homogenous IP cores are chosen to reduce the solution
space. The Clustering & Mapping Algorithm (CM) first
divides given task graphs into clusters, which reduces the
size of original task graphs. A Tasks Duplication Technique
(TDT) is used here to further reduce the communication
overhead by redundantly allocating tasks onto multiple
clusters. Ready clusters are then mapped onto cluster-based
router nodes according to some kind of priority. As a result,
utilizing the natural individuality of those task clusters, the
communication delay among router nodes would be reduced
on the network. Then we adopt a kind of heuristic
pipelined-based approach for streaming applications to
allocate and schedule tasks within cluster-based router
nodes.

The remainder of this paper is organized as follow. The
related work in this area is introduced in Sec.2, and then the
definitions and problem formalization are presented in Sec.3.
In Sec.4, the clustering algorithm description is proposed.
Finally, the experimental results and conclusions are
presented.

II. RELATED WORK
Except for some special cases [6], the search for an

optimal solution to the problem of multi-processor tasks
mapping or scheduling has been proven to be NP-hard.
Numerous approaches, which can be mainly classified into
two categories [1]: non-deterministic approaches and
deterministic approaches, have been developed to solve the
problem.

Non-deterministic algorithms incorporate a combinatory
process in the search for solutions. They typically require
sufficient sampling of candidate solutions in the search
space and have shown robust performance on a variety of

Low Latency Clustering & Mapping Algorithm
with Task Duplication Technique on

Cluster-Based NoC
Fangfa Fu, Yuxin Bai, Xin’an Hu, Jinxiang Wang, Mingyan Yu

scheduling problems. Genetic algorithms [8, 13, 19, 18, 21],
simulated annealing [4, 9, 15], tabu search [16], and
artificial immune systems [14, 7, 5, 20] have been
successfully applied to various scheduling problems.
Non-deterministic algorithms, however, are less efficient
and have much higher computational cost than deterministic
algorithms.

Deterministic approaches attempt to utilize the heuristics
from specific problems and try to guide the search for a
solution. And many of them belong to list scheduling
algorithms, which can be divided into two steps: in the first
step, a priority value is given to each task in some criteria; in
the second step, tasks are assigned to processors in some
order of their priorities. ISH [11], DSH [11], MCP [22], and
CPFD [2] are typical list scheduling approaches to
homogeneous computing systems, while HEFT [17] and
CPOP [17] are list scheduling algorithms designed for
heterogeneous computing systems. However, the
performance of these algorithms is heavily dependent on the
effectiveness of the heuristics.

Another group of deterministic algorithms is clustering
algorithms [10, 23]. These algorithms assume that there are
an unlimited number of processors available for task
execution. Clustering algorithms will use as many
processors as possible in order to reduce the makespan
(scheduling length or overall finishing time of a parallel
application) of the schedule and could exploit the nature of
individuality within clusters. Only if the number of
processors used by a schedule is greater than the number
actually available in a given problem, a mapping or merging
process is required to merge the tasks in the proposed
schedule onto the actual number of available processors.
Therefore, by adding a tasks merging stage, clustering
algorithms which would bring about great help to reduce
communication time especially on our cluster-based NoC
architecture are explored in this work.

1. Clustering Stage

(1) The Initial Clustering

2

10

976

3
5

4

15

1

8

11

12

16

14
17

13
2

4

9

13

17

2

3

6

10

15

2

4

9

13

14

16

2

3

7

11

2

4

8

12

2

5

1

2

5

1 1

2

4

1

2

3

7

1

2

3

6

10

9

13

17

9

13

14

16

8

12

11

15

1

2

5

1

2

4

1

2

3

7

1

2

3

6

10

9

13

17

9

13

14

16

8

12

11

15

4

1

2

435

7

(4)Clusters Merging

(2) Sub Graphs
 Decomposition

a. Task Graph

2. Clusters Mapping Stage

… …

t0 t0''t1 t1''t4' t4t6' t6

II II

3. Tasks Scheduling Stage

(3) Circular
 Clustering

b. The Initializing Clustering Result

c. The Mid-Clustering Resultd. The Final Clustering Result

e. NoC Platform

f. The Tasks Scheduling Result

 Figure. 1 Definitions and Algorithm Flow

III. DEFINITIONS AND THE PROBLEM FORMULATION
3.1 Definitions

(1) Task Graph
As is shown in Fig. 1-a, the given task graph is shown as

a node-labeled and edge-labeled DAG (Directed Acyclic
Graph), which is described as a four elements set 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶). The vertex set in the graph can be represented
as 𝑉𝑉 = {𝑛𝑛𝑖𝑖 | 𝑛𝑛𝑖𝑖 is an ordered task, 𝑖𝑖 = 1, 2, 3 … 𝑣𝑣}. The
edge set is described as E = { 𝑒𝑒𝑖𝑖𝑖𝑖 | 𝑒𝑒𝑖𝑖𝑖𝑖 is the edge
from 𝑛𝑛𝑖𝑖 to 𝑛𝑛𝑖𝑖 }. The task computation time set can be
represented as Γ = {𝜏𝜏𝑖𝑖 | 𝜏𝜏𝑖𝑖 is the computation time
of 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, 2, 3 … 𝑣𝑣} and the communication time set is
Comm = {𝑐𝑐𝑖𝑖𝑖𝑖 | 𝑐𝑐𝑖𝑖𝑖𝑖 is the communication time from task 𝑛𝑛𝑖𝑖
to 𝑛𝑛𝑖𝑖 , 𝑛𝑛𝑖𝑖 is the fork task of 𝑛𝑛𝑖𝑖 }. Task i is defined as 𝑡𝑡𝑖𝑖𝜖𝜖𝑇𝑇,
and all tasks in a task graph compose a Task set T. If tasks
are allocated onto the same node in one cluster, their
communication cost will be zero.
(2) Predecessors 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) and posterities 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖)

All the predecessors (join tasks) of task i, are tasks who
directly communicate with and are before task i. They
compose the set 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖). All the posterities (fork tasks) of
task i, are tasks who directly communicate with and are after
task i. They compose the set 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖).
(3) Network Architecture Graph (NAG)

The NoC platform is described by a Network Architecture
Graph (NAG) 𝑁𝑁 = 𝑁𝑁(𝑅𝑅, 𝐿𝐿) , which is a directed acyclic
graph, where each node represents a router 𝑝𝑝𝑖𝑖 ; each 𝑝𝑝𝑖𝑖 ∈ 𝑅𝑅
is able to connect with one PE through a NI. It is shown in
Fig. 1-e.
(4) Clustering Stage

Cluster tasks 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 in given task graphs 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶)into clusters, and guarantee the clusters satisfy
some constraint requirements. We use function 𝜉𝜉: 𝑡𝑡𝑖𝑖 →
𝐶𝐶(𝑖𝑖) to represent “Clustering Stage”.
(5) Clusters Mapping Stage

Allocate each cluster 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 onto the router node in the
NAG. We use the function 𝜔𝜔:𝐶𝐶 → 𝑅𝑅 to represent “Clusters
Mapping Stage”.
(6) Tasks Scheduling Stage

For the set of tasks allocated onto IP cores connected to
the router node 𝑝𝑝𝑖𝑖 , determine the execution sequence Seq of
these tasks to meet with the real-time constraints. We use
the function 𝜈𝜈:𝑈𝑈 → 𝑆𝑆𝑒𝑒𝑆𝑆 to represent “Tasks Scheduling
Stage”.
(7) The earliest start time 𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) and the earliest complete
time 𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖)

𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) = 0, if 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) = 𝜙𝜙;
𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝜖𝜖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝜖𝜖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑖𝑖),𝑘𝑘≠𝑖𝑖 �𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖), 𝑒𝑒𝑐𝑐𝑡𝑡(𝑘𝑘) +

𝑐𝑐𝑘𝑘,𝑖𝑖, if 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖≠𝜙𝜙;
It means tasks could only start after all of their fork tasks

have been completed and their inter-communication has
been finished.

𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖) = 𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) + 𝜏𝜏𝑖𝑖;
(8) The value of tasks levels 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖)

It is the accumulation of execution time of tasks in a path
and describes the executing order of all the tasks in some
sense. It will be used as a parameter for the following
process of the algorithm later.

𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖) = 𝜏𝜏𝑖𝑖, if 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖) = 𝜙𝜙;
𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖) = 𝜏𝜏𝑖𝑖 + max𝑘𝑘𝜖𝜖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖)�𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑘𝑘)�, if 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖) ≠ 𝜙𝜙;

(9) The best predecessor 𝑓𝑓𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖)
𝑓𝑓𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) = 𝑖𝑖|�𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖) + 𝑐𝑐𝑖𝑖 ,𝑖𝑖 � ≥ �𝑒𝑒𝑐𝑐𝑡𝑡(𝑘𝑘) + 𝑐𝑐𝑘𝑘 ,𝑖𝑖�,

 ∀𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖); 𝑘𝑘 ∈ 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖), 𝑘𝑘 ≠ 𝑖𝑖;

3.2 Problem Formulation
Given:

The task graph: 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶);
The network architecture: 𝑁𝑁 = 𝑁𝑁(𝑅𝑅, 𝐿𝐿), with each router

node connecting to a set of IP cores;
For every 𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 in G, choose a group of 𝑡𝑡𝑖𝑖 ;
To find functions:

 𝜉𝜉: 𝑡𝑡𝑖𝑖 → 𝐶𝐶(𝑖𝑖);
𝜔𝜔:𝐶𝐶 → 𝑅𝑅 ;

 𝜈𝜈:𝑈𝑈 → 𝑆𝑆𝑒𝑒𝑆𝑆.

IV. CLUSTERING & MAPPING ALGORITHM DESCRIPTION
The algorithm is described as three stages: clustering

stage; clusters mapping stage; tasks scheduling stage, which
is shown in Fig. 1.

4.1 Clustering Stage

In this stage, given task graphs are divided into clusters.
The required property of each cluster is that it must only
have one source node and one sink node. Thus the new
clusters generated after this stage can be viewed as new
“tasks” in a smaller size task graph. Since IP cores are
interconnected with each other by bus, the communication
delay inside clusters on router nodes is ignored here. Two
clustering stage termination conditions are shown as below:

A. The overall communication volumes do not decrease
anymore;

B. The number of clusters is less than that of the router
nodes.

The process of this stage could be shown as four steps in
Fig. 1: (1) The Initial Clustering; (2) The Decomposition of
Sub Graphs; (3) Circular Clustering; and (4) Clusters
Merging.

4.1.1 The Initial Clustering

There are two categories of clustering: lineal clustering
and non-lineal clustering. Since the lineal clustering
approach maps tasks in the same key path and exploits the
parallel characteristics of the DAG well, lineal clustering is
utilized to complete this stage. The first step of lineal
clustering is to find tasks on all related path and to map
them onto different clusters. A Task Duplication Technique
is utilized to reduce scheduling length by increasing the
individuality of clusters. According to level values of tasks,
we then set a queue of tasks arranged from low to high level
values. We call it a Level Queue (LQ). This is a down-to-top
searching method from the sink task to source task. Fig. 2
shows the pseudo code of the initialization.

for every task from the first to last in LQ
 if(task i is not marked)

 put task i into a new cluster;
 cluste_number ++;

 mark task i;

 if (fred(i) is not marked)
 put fpred(i) into the same cluster;
 mark fpred(i);
 else
 copy fred(i) into the same cluster;

 else
 continue to look for unmarked tasks;

 Figure. 2 Pseudo Code of Clustering Initialization

4.1.2 Sub Graphs Decomposition
All clusters generated in the previous step are called sub

graphs. According to the constraints mentioned above, these
clusters should be further regulated until each of the clusters
only has one source task and one sink task in order to
guarantee their individuality. Therefore, in this step, we
would decompose the initial clustering results into new kind
of clusters which have the property of a single task, such as
owning predecessors and posterities.

Input: the initial clustering results C1, C2,…,Cn;
Output: new clusters satisfying the requirement that each

has only one source task and one sink task.
Decomposition rules are shown as the pseudo code below in
Fig. 3.

for every cluster generated from the initialization
 if (tasks number of Ci ==1)
 put this task into a new cluster;
 else
 for every task in Ci top-to-down according to Level values
 if (fork tasks number of ti >1)
 if (all fork tasks of ti are copied)
 put ti into the same cluster with its fpred(i);
 else
 put ti into a new cluster;
 else
 if (join tasks number of ti >1)
 if (ti is copied)
 put ti into the same cluster with its fpred(i);
 else
 put ti into the same cluster with its fork task;
 put the join task of ti into a new cluster;
 else
 if (ti is not the last task in Ci)
 put ti into the same cluster with its fork task;
 else
 if (fork task of ti is copied and its join tasks number >=1)
 put ti into the same cluster with its fork task;
 else
 put ti into a new cluster;

Figure. 3 Pseudo Code of Sub Graph Decomposition

4.1.3 Circular Clustering

The result of sub graphs decomposition achieves the goal
of regulating initial clusters to new ones which satisfy some
properties of tasks. However, two overall constraint
conditions would not be met after clustering just once under
some circumstances, so we have to continue to regulate
clusters until the number of clusters is less than that of
routers or the whole communication volumes do not
decrease any more. The circulation is sure to terminate since
the communication volumes wouldn’t be below zero, no
matter whether constraint B is met or not.

The key of this step is to execute initial clustering and sub
graphs decomposition circularly until all constraints are met
before the algorithm is terminated. The result of this step
can be shown as Fig.1-(3).

4.1.4 Clusters Merging

Only when the algorithm is terminated with the number of
clusters exceeding that of router nodes, do we need to
execute this step of merging clusters. Since the exceeded
number of clusters will largely increase the computational
complexity of this algorithm, we implement this step to
guarantee the simplicity of next mapping stage.

A. Definitions

The generated clusters set is C={Ci}. Select two clusters

Ci、Cj arbitrarily, and denote that the number of their same
tasks in two clusters is 𝜒𝜒, the number of tasks in cluster Ci is
𝛼𝛼, and the number of tasks in cluster Cj is 𝛽𝛽. The relevance
coefficient between Ci and Cj, is defined as 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜒𝜒/𝛽𝛽 ,
while the relevance coefficient between Cj and Ci is defined
as 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜒𝜒/𝛼𝛼.

We could also define a correlation cluster set 𝐶𝐶𝐿𝐿 =
 {𝐶𝐶𝑖𝑖 |𝐶𝐶𝑖𝑖 ≠ 𝐶𝐶𝑖𝑖} for cluster Ci, which holds all other clusters in
a queue, which is called para_queue, down ordered by the
relevance coefficients with 𝐶𝐶𝑖𝑖 .

B. Merging Algorithm

In this step, not only we should reduce the total number of
clusters, but we also need to try our best to reduce the
number of copied tasks to constrain total energy
consumption, and need to increase the individuality among
clusters by cutting down communications among clusters.
(1) Merging none-individual clusters

Consider a cluster in the clusters set C. If the fork clusters
of the current cluster do not have any previous clusters,
merge all the fork clusters into the current cluster.
(2) Merging individual clusters

For a cluster 𝐶𝐶𝑖𝑖 , first arrange clusters from its correlation
cluster set CL in a new queue called cluster_size_queue,
with the up order of 𝛼𝛼, which is the number of tasks in
clusters. Then take the first cluster from the
cluster_size_queue and search for clusters in para_queue. If
the cluster from the cluster_size_queue is found in the
para_queue and the corresponding relevance coefficient is 1,
merge this cluster into 𝐶𝐶𝑖𝑖 . Then check the termination
conditions. If they are not met, the second cluster in the
cluster_size_queue will be fetched and the process will be
executed similarly as before. If all the clusters in the
cluster_size_queue have been checked and the termination
conditions are still not satisfied, we have to choose clusters
with the highest coefficient values to merge. The sample
result is shown in Fig. 1-d.

4.2 Clusters Mapping Stage

In this stage, ready clusters that meet the required
constraints are mapped onto router nodes. Here we use a
heuristic method to allocate clusters in the down sequence of
their Level values and put them onto the nodes where they
will bring about communication cost as low as possible.
Also, the availability of the link path should be considered.
The clusters mapping and link scheduling method is
described as below:

(1) Source cluster mapping: In order to make it
convenient for other clusters to communicate with the
source cluster, put the source cluster in the center of the
architecture so that the communication hops can be reduced
between source cluster and related clusters.

(2) Other clusters mapping and their communication links
scheduling:

Let CommCost represent the communication cost between
clusters on different nodes.

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡 = � ℎ𝐶𝐶𝑝𝑝 × 𝑐𝑐𝐶𝐶𝑚𝑚_𝑣𝑣𝐶𝐶𝑙𝑙𝑠𝑠𝑚𝑚𝑒𝑒
𝑖𝑖𝐶𝐶𝑖𝑖𝑛𝑛 _𝑡𝑡𝑚𝑚𝑠𝑠𝑘𝑘

Firstly, we allocate other clusters by the down order of
their level values so that early clusters would be mapped
early.

Secondly, we check the parameter CommCost of all the
available nodes for the current cluster. Then check the

availability of the link paths between the current cluster and
a previous cluster, by the order of the node with the least
CommCost value to the one with highest CommCost value.
If the link paths are schedulable for the first available node,
map the current cluster onto this node. Else, check whether
it is possible to map it on the second available node. After
each cluster is mapped on a router node, we update the
information of links. In this way, we repeat this work above
until the clusters are all mapped onto the network. This
would be a simple approach because the number of clusters
is not greater than that of the router nodes.

4.3 Task Scheduling Stage

Since we have already mapped all the clusters onto the
router nodes, this stage is to further map and schedule tasks
inside clusters on IP cores within a router node.

For each task to be allocated, we first check each core on
the router node to judge whether the task can be schedulable.
In order to apply to the streaming application, pipelined
scheduling method is introduced for tasks scheduling inside
clusters. Tasks are iterated by a sample period, which is also
called pipeline period. And because of the periodicity, once
it is schedulable at this time period, then it will be
schedulable one circle later in the next period. By the down
sequence of level values, when a task is allocated onto the
proper core, the scheduling table on each IP core is updated.
In doing so, we not only insert the execution time of this
task into it, but also duplicate it with the pipeline period for
several circles because of the pipelined implementation. Fig.
5 shows the pipelined scheduling. Non-primed labels t0, t1, t4
and t6 indicate tasks from the current iteration, primed labels
t4 and t6 indicate tasks from the previous iteration, while
double-primed labels t0 and t1 indicate tasks from the next
iteration.

t0 t0''t1 t1''t4' t4t6' t6

II II

Figure. 4 Pipelined Scheduling

On the other hand, the fork tasks whose finishing time is

exactly known, however, have been allocated on the best
core, thus we just involve finishing time of task in the first
iteration. After the maximal finishing time among fork tasks,
we search for the idle time that is suitable for the next task
to be allocated, and then its latest start time can be found.

V. EXPERIMENTAL RESULTS
Two kinds of streaming applications with significant

amount of communication among tasks are applied to our
experiments as Task Graph input, which is shown in Table 1.
The task graphs of two applications include 36 and 72 tasks
respectively. The chosen homogenous IP core is AMD
ElanSC520-133 MHz – square whose idle power is 0.16watt,
and working power is 1.6watt with the supply voltage of
1.5V and threshold voltage of 0.6V. The network ran at the
frequency of 100MHz with a bandwidth of 6400Mbit/s. We
implement a cycle accurate Simulator written in SystemC
which describes the models of the routers architecture,
network interface, and IP cores to verify this algorithm.
Then we choose other mapping & scheduling algorithms,
PHTM [3] and a random mapping algorithm EACS [24] for
comparison.

Table. 1 Applications Characteristic

In order to evaluate the proposed algorithm, we regard

Ming Li’s work PHTM and Qingli Zhang’s work EACS as a
compare in the aspects of scheduling length and energy
consumption. Although Qingli Zhang’s work is applied to
heterogeneous NoC architecture, we can change it into
homogenous one by fixing the category of PE without
influencing the core of his algorithm. Each of them is
mapped onto a 5×5 homogenous NoC. Fig. 5 and 6 show the
normalized scheduling length result of three algorithms.
Compared with PHTM and EACS, our algorithm CM has
saved scheduling length by 72% and 76% respectively,
when implemented on the graph of 36 tasks, as is shown in
Fig. 5. As the increase of complexity of task graph,
scheduling length has been saved by 24% and 36%
respectively, when implemented on the graph of 72 tasks. It
is shown in Fig. 6. The average saved scheduling length is
48% and 56%, which reveals an obvious reduction of
applications running time and a remarkable performance
improvement.

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
lin

g
Le

ng
th

 CM
 PHTM
 EACS

Figure. 5 Scheduling Length Comparison on the graph of 36 tasks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sc
he

du
lin

g
Le

ng
th

 CM
 PHTM
 EACS

Figure. 6 Scheduling Length Comparison on the graph of 72 tasks

Fig. 7 shows the normalized energy consumption result of

three algorithms. Our algorithm has an energy increment by
15% and 3% respectively, compared with PHTM and EACS
on the graph of 36 tasks. When algorithms are implemented
on the graph of 72 tasks, CM saves energy by 3% compared
with EACS but has a 13% energy increase compared with
PHTM. That’s because duplicated tasks in clusters of CM
Algorithm increase extra tasks execution energy
consumption, though communication consumption energy
has been reduced. Thus the overall energy consumption
would somehow task-graph-dependent. On average, the

energy consumption of CM Algorithm is almost equivalent
to that of EACS and increases by 14% when compared with
PHTM. Therefore, for our CM Algorithm, energy
performance is just slightly sacrificed when a huge
improvement in scheduling length is brought about.

36 Tasks 72 Tasks --
0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

Experiment of Two Task Graphs With Three Algorithms

 CM
 PHTM
 EACS

Figure. 7 Energy Comsumption Comparisons

VI. CONCLUSION
In this paper, a Clustering & Mapping Algorithm is

presented, which performs TDT-based clustering, clusters
mapping, and tasks scheduling simultaneously on
homogenous cluster-based NoC platform. This clustering
method can fully exploit the parallel characteristics within
task graphs and can utilize the individuality among clusters
to further reduce their inter-communication cost. It is
verified on a cycle accurate Simulator written in SystemC
and compared with PHTM [3] and a random mapping
algorithm EACS [24] running on graphs of 36 and 72 tasks.
And experimental results show that CM algorithm has
achieved a significant improvement in shortening
scheduling length on homogenous cluster-based NoC
platform, with almost equivalent energy performance with
EACS and slightly more energy sacrifice compared to
PHTM, thus our further work would be focused on reducing
energy consumption and on implementing our algorithms
onto heterogonous architectures.

ACKNOWLEDGMENT
Thank Ming Li, Liguo Wang, and Junjie Song for their

help to this work as well as Siyue Sun etc. for the advice on
this paper.

REFERENCES
[1] Han Yu. Optimizing Task Schedules Using An Artificial Immune

System Approach. 2008 ACM 978-1-60558-130-9/08/07.
[2] I. Ahmad and Y. Kwok. On exploiting task duplication in parallel

program scheduling. IEEE Transactions on Parallel and Distributed
Systems, 9(9):872–892, 1998.

[3] Ming-Yan Yu, Ming Li, Jun-Jie Song, Fang-Fa Fu, Yu-Xin Bai.
Pipeling-based High Throughput Low Energy Mapping on Network-on
Chip. In Proc. of the Euromicro Symposium on Digital Systems Design,
Patras, Greece, 2009.

[4] S. W. Bollinger and S. F. Midkiff. Processor and link assignment in
multicomputers using simulated annealing. In Proceedings of the
International Conference on Parallel Processing, pages 1–7, 1988.

[5] A. Costa, P. Vargas, F. V. Zuben, and P. Franca. Makespan
minimisation on parallel processors: An immune based approach. In
Proceedings of the Congress on Evolutionary Computation, pages
920–926, 2002.

Application ID Nodes Edges
Application1 36 49
Application2 72 87

[6] M. R. Garey and D. S. Johnson. Computers and intractability, a guide to the
theory of NP-Completeness. W. H. Freeman, New York, 1979.

[7] E. Hart and P. Ross. An immune system approach to scheduling in
changing environments. In Proceedings of Genetic and Evolutionary
Computation Conference, pages 1559–1565, 1999.

[8] E. S. Hou, N. Ansari, and H. Ren. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems,
5(2):113–120, 1994.

[9] K. Hwang and J. Xu. Mapping partitioned program modules onto
multicomputer nodes using simulated annealing. In Proceedings of the
International Conference on Parallel Processing, pages 292–293, 1990.

[10] S. J. Kim and J. C. Browne. A general approach to mapping of parallel
computation upon multiprocessor architectures. In International Conference
on Parallel Processing, volume 2, pages 1–8, 1988.

[11] B. Kruatrachue and T. G. Lewis. Duplication Scheduling Heuristic, a new
precedence task scheduler for parallel systems. Technical Report 87-60-3,
Oregon State University, 1987.

[12] Jingcao Hu. "Design Methodologies For Application Specific
Networks-on-Chip". PhD thesis. Carnegie Mellon University, May, 2005

[13] Y. Kwok and I. Ahmad. Efficient scheduling of arbitrary task graphs to
multiprocessors using a parallel genetic algorithm. Journal of Parallel and
Distributed Computing, 47(1):58–77, 1997.

[14] M. Mori, M. Tsukiyama, and T. Fukuda. Adapative scheduling system
inspired by the immune system. In Proceedings of the IEEE Conference on
Systems, Man and Cybernetics, pages 3833–3837, 1998.

[15] A. K. Nanda, D. DeGroot, and D. Stenger. Scheduling directed task graphs
on multiprocessors using simulated annealing algorithms. In Proceedings of
the 12th International Conference on Distributed Computing Systems,
1992.

[16] S. C. S. Porto and C. C. Ribeiro. A tabu search approach to task scheduling
on heterogeneous processors under precedence constraints. International
Journal of High-Speed Computing, 7(2), 1995.

[17] H. Topcuoglu, S. Hariri, and M. Y. Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel & Distributed Systems, 13(3):260–274, 2002.

[18] T. Tsuchiya, T. Osada, and T. Kikuno. Genetic-based multiprocessor
scheduling using task duplication. Microprocessors and Microsystems,
22:197–207, 1998.

[19] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski. Task
matching and scheduling in heterogenous computing environments using a
genetic-algorithm-based approach. Journal of Parallel and Distributed
Computing, 47(1):8–22, 1997.

[20] G. Wojtyla, K. Rzadca, and F. Seredynski. Artificial immune systems
applied to multiprocessor scheduling. In Proceedings of the 6th
International Conference on Parallel Processing and Applied Mathematics,
pages 904–911, 2005.

[21] A. S. Wu, H. Yu, S. Jin, G. Schiavone, and K.-C. Lin. An incremental
genetic algorithm approach to multiprocessor scheduling. IEEE
Transactions on Parallel & Distributed Systems, 15(9):824–834, 2004.

[22] M. Y. Wu and D. D. Gajski. Hypertool: A programming aid for
message-passing systems. IEEE Transactions on Parallel & Distributed
Systems, 1(3):330–343, 1990.

[23] T. Yang and A. Gerasoulis. DSC: Scheduling parallel tasks on an
unbounded number of processors. IEEE Transactions on Parallel &
Distributed Systems, 5(9):951–967, 1994. 158.

[24] Qing-Li Zhang, et al. "Energy-aware HW/SW co-synthesis algorithm for
Heterogeneous NoC ", ASP-DAC, 2009.

	INTRODUCTION
	Related Work
	Definitions and the Problem Formulation
	(7) The earliest start time 𝑒𝑠𝑡(𝑖) and the earliest complete time 𝑒𝑐𝑡(𝑖)
	Clustering & Mapping Algorithm Description
	4.1.1 The Initial Clustering
	4.1.2 Sub Graphs Decomposition
	4.1.3 Circular Clustering
	4.1.4 Clusters Merging
	A. Definitions
	B. Merging Algorithm
	(1) Merging none-individual clusters
	(2) Merging individual clusters
	Experimental Results
	Conclusion
	Acknowledgment
	References

