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Abstract—Fast and accurate full-system simulation is needed 

for MPSoC design space exploration to achieve tight 
time-to-market design goals. In the field of full-system simula-
tion, transaction level modeling with SystemC and traditional 
instruction set simulators (e.g. M5) based on C/C++ have their 
own advantages, separately. In this paper, a novel method for 
synchronizing M5 and SystemC modules is proposed to achieve 
fast and timing-accurate co-simulation. This method adopts 
event-driven scheduling and object-oriented programming 
technology. With this method, an MPSoC full-system 
co-simulation platform, which allows modeling the architecture 
at multiple levels of abstraction, is presented. The fast abstract 
model of M5 and timing-accurate model of SystemC has been 
used for hardware framework. On the other hand, a lightweight 
MPI library is implemented for communication of software 
applications. The simulation result shows that the novel scheme 
can obtain a fast simulation speed with no expense on simula-
tion precision. Additionally a parallel MUSIC algorithm is 
designed which evaluates the validation of the MPSoC plat-
form. 
 

Index Terms—Co-simulation; MPSoC; Synchronization; 
Timing-Accurate. 
 

I. INTRODUCTION 
It has been widely accepted that Multiprocessor Sys-

tem-on-Chip (MPSoC) is the most promising way to keep on 
exploiting the high level of integration provided by the 
semiconductor technology and matching the constraints 
imposed by the embedded system market in terms of per-
formance and power consumption [1]. However, as more 
processors and hardware components are integrated, de-
signing and programming these complex multiprocessor 
architectures has become a major challenge [2]. In this con-
text, fast and accurate full-system simulation is necessary to 
efficiently explore different implementations and design 
parameters in order to achieve a cost-efficient MPSoC im-
plementation [3]. 

Nowadays, many research institutes have presented their 
MPSoC full-system simulators written in SystemC [6]–[8]. 
But for each simulator the details of components are quite 

different, and most of them are not open source. In this con-
dition, new scheduling schemes or communication protocols 
for MPSoC will not be convictive, if they only experiment 
with their own simulator. Moreover, it is a waste of time to 
implement a simulation platform from scratch for a new 
institute to launch. Hence a wide-accepted open-source 
MPSoC platform is needed for design exploration. 
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Fortunately, several full-system simulators for computer 
system architecture research (e.g. M5 [4], [5]) are open 
source, and most of them have excellent infrastructure for 
function extension. Thus the platform for MPSoC design 
exploration will be implemented with great efficiency and 
speed, if these full-system simulators are utilized wisely. But 
considering institutes who have been engaged on SystemC 
simulator for several years, lots of modules written in Sys-
temC have been made at different abstraction levels, which 
can be inserted into the simulator mentioned above to achieve 
a cost-efficient implementation. However, most of these 
open-source simulators are written in C++, so a synchroni-
zation scheme is necessary for fast and accurate 
co-simulation. 

In this paper, a novel scheme for synchronizing M5 and 
SystemC module is proposed, which uses the local time of 
M5 and SystemC time to achieve timing-accurate 
co-simulation. This scheme can guarantee a fast simulation 
speed with no expense on simulation precision. With this 
scheme, an MPSoC full-system simulation platform is pre-
sented which unites the advantage of M5 and SystemC. Any 
module of our platform can be implemented at system level 
with M5 or transaction level with SystemC. With the support 
to full-system simulation, our platform can fully analyze a 
parallel application to find out the performance bottleneck at 
the early stage of design flow. Additionally, for inter-process 
communication, we implement a lightweight MPI library [10] 
which contains a minimal working subset. 

The rest of the paper is organized as follows. Section 2 
presents an overview of related work, while Section 3 pre-
sents the scheme of co-simulation for M5 simulator and 
SystemC. Section 4 describes the architecture of the MPSoC 
platform and the parallel programming models for in-
ter-process communication. Section 5 gives the experiment 
result for this co-simulation scheme, and Section 6 evaluates 
the performance of parallel MUSIC algorithm with our 
MPSoC platform. We conclude in Section 7. 

 



 
 

 

II. RELATED WORK 
Instruction Set Simulator (ISS) and Transaction Level 

Modeling (TLM) with SystemC are both commonly adopted 
technologies for modeling of MPSoC simulation platform. 
Several researchers have proposed methodologies for 
co-simulation between ISS and SystemC. An overview of 
these related work shows that existing methodologies can be 
grouped in three broad categories: cycle-accurate 
co-simulation [9], timing-accurate co-simulation [12] and 
untimed co-simulation [11]. 

Boukhechem et al. [9] proposes an MPSoC platform cy-
cle-accurate co-simulation methodology based on an open 
source ISS OR1Ksim within SystemC as simulation envi-
ronment. In this platform, the ISSs are wrapped under Sys-
temC. So a SystemC wrapper interface is added to the ISS C 
model. At every positive clock edge, the SystemC wrapper 
interface calls the corresponding C function inside the ISS 
via IPC. Cycle-accurate computation simulation slows down 
the overall simulation significantly, which is the main dis-
advantage of this simulator. 

Cordibella et al. [12] presents a HW/SW co-simulation 
framework consisting of a timing-accurate interaction of a 
SystemC simulator with an array of ISSs. The synchroniza-
tion mechanism of this platform follows an asymmetric 
scheme, where one of the two simulators (the master) ex-
plicitly controls the execution of the other (the slave). To 
achieve this, they modify the SystemC kernel, which com-
pares ISS time and SystemC time in the simulation loop. A 
weakness of this mechanism regards the case in which Sys-
temC simulator is ahead of time with respect to the ISS 
simulator; in this case the result of a read operation or the 
behavior of SystemC after a write operation may depend on 
the delay of ISS with respect to SystemC. 

Benini et al. [11] implements two alternative schemes to 
allow a transparent integration of ISSs within the SystemC 
simulation framework. The former embeds the ISS within the 
SystemC simulator, which is just like [9]. The latter uses a 
wrapper called gdbAgent whose main function is executing 
the gdb and controlling its execution. The main disadvantage 
of this scheme is that synchronization between the SystemC 
time and the ISS simulated time can not be implemented 
completely. 

To cope with the problems mentioned above, a novel 
timing-accurate co-simulation scheme is presented which 
implements synchronization between the SystemC time and 
the ISS simulated time, and keeps a fast simulation speed 
simultaneously. 

 

III. TECHNOLOGY OF CO-SIMULATION 
M5 provides a full-system simulation platform and an 

excellent object-oriented infrastructure, while SystemC 
permits different abstraction levels and combination of dif-
ferent levels in one model. Therefore building a 
co-simulation platform will unite the advantages. But as 
mentioned above, synchronization and simulation speed are 
the most two important problems we should figure out. 

M5 is an event-driven simulation which uses a global 
event queue to simulate execution of each instruction and 

move forward the simulation time. During the execution of 
current event, new events will be notified, and it calls the 
method ‘insert’ of class EventQueue which will insert the 
events into the global event queue at a proper position ac-
cording to their execution time. When the current event fin-
ishes, the scheduler will take out the first event in the event 
queue to execute, whose execution time is the earliest, and 
then the scheduler assigns the simulation time with the exe-
cution of this event. 

Similarly, SystemC is event-driven. After sc_start routine 
is called in main function, all SystemC processes are placed 
into a ready pool. Then, the scheduler takes out processes 
from ready pool one by one. During execution, a process may 
invoke immediate or delayed event notification (i.e. 
sc_event.notify()) and possibly cause one or more waiting 
processes to be placed in the ready state. 

In order to achieve synchronization, these two schedulers 
must be unified. The principle of co-simulation is synchro-
nizing the local time of M5 and SystemC time. As mentioned 
in [12], an intuitive method is that one of the two simulators 
(the master) explicitly controls the execution of the other (the 
slave). The simulation time of the master goes forward by 
itself. The master is told when to schedule the slave. During 
the execution of the slave process, the slave updates its local 
time to achieve synchronization, and it tells the master when 
to schedule it again according to the local time. Not like [12], 
we only modify the M5 scheduler, and do not touch the 
SystemC kernel, which will improve the portability of the 
co-simulation platform. 

As shown in Fig. 1, SystemC is chosen as the master, and 
M5 scheduler is regarded as a SystemC process. When a 
SystemC event related with M5 happens, SystemC kernel 
will wake up M5 scheduler. Then M5 scheduler takes out the 
first event in EventQueue to execute. During the execution, 
new M5 events may be notified. When an M5 event is in-
serted into EventQueue, the method ‘insert’ will also notify a 
SystemC event. Then the SystemC event will wake up the M5 
process at the expected time once again. 

It should be noticed that more than one SystemC event 
may be notified at a time, so class sc_event does not satisfy 
this condition. For sc_event, only the nearest time notifica-
tion can be executed, so only one M5 event can trigger a 
SystemC event. Class sc_event_queue is chosen to solve this 
problem, which is added in SystemC version 2.1. An 
sc_event_queue object can be scheduled multiple times even 
for the same time. With this method, we achieve synchroni-
zation between the SystemC time and the ISS simulated time, 
and ensure that all of the M5 events and SystemC processes 
are executed one by one according to their execution time. 

Figure 1. Technology of synchronization. 



 
 

 

Fig. 2 shows some essential segments for synchronizing 
between M5 and SystemC. The M5 scheduler is wrapped in a 
SystemC thread called ‘simulate’ which is sensitive to a 
sc_event_queue called ‘scEventQueue’. The numbers shown 
in Fig. 2 just correspond to those in Fig. 1. 

M5 has excellent simulation speed which benefits from its 
high abstraction level. When TLM methodology is used for 
SystemC modules, the co-simulation speed is approaching to 
M5 with the low cost of schedule of SystemC kernel. By 
modeling only the necessary details, we can realize huge 
gains in modeling accuracy as well as simulation speed. 

 

IV. MPSOC CO-SIMULATION PLATFORM 
With the method mentioned above, an MPSoC full-system 

simulation platform is presented. The platform unites M5 and 
SystemC, and it is convenient for any M5 module in the 
platform to be replaced by timing-accurate SystemC model 
and vice versa. The platform supports full-system simulation, 
so a parallel application can be fully analyzed through 
simulation to find out the performance bottleneck at the early 
stage of design flow. 

As shown in Fig. 3, the whole platform can be divided into 
two parts: HW which is composed of two major components 
(i.e. PEs and NoC), and SW which includes OS, MPI library 
and parallel applications. 

Each PE includes CPU, local memory and some periph-
erals. A PE is connected to NoC through network interface 
(NI). All of the modules of PEs derive from M5, and the 
peripherals of M5 are all connected to memory bus. NI 
communicates with CPU via DMA, which can free up 
processor cycles. NoC module which is composed of routers 
is part of a NoC simulator written in SystemC. The topology 
and routing algorithm of this module can be configured 
during elaboration. Each router in the NoC module connects 
to a NI module respectively. 

NI can be considered as a transactor between M5 and 
SystemC. It is a type of channel specialized to translate be-
tween modules with different interfaces. In M5 all of the 
device modules inherit from class MemObject, and in Sys-
temC all of modules inherit from class sc_module. Therefore 
NI must inherit from both of them. The physical-level 
communication between M5 and SystemC can be imple-
mented by the Send FIFO and Receive FIFO in NI module. 
NI reads data from local memory via DMA, and pushes the 
data into Send FIFO. Then a SystemC thread in NI module 
sends the data to routers. On the other hand, another SystemC 
thread in NI module receives data from routers, and pushes 

the data into Receive FIFO. Then an M5 event in NI writes 
the data to local memory. 

For data transfer and synchronization between processes 
of the parallel application, the platform must provide a set of 
communication primitives. The primitives must support two 
kinds of inter-process communication: inter-processor 
communication (path 1 in Fig. 3) which calls device driver of 
NI to transmit data and intra-processor communication (path 
2 in Fig. 3) which uses shared memory to communicate with 
each other. A lightweight MPI library is implemented to 
satisfy the request. The library contains six MPI functions, 
and other communication protocols can be developed based 
on these functions. 
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Figure 3. MPSoC co-simulation platform. 

Figure 2. Segments of the SystemC-master scheme for synchronization.

 MPI_Init(): initializes the MPI execution environment. 
 MPI_Finalize(): terminates MPI execution environ-

ment. 
 MPI_Comm_size(): determines the size of the group 

associated with a communicator. 
 MPI_Comm_rank(): determines the rank of the calling 

process in the communicator. 
 MPI_Send(): blocking send. 
 MPI_Receive(): blocking receive. 

 
Figure 4. Process of data transfer. 



 
 

 

The implementation of path 1 and path 2 in MPI library is 
shown in Fig. 4. When a process wants to send data to other 
process, it calls MPI_Send routine. Because only one process 
can enter MPI_Send routine at a time, the process will be 
suspended until it gets the mutex. Then, the routine checks 
whether the destination process is in the same PE. If so, the 
routine inserts data to a global list from which receiving 
routine can obtain expected data (path 2). If not, the routine 
will configure DMA register, and then start a DMA transfer 
(path 1). On the other hand, when a process calls 
MPI_Receive routine, it will be blocked until the expected 
data is inserted in the global list by interrupt service routine 
or by MPI_Send routine in the same PE. 

 

V. PERFORMANCE ANALYSIS 
In order to evaluate the performance of the co-simulation 

scheme presented above, another intuitive scheme is imple-
mented, which can also ensure synchronization between 
SystemC and M5. In this scheme, M5 is chosen as master, 
and SystemC processes are executed every time at the end of 
scheduling loop. During each iteration of the loop, SystemC 
simulator will keep running until the execution time of next 
M5 event comes. The simulation time of calling sc_start 
routine each time is not more than a constant which ensures 
that the start time of all M5 events notified by SystemC is 
later than the finish time of the simulation. If not, a new event 
may be inserted at the head of the event queue of M5, which 
will break down the synchronization between SystemC and 
M5. The implementation of this scheme is shown in Fig. 5. 

These two schemes are compared in our co-simulation 
platform, and the same application is executed in the platform. 
The simulation environment is shown in Table II, and a par-
allel MUSIC algorithm is run on a four-core platform. The 
result is shown in Table I, which indicates SystemC-master 
algorithm is 7.6 times faster than the other. 

TABLE I.  COMPARISON OF SIMULATION TIME 

 SystemC-master scheme M5-master scheme 
Simulation 
time (sec.) 

332.07 2520.45 

 

 
Figure 6. Parallelization of MUSIC algorithm. 

SimLoopExitEvent * simulate(Tick num_cycles){
…

    while(1){
…

        mainEventQueue.serviceOne();
…

        while(mainEventQueue.nextTick()>curTick){
            if(mainEventQueue.nextTick() - curTick>CYCLE){
                sc_time sc_t(CYCLE, SC_PS);
                sc_start(sc_t);
                curTick+=CYCLE;
                }
            else{
                Tick t = mainEventQueue.nextTick() - curTick;
                sc_time sc_t(t, SC_PS);
                sc_start(sc_t);
                curTick+=t;
                }
            }
        }//end while(1)
}//end simulate  

Figure 5. Segments of the M5-master scheme. 

VI. CASE STUDY 
In order to validate the MPSoC platform, and evaluate the 

performance of the parallel programming models we im-
plement, a parallel MUSIC algorithm is designed with the 
lightweight MPI library. 

MUSIC, which is an acronym for MUltiple SIgnal Classi-
fication, is a classic spatial spectrum estimation technique. It 
is based on partitioning the estimated multi-channel covari-
ance matrix from a linear or planar array into a noise and 
signal subspace and finding a direction vector which is or-
thogonal to the noise subspace. The algorithm can be divided 
into three stages: pre-processing, EVD and peak-search, 
which is shown in Fig. 6. In the parallel MUSIC algorithm, 
EVD and peak-search are parallelized. MPI routines are used 
for communication among processes. 

According to the flow graph in Fig. 6, the MPSoC 
co-simulation platform can be configured as shown in Table 
II. 

TABLE II.  PARAMETER OF MPSOC PLATFORM 

network topol-
ogy 

Size of net-
work 

class of ser-
vice route algorithm

2D-mesh 2x2 best effort XY-routing 

Speedup is commonly used to evaluate the performance of 
parallel computation. Speedup for p processors is the ratio of 
execution time for the serial program running on single 
processor to execution time for the parallel program running 
on p processors. As shown in Table II, the parallel MUSIC 
algorithm is executed on a four-core platform, and the 
speedup we gain is 2.6. The result is compared with speedup 
in [13] which uses fore-core DSP for computation and shared 
memory for communication. With our platform, the speedup 
is enhanced by 9%. 
 



 
 

 

VII. CONCLUSION 
In this paper, a novel method for synchronizing M5 and 

SystemC module is proposed, and an MPSoC full-system 
simulation platform is presented which unites the advantage 
of M5 and SystemC. The simulation result shows that our 
scheme is 7.6 times faster than M5-master scheme. A parallel 
MUSIC algorithm is used to validate the MPSoC platform, 
and the speedup is 2.6. In the near future, we will extend our 
MPI library to support more complicated applications. 
Moreover, we will develop an interface for co-simulation 
between our MPSoC platform and Verilog modules. 
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