
 
 

 

 
Abstract—A Clustering & Mapping (CM) Algorithm, which 

can automatically divide task graphs into clusters and map 
tasks onto homogeneous cluster-based Network-on-Chip 
architectures, is presented in this paper. It performs 
task-duplication-based lineal clustering to group tasks into a 
series of clusters, and utilizes a heuristic task mapping process 
to allocate ready clusters onto the platform efficiently. Then a 
pipeline-based static task scheduling stage is used to enhance 
the throughput for streaming applications. CM can fully 
exploit the parallel characteristics within task graphs, 
minimize the inner-cluster communication delay upon the 
cluster-based NoC platform and utilize the individuality among 
generated clusters to further reduce the inter-cluster 
communication cost. The results generated by this algorithm 
are verified by a cycle-accurate simulator written in SystemC. 
Experiments show that significant communication time savings 
can be achieved by using the Clustering & Mapping algorithm 
when employed to the task graphs of 36, and 72 tasks. 
Compared to the results generated by PHTM and EACS, 48% 
and 56% time savings on average can be observed without 
obviously harming energy performance. 

 

 
Index Terms—Network-on-Chip, Mapping, Scheduling, 

Pipeline, Clustering.  
 

I. INTRODUCTION 
The development of semiconductor technologies indicates 

that future SoC applications will require huge computation 
and communication capabilities and will inevitably consist 
of multiple processing cores integrated by on-chip 
communication architectures. This great number of 
processing cores has brought great challenges in many 
aspects, such as the scalability, communication performance 
and power efficiency. In this context, Network-on-Chip 
(NoC), which is proposed to replace the traditional 
bus-based on-chip communication architecture, provides a 
structured way of realizing inter-core communications on 
silicon. 

With the increase of the network scale, however, the 
hardware cost of too many on-chip routers upon nodes, and 
NIs (Network Interface) whose area and power cost may be 
comparable with the IP cores, will be expensive. The 
bandwidth of router ports might not be sufficiently enjoyed 
with every router port of the same bandwidth either. To 
avoid these problems, an improved NoC architecture with 
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cluster-based granularity [3, 4, 5, 12] is presented. In this 
architecture, a cluster is a set of IP cores that couple tightly 
with each other and is connected to a router node on the 
network. The inter-cluster communication is handled by 
NoC components such as the NIs and routers while for 
inner-cluster communication, on-chip bus is still utilized 
since it is more efficient than expensive routers and it can 
gather communication demands among a cluster of IP cores 
to fully exploit the bandwidth of routers ports. To achieve 
this NoC implementation, a target application composed of a 
set of existing tasks must be mapped onto a customized NoC 
platform, as is shown in Fig. 1-e. It is a significant step as 
well as an open problem for the NoC design. 

Based on this promising cluster-based NoC architecture, 
in this paper, a Clustering & Mapping Algorithm is 
proposed to enhance the communication efficiency and 
homogenous IP cores are chosen to reduce the solution 
space. The Clustering & Mapping Algorithm (CM) first 
divides given task graphs into clusters, which reduces the 
size of original task graphs. A Tasks Duplication Technique 
(TDT) is used here to further reduce the communication 
overhead by redundantly allocating tasks onto multiple 
clusters. Ready clusters are then mapped onto cluster-based 
router nodes according to some kind of priority. As a result, 
utilizing the natural individuality of those task clusters, the 
communication delay among router nodes would be reduced 
on the network. Then we adopt a kind of heuristic 
pipelined-based approach for streaming applications to 
allocate and schedule tasks within cluster-based router 
nodes. 

The remainder of this paper is organized as follow. The 
related work in this area is introduced in Sec.2, and then the 
definitions and problem formalization are presented in Sec.3. 
In Sec.4, the clustering algorithm description is proposed. 
Finally, the experimental results and conclusions are 
presented. 

 

II. RELATED WORK 
Except for some special cases [6], the search for an 

optimal solution to the problem of multi-processor tasks 
mapping or scheduling has been proven to be NP-hard. 
Numerous approaches, which can be mainly classified into 
two categories [1]: non-deterministic approaches and 
deterministic approaches, have been developed to solve the 
problem. 

Non-deterministic algorithms incorporate a combinatory 
process in the search for solutions. They typically require 
sufficient sampling of candidate solutions in the search 
space and have shown robust performance on a variety of 
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scheduling problems. Genetic algorithms [8, 13, 19, 18, 21], 
simulated annealing [4, 9, 15], tabu search [16], and 
artificial immune systems [14, 7, 5, 20] have been 
successfully applied to various scheduling problems. 
Non-deterministic algorithms, however, are less efficient 
and have much higher computational cost than deterministic 
algorithms. 

Deterministic approaches attempt to utilize the heuristics 
from specific problems and try to guide the search for a 
solution. And many of them belong to list scheduling 
algorithms, which can be divided into two steps: in the first 
step, a priority value is given to each task in some criteria; in 
the second step, tasks are assigned to processors in some 
order of their priorities. ISH [11], DSH [11], MCP [22], and 
CPFD [2] are typical list scheduling approaches to 
homogeneous computing systems, while HEFT [17] and 
CPOP [17] are list scheduling algorithms designed for 
heterogeneous computing systems. However, the 
performance of these algorithms is heavily dependent on the 
effectiveness of the heuristics. 

Another group of deterministic algorithms is clustering 
algorithms [10, 23]. These algorithms assume that there are 
an unlimited number of processors available for task 
execution. Clustering algorithms will use as many 
processors as possible in order to reduce the makespan 
(scheduling length or overall finishing time of a parallel 
application) of the schedule and could exploit the nature of 
individuality within clusters. Only if the number of 
processors used by a schedule is greater than the number 
actually available in a given problem, a mapping or merging 
process is required to merge the tasks in the proposed 
schedule onto the actual number of available processors. 
Therefore, by adding a tasks merging stage, clustering 
algorithms which would bring about great help to reduce 
communication time especially on our cluster-based NoC 
architecture are explored in this work. 
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(1) The Initial Clustering
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 Figure. 1  Definitions and Algorithm Flow 
 

III. DEFINITIONS AND THE PROBLEM FORMULATION 
3.1 Definitions 

(1) Task Graph 
As is shown in Fig. 1-a, the given task graph is shown as 

a node-labeled and edge-labeled DAG (Directed Acyclic 
Graph), which is described as a four elements set  𝐺𝐺 =
(𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶). The vertex set in the graph can be represented 
as 𝑉𝑉 = {𝑛𝑛𝑖𝑖  |  𝑛𝑛𝑖𝑖  is an ordered task,  𝑖𝑖 = 1, 2, 3 … 𝑣𝑣}. The 
edge set is described as E = { 𝑒𝑒𝑖𝑖𝑖𝑖  |  𝑒𝑒𝑖𝑖𝑖𝑖  is the edge 
from  𝑛𝑛𝑖𝑖  to  𝑛𝑛𝑖𝑖 }. The task computation time set can be 
represented as Γ = {𝜏𝜏𝑖𝑖  |  𝜏𝜏𝑖𝑖  is the computation time 
of 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, 2, 3 … 𝑣𝑣} and the communication time set is 
Comm = {𝑐𝑐𝑖𝑖𝑖𝑖  | 𝑐𝑐𝑖𝑖𝑖𝑖  is the communication time from task 𝑛𝑛𝑖𝑖  
to 𝑛𝑛𝑖𝑖 ,  𝑛𝑛𝑖𝑖  is the fork task of 𝑛𝑛𝑖𝑖 }. Task i is defined as  𝑡𝑡𝑖𝑖𝜖𝜖𝑇𝑇, 
and all tasks in a task graph compose a Task set T. If tasks 
are allocated onto the same node in one cluster, their 
communication cost will be zero. 
(2) Predecessors 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) and posterities 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖) 

All the predecessors (join tasks) of task i, are tasks who 
directly communicate with and are before task i. They 
compose the set 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖). All the posterities (fork tasks) of 
task i, are tasks who directly communicate with and are after 
task i. They compose the set 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖). 
(3) Network Architecture Graph (NAG) 

The NoC platform is described by a Network Architecture 
Graph (NAG)  𝑁𝑁 = 𝑁𝑁(𝑅𝑅, 𝐿𝐿) , which is a directed acyclic 
graph, where each node represents a router 𝑝𝑝𝑖𝑖 ; each  𝑝𝑝𝑖𝑖 ∈ 𝑅𝑅 
is able to connect with one PE through a NI. It is shown in 
Fig. 1-e. 
(4) Clustering Stage 

Cluster tasks  𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇  in given task graphs 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶)into clusters, and guarantee the clusters satisfy 
some constraint requirements. We use function  𝜉𝜉: 𝑡𝑡𝑖𝑖 →
𝐶𝐶(𝑖𝑖) to represent “Clustering Stage”. 
(5) Clusters Mapping Stage 

Allocate each cluster  𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 onto the router node in the 
NAG. We use the function 𝜔𝜔:𝐶𝐶 → 𝑅𝑅 to represent “Clusters 
Mapping Stage”. 
(6) Tasks Scheduling Stage 

For the set of tasks allocated onto IP cores connected to 
the router node 𝑝𝑝𝑖𝑖 , determine the execution sequence Seq of 
these tasks to meet with the real-time constraints. We use 
the function  𝜈𝜈:𝑈𝑈 → 𝑆𝑆𝑒𝑒𝑆𝑆 to represent “Tasks Scheduling 
Stage”. 
(7) The earliest start time 𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) and the earliest complete 
time 𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖) 

𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) = 0, if 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) = 𝜙𝜙; 
𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝜖𝜖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝜖𝜖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 (𝑖𝑖),𝑘𝑘≠𝑖𝑖 �𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖), 𝑒𝑒𝑐𝑐𝑡𝑡(𝑘𝑘) +

𝑐𝑐𝑘𝑘,𝑖𝑖, if 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖≠𝜙𝜙; 
It means tasks could only start after all of their fork tasks 

have been completed and their inter-communication has 
been finished. 

𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖) = 𝑒𝑒𝑠𝑠𝑡𝑡(𝑖𝑖) +  𝜏𝜏𝑖𝑖; 
(8) The value of tasks levels 𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖) 

It is the accumulation of execution time of tasks in a path 
and describes the executing order of all the tasks in some 
sense. It will be used as a parameter for the following 
process of the algorithm later. 

𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖) =  𝜏𝜏𝑖𝑖, if 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖) = 𝜙𝜙; 
𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑖𝑖) =  𝜏𝜏𝑖𝑖 + max𝑘𝑘𝜖𝜖𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖)�𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙(𝑘𝑘)�, if 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐(𝑖𝑖) ≠ 𝜙𝜙; 

(9) The best predecessor 𝑓𝑓𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) 
𝑓𝑓𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖) = 𝑖𝑖|�𝑒𝑒𝑐𝑐𝑡𝑡(𝑖𝑖) + 𝑐𝑐𝑖𝑖 ,𝑖𝑖 � ≥ �𝑒𝑒𝑐𝑐𝑡𝑡(𝑘𝑘) + 𝑐𝑐𝑘𝑘 ,𝑖𝑖�, 

 ∀𝑖𝑖 ∈ 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖); 𝑘𝑘 ∈ 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑖𝑖), 𝑘𝑘 ≠ 𝑖𝑖; 
 



 
 

 

3.2 Problem Formulation 
Given: 

The task graph: 𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑇𝑇,𝐶𝐶); 
The network architecture: 𝑁𝑁 = 𝑁𝑁(𝑅𝑅, 𝐿𝐿), with each router 

node connecting to a set of IP cores; 
For every  𝑡𝑡𝑖𝑖 ∈ 𝑇𝑇 in G, choose a group of 𝑡𝑡𝑖𝑖 ; 
To find functions: 

   𝜉𝜉: 𝑡𝑡𝑖𝑖 → 𝐶𝐶(𝑖𝑖); 
𝜔𝜔:𝐶𝐶 → 𝑅𝑅 ; 

   𝜈𝜈:𝑈𝑈 → 𝑆𝑆𝑒𝑒𝑆𝑆. 

IV. CLUSTERING & MAPPING ALGORITHM DESCRIPTION 
The algorithm is described as three stages: clustering 

stage; clusters mapping stage; tasks scheduling stage, which 
is shown in Fig. 1. 
 
4.1 Clustering Stage 

In this stage, given task graphs are divided into clusters. 
The required property of each cluster is that it must only 
have one source node and one sink node. Thus the new 
clusters generated after this stage can be viewed as new 
“tasks” in a smaller size task graph. Since IP cores are 
interconnected with each other by bus, the communication 
delay inside clusters on router nodes is ignored here. Two 
clustering stage termination conditions are shown as below: 

A. The overall communication volumes do not decrease 
anymore; 

B. The number of clusters is less than that of the router 
nodes. 

The process of this stage could be shown as four steps in 
Fig. 1: (1) The Initial Clustering; (2) The Decomposition of 
Sub Graphs; (3) Circular Clustering; and (4) Clusters 
Merging. 

 
4.1.1 The Initial Clustering 

There are two categories of clustering: lineal clustering 
and non-lineal clustering. Since the lineal clustering 
approach maps tasks in the same key path and exploits the 
parallel characteristics of the DAG well, lineal clustering is 
utilized to complete this stage. The first step of lineal 
clustering is to find tasks on all related path and to map 
them onto different clusters. A Task Duplication Technique 
is utilized to reduce scheduling length by increasing the 
individuality of clusters. According to level values of tasks, 
we then set a queue of tasks arranged from low to high level 
values. We call it a Level Queue (LQ). This is a down-to-top 
searching method from the sink task to source task. Fig. 2 
shows the pseudo code of the initialization. 

 

for every task from the first to last in LQ
     if(task i is not marked)

    put task i into a new cluster;
              cluste_number ++;

           mark task i;

           if (fred(i) is not marked)
               put fpred(i) into the same cluster;
               mark fpred(i);
           else
               copy fred(i) into the same cluster;

  else
    continue to look for unmarked tasks;

 
   Figure. 2 Pseudo Code of Clustering Initialization 

 

4.1.2  Sub Graphs Decomposition 
All clusters generated in the previous step are called sub 

graphs. According to the constraints mentioned above, these 
clusters should be further regulated until each of the clusters 
only has one source task and one sink task in order to 
guarantee their individuality. Therefore, in this step, we 
would decompose the initial clustering results into new kind 
of clusters which have the property of a single task, such as 
owning predecessors and posterities. 

Input: the initial clustering results C1, C2,…,Cn; 
Output: new clusters satisfying the requirement that each 

has only one source task and one sink task. 
Decomposition rules are shown as the pseudo code below in 
Fig. 3. 
 

for every cluster generated from the initialization
  if (tasks number of Ci ==1)
      put this task into a new cluster;
  else
     for every task in Ci top-to-down according to Level values
         if (fork tasks number of ti >1)
             if (all fork tasks of ti are copied)
                 put ti into the same cluster with its fpred(i);
             else
                 put ti into a new cluster;
         else
             if (join tasks number of ti >1)
                 if (ti is copied)
                     put ti into the same cluster with its fpred(i);
                 else
                     put ti into the same cluster with its fork task;
                     put the join task of ti into a new cluster;
             else
                 if (ti is not the last task in Ci)
                     put ti into the same cluster with its fork task;
                 else
                     if (fork task of ti is copied and its join tasks number >=1)
                         put ti into the same cluster with its fork task;
                     else
                         put ti into a new cluster;

Figure. 3 Pseudo Code of Sub Graph Decomposition 
 
4.1.3 Circular Clustering 

The result of sub graphs decomposition achieves the goal 
of regulating initial clusters to new ones which satisfy some 
properties of tasks. However, two overall constraint 
conditions would not be met after clustering just once under 
some circumstances, so we have to continue to regulate 
clusters until the number of clusters is less than that of 
routers or the whole communication volumes do not 
decrease any more. The circulation is sure to terminate since 
the communication volumes wouldn’t be below zero, no 
matter whether constraint B is met or not.  

The key of this step is to execute initial clustering and sub 
graphs decomposition circularly until all constraints are met 
before the algorithm is terminated. The result of this step 
can be shown as Fig.1-(3). 

 
4.1.4 Clusters Merging 

Only when the algorithm is terminated with the number of 
clusters exceeding that of router nodes, do we need to 
execute this step of merging clusters. Since the exceeded 
number of clusters will largely increase the computational 
complexity of this algorithm, we implement this step to 
guarantee the simplicity of next mapping stage. 

 
A. Definitions 

The generated clusters set is C={Ci}. Select two clusters 



 
 

 

Ci、Cj arbitrarily, and denote that the number of their same 
tasks in two clusters is 𝜒𝜒, the number of tasks in cluster Ci is 
𝛼𝛼, and the number of tasks in cluster Cj is 𝛽𝛽. The relevance 
coefficient between Ci and Cj, is defined as 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜒𝜒/𝛽𝛽 , 
while the relevance coefficient between Cj and Ci is defined 
as 𝜂𝜂𝑖𝑖𝑖𝑖 = 𝜒𝜒/𝛼𝛼. 

We could also define a correlation cluster set 𝐶𝐶𝐿𝐿 =
 {𝐶𝐶𝑖𝑖 |𝐶𝐶𝑖𝑖 ≠ 𝐶𝐶𝑖𝑖} for cluster Ci, which holds all other clusters in 
a queue, which is called para_queue, down ordered by the 
relevance coefficients with 𝐶𝐶𝑖𝑖 . 

 
B. Merging Algorithm 

In this step, not only we should reduce the total number of 
clusters, but we also need to try our best to reduce the 
number of copied tasks to constrain total energy 
consumption, and need to increase the individuality among 
clusters by cutting down communications among clusters. 
(1) Merging none-individual clusters 

Consider a cluster in the clusters set C. If the fork clusters 
of the current cluster do not have any previous clusters, 
merge all the fork clusters into the current cluster. 
(2) Merging individual clusters 

For a cluster 𝐶𝐶𝑖𝑖 , first arrange clusters from its correlation 
cluster set CL in a new queue called cluster_size_queue, 
with the up order of  𝛼𝛼, which is the number of tasks in 
clusters. Then take the first cluster from the 
cluster_size_queue and search for clusters in para_queue. If 
the cluster from the cluster_size_queue is found in the 
para_queue and the corresponding relevance coefficient is 1, 
merge this cluster into   𝐶𝐶𝑖𝑖 . Then check the termination 
conditions. If they are not met, the second cluster in the 
cluster_size_queue will be fetched and the process will be 
executed similarly as before. If all the clusters in the 
cluster_size_queue have been checked and the termination 
conditions are still not satisfied, we have to choose clusters 
with the highest coefficient values to merge. The sample 
result is shown in Fig. 1-d. 

 
4.2 Clusters Mapping Stage 

In this stage, ready clusters that meet the required 
constraints are mapped onto router nodes. Here we use a 
heuristic method to allocate clusters in the down sequence of 
their Level values and put them onto the nodes where they 
will bring about communication cost as low as possible. 
Also, the availability of the link path should be considered. 
The clusters mapping and link scheduling method is 
described as below: 

(1) Source cluster mapping: In order to make it 
convenient for other clusters to communicate with the 
source cluster, put the source cluster in the center of the 
architecture so that the communication hops can be reduced 
between source cluster and related clusters. 

(2) Other clusters mapping and their communication links 
scheduling: 

Let CommCost represent the communication cost between 
clusters on different nodes. 

𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡 = � ℎ𝐶𝐶𝑝𝑝 × 𝑐𝑐𝐶𝐶𝑚𝑚_𝑣𝑣𝐶𝐶𝑙𝑙𝑠𝑠𝑚𝑚𝑒𝑒
𝑖𝑖𝐶𝐶𝑖𝑖𝑛𝑛 _𝑡𝑡𝑚𝑚𝑠𝑠𝑘𝑘

 

Firstly, we allocate other clusters by the down order of 
their level values so that early clusters would be mapped 
early. 

Secondly, we check the parameter CommCost of all the 
available nodes for the current cluster. Then check the 

availability of the link paths between the current cluster and 
a previous cluster, by the order of the node with the least 
CommCost value to the one with highest CommCost value. 
If the link paths are schedulable for the first available node, 
map the current cluster onto this node. Else, check whether 
it is possible to map it on the second available node. After 
each cluster is mapped on a router node, we update the 
information of links. In this way, we repeat this work above 
until the clusters are all mapped onto the network. This 
would be a simple approach because the number of clusters 
is not greater than that of the router nodes. 

 
4.3 Task Scheduling Stage 

Since we have already mapped all the clusters onto the 
router nodes, this stage is to further map and schedule tasks 
inside clusters on IP cores within a router node. 

For each task to be allocated, we first check each core on 
the router node to judge whether the task can be schedulable. 
In order to apply to the streaming application, pipelined 
scheduling method is introduced for tasks scheduling inside 
clusters. Tasks are iterated by a sample period, which is also 
called pipeline period. And because of the periodicity, once 
it is schedulable at this time period, then it will be 
schedulable one circle later in the next period. By the down 
sequence of level values, when a task is allocated onto the 
proper core, the scheduling table on each IP core is updated. 
In doing so, we not only insert the execution time of this 
task into it, but also duplicate it with the pipeline period for 
several circles because of the pipelined implementation. Fig. 
5 shows the pipelined scheduling. Non-primed labels t0, t1, t4 
and t6 indicate tasks from the current iteration, primed labels 
t4 and t6 indicate tasks from the previous iteration, while 
double-primed labels t0 and t1 indicate tasks from the next 
iteration. 
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Figure. 4 Pipelined Scheduling 

 
On the other hand, the fork tasks whose finishing time is 

exactly known, however, have been allocated on the best 
core, thus we just involve finishing time of task in the first 
iteration. After the maximal finishing time among fork tasks, 
we search for the idle time that is suitable for the next task 
to be allocated, and then its latest start time can be found. 

 

V. EXPERIMENTAL RESULTS 
Two kinds of streaming applications with significant 

amount of communication among tasks are applied to our 
experiments as Task Graph input, which is shown in Table 1. 
The task graphs of two applications include 36 and 72 tasks 
respectively. The chosen homogenous IP core is AMD 
ElanSC520-133 MHz – square whose idle power is 0.16watt, 
and working power is 1.6watt with the supply voltage of 
1.5V and threshold voltage of 0.6V. The network ran at the 
frequency of 100MHz with a bandwidth of 6400Mbit/s. We 
implement a cycle accurate Simulator written in SystemC 
which describes the models of the routers architecture, 
network interface, and IP cores to verify this algorithm. 
Then we choose other mapping & scheduling algorithms, 
PHTM [3] and a random mapping algorithm EACS [24] for 
comparison.  



 
 

 

 
Table. 1 Applications Characteristic 

 
In order to evaluate the proposed algorithm, we regard 

Ming Li’s work PHTM and Qingli Zhang’s work EACS as a 
compare in the aspects of scheduling length and energy 
consumption. Although Qingli Zhang’s work is applied to 
heterogeneous NoC architecture, we can change it into 
homogenous one by fixing the category of PE without 
influencing the core of his algorithm. Each of them is 
mapped onto a 5×5 homogenous NoC. Fig. 5 and 6 show the 
normalized scheduling length result of three algorithms. 
Compared with PHTM and EACS, our algorithm CM has 
saved scheduling length by 72% and 76% respectively, 
when implemented on the graph of 36 tasks, as is shown in 
Fig. 5. As the increase of complexity of task graph, 
scheduling length has been saved by 24% and 36% 
respectively, when implemented on the graph of 72 tasks. It 
is shown in Fig. 6. The average saved scheduling length is 
48% and 56%, which reveals an obvious reduction of 
applications running time and a remarkable performance 
improvement. 
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Figure. 5 Scheduling Length Comparison on the graph of 36 tasks 
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Figure. 6 Scheduling Length Comparison on the graph of 72 tasks 

 
Fig. 7 shows the normalized energy consumption result of 

three algorithms. Our algorithm has an energy increment by 
15% and 3% respectively, compared with PHTM and EACS 
on the graph of 36 tasks. When algorithms are implemented 
on the graph of 72 tasks, CM saves energy by 3% compared 
with EACS but has a 13% energy increase compared with 
PHTM. That’s because duplicated tasks in clusters of CM 
Algorithm increase extra tasks execution energy 
consumption, though communication consumption energy 
has been reduced. Thus the overall energy consumption 
would somehow task-graph-dependent. On average, the 

energy consumption of CM Algorithm is almost equivalent 
to that of EACS and increases by 14% when compared with 
PHTM. Therefore, for our CM Algorithm, energy 
performance is just slightly sacrificed when a huge 
improvement in scheduling length is brought about. 
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Figure. 7 Energy Comsumption Comparisons 

 

VI. CONCLUSION 
In this paper, a Clustering & Mapping Algorithm is 

presented, which performs TDT-based clustering, clusters 
mapping, and tasks scheduling simultaneously on 
homogenous cluster-based NoC platform. This clustering 
method can fully exploit the parallel characteristics within 
task graphs and can utilize the individuality among clusters 
to further reduce their inter-communication cost. It is 
verified on a cycle accurate Simulator written in SystemC 
and compared with PHTM [3] and a random mapping 
algorithm EACS [24] running on graphs of 36 and 72 tasks. 
And experimental results show that CM algorithm has 
achieved a significant improvement in shortening 
scheduling length on homogenous cluster-based NoC 
platform, with almost equivalent energy performance with 
EACS and slightly more energy sacrifice compared to 
PHTM, thus our further work would be focused on reducing 
energy consumption and on implementing our algorithms 
onto heterogonous architectures.  
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