

A Fast Timing-Accurate MPSoC HW/SW
Co-Simulation Platform based on a Novel

Synchronization Scheme
Mingyan Yu, Junjie Song, Fangfa Fu, Siyue Sun, and Bo Liu

Abstract—Fast and accurate full-system simulation is needed

for MPSoC design space exploration to achieve tight
time-to-market design goals. In the field of full-system simula-
tion, transaction level modeling with SystemC and traditional
instruction set simulators (e.g. M5) based on C/C++ have their
own advantages, separately. In this paper, a novel method for
synchronizing M5 and SystemC modules is proposed to achieve
fast and timing-accurate co-simulation. This method adopts
event-driven scheduling and object-oriented programming
technology. With this method, an MPSoC full-system
co-simulation platform, which allows modeling the architecture
at multiple levels of abstraction, is presented. The fast abstract
model of M5 and timing-accurate model of SystemC has been
used for hardware framework. On the other hand, a lightweight
MPI library is implemented for communication of software
applications. The simulation result shows that the novel scheme
can obtain a fast simulation speed with no expense on simula-
tion precision. Additionally a parallel MUSIC algorithm is
designed which evaluates the validation of the MPSoC plat-
form.

Index Terms—Co-simulation; MPSoC; Synchronization;
Timing-Accurate.

I. INTRODUCTION
It has been widely accepted that Multiprocessor Sys-

tem-on-Chip (MPSoC) is the most promising way to keep on
exploiting the high level of integration provided by the
semiconductor technology and matching the constraints
imposed by the embedded system market in terms of per-
formance and power consumption [1]. However, as more
processors and hardware components are integrated, de-
signing and programming these complex multiprocessor
architectures has become a major challenge [2]. In this con-
text, fast and accurate full-system simulation is necessary to
efficiently explore different implementations and design
parameters in order to achieve a cost-efficient MPSoC im-
plementation [3].

Nowadays, many research institutes have presented their
MPSoC full-system simulators written in SystemC [6]–[8].
But for each simulator the details of components are quite

different, and most of them are not open source. In this con-
dition, new scheduling schemes or communication protocols
for MPSoC will not be convictive, if they only experiment
with their own simulator. Moreover, it is a waste of time to
implement a simulation platform from scratch for a new
institute to launch. Hence a wide-accepted open-source
MPSoC platform is needed for design exploration.

Manuscript received November 25, 2009, revised January 28, 2010.
M. Yu is with the Micro-Electronics Center, Harbin Institute of Tech-

nology, Harbin, China. He is the director of Micro-Electronics Center. His
current research interests are in computer architecture, System-on-chips and
IP design (e-mail: myyu@hit.edu.cn)

J. Song, F. Fu, S. Sun, and B. Liu are with the Micro-Electronics Center,
Harbin Institute of Technology, Harbin, China (e-mail: jjsong7@163.com,
fff1984292@163.com, sunmissmoon@163.com, liubohit@gmail.com).

Fortunately, several full-system simulators for computer
system architecture research (e.g. M5 [4], [5]) are open
source, and most of them have excellent infrastructure for
function extension. Thus the platform for MPSoC design
exploration will be implemented with great efficiency and
speed, if these full-system simulators are utilized wisely. But
considering institutes who have been engaged on SystemC
simulator for several years, lots of modules written in Sys-
temC have been made at different abstraction levels, which
can be inserted into the simulator mentioned above to achieve
a cost-efficient implementation. However, most of these
open-source simulators are written in C++, so a synchroni-
zation scheme is necessary for fast and accurate
co-simulation.

In this paper, a novel scheme for synchronizing M5 and
SystemC module is proposed, which uses the local time of
M5 and SystemC time to achieve timing-accurate
co-simulation. This scheme can guarantee a fast simulation
speed with no expense on simulation precision. With this
scheme, an MPSoC full-system simulation platform is pre-
sented which unites the advantage of M5 and SystemC. Any
module of our platform can be implemented at system level
with M5 or transaction level with SystemC. With the support
to full-system simulation, our platform can fully analyze a
parallel application to find out the performance bottleneck at
the early stage of design flow. Additionally, for inter-process
communication, we implement a lightweight MPI library [10]
which contains a minimal working subset.

The rest of the paper is organized as follows. Section 2
presents an overview of related work, while Section 3 pre-
sents the scheme of co-simulation for M5 simulator and
SystemC. Section 4 describes the architecture of the MPSoC
platform and the parallel programming models for in-
ter-process communication. Section 5 gives the experiment
result for this co-simulation scheme, and Section 6 evaluates
the performance of parallel MUSIC algorithm with our
MPSoC platform. We conclude in Section 7.

II. RELATED WORK
Instruction Set Simulator (ISS) and Transaction Level

Modeling (TLM) with SystemC are both commonly adopted
technologies for modeling of MPSoC simulation platform.
Several researchers have proposed methodologies for
co-simulation between ISS and SystemC. An overview of
these related work shows that existing methodologies can be
grouped in three broad categories: cycle-accurate
co-simulation [9], timing-accurate co-simulation [12] and
untimed co-simulation [11].

Boukhechem et al. [9] proposes an MPSoC platform cy-
cle-accurate co-simulation methodology based on an open
source ISS OR1Ksim within SystemC as simulation envi-
ronment. In this platform, the ISSs are wrapped under Sys-
temC. So a SystemC wrapper interface is added to the ISS C
model. At every positive clock edge, the SystemC wrapper
interface calls the corresponding C function inside the ISS
via IPC. Cycle-accurate computation simulation slows down
the overall simulation significantly, which is the main dis-
advantage of this simulator.

Cordibella et al. [12] presents a HW/SW co-simulation
framework consisting of a timing-accurate interaction of a
SystemC simulator with an array of ISSs. The synchroniza-
tion mechanism of this platform follows an asymmetric
scheme, where one of the two simulators (the master) ex-
plicitly controls the execution of the other (the slave). To
achieve this, they modify the SystemC kernel, which com-
pares ISS time and SystemC time in the simulation loop. A
weakness of this mechanism regards the case in which Sys-
temC simulator is ahead of time with respect to the ISS
simulator; in this case the result of a read operation or the
behavior of SystemC after a write operation may depend on
the delay of ISS with respect to SystemC.

Benini et al. [11] implements two alternative schemes to
allow a transparent integration of ISSs within the SystemC
simulation framework. The former embeds the ISS within the
SystemC simulator, which is just like [9]. The latter uses a
wrapper called gdbAgent whose main function is executing
the gdb and controlling its execution. The main disadvantage
of this scheme is that synchronization between the SystemC
time and the ISS simulated time can not be implemented
completely.

To cope with the problems mentioned above, a novel
timing-accurate co-simulation scheme is presented which
implements synchronization between the SystemC time and
the ISS simulated time, and keeps a fast simulation speed
simultaneously.

III. TECHNOLOGY OF CO-SIMULATION
M5 provides a full-system simulation platform and an

excellent object-oriented infrastructure, while SystemC
permits different abstraction levels and combination of dif-
ferent levels in one model. Therefore building a
co-simulation platform will unite the advantages. But as
mentioned above, synchronization and simulation speed are
the most two important problems we should figure out.

M5 is an event-driven simulation which uses a global
event queue to simulate execution of each instruction and

move forward the simulation time. During the execution of
current event, new events will be notified, and it calls the
method ‘insert’ of class EventQueue which will insert the
events into the global event queue at a proper position ac-
cording to their execution time. When the current event fin-
ishes, the scheduler will take out the first event in the event
queue to execute, whose execution time is the earliest, and
then the scheduler assigns the simulation time with the exe-
cution of this event.

Similarly, SystemC is event-driven. After sc_start routine
is called in main function, all SystemC processes are placed
into a ready pool. Then, the scheduler takes out processes
from ready pool one by one. During execution, a process may
invoke immediate or delayed event notification (i.e.
sc_event.notify()) and possibly cause one or more waiting
processes to be placed in the ready state.

In order to achieve synchronization, these two schedulers
must be unified. The principle of co-simulation is synchro-
nizing the local time of M5 and SystemC time. As mentioned
in [12], an intuitive method is that one of the two simulators
(the master) explicitly controls the execution of the other (the
slave). The simulation time of the master goes forward by
itself. The master is told when to schedule the slave. During
the execution of the slave process, the slave updates its local
time to achieve synchronization, and it tells the master when
to schedule it again according to the local time. Not like [12],
we only modify the M5 scheduler, and do not touch the
SystemC kernel, which will improve the portability of the
co-simulation platform.

As shown in Fig. 1, SystemC is chosen as the master, and
M5 scheduler is regarded as a SystemC process. When a
SystemC event related with M5 happens, SystemC kernel
will wake up M5 scheduler. Then M5 scheduler takes out the
first event in EventQueue to execute. During the execution,
new M5 events may be notified. When an M5 event is in-
serted into EventQueue, the method ‘insert’ will also notify a
SystemC event. Then the SystemC event will wake up the M5
process at the expected time once again.

It should be noticed that more than one SystemC event
may be notified at a time, so class sc_event does not satisfy
this condition. For sc_event, only the nearest time notifica-
tion can be executed, so only one M5 event can trigger a
SystemC event. Class sc_event_queue is chosen to solve this
problem, which is added in SystemC version 2.1. An
sc_event_queue object can be scheduled multiple times even
for the same time. With this method, we achieve synchroni-
zation between the SystemC time and the ISS simulated time,
and ensure that all of the M5 events and SystemC processes
are executed one by one according to their execution time.

Figure 1. Technology of synchronization.

Fig. 2 shows some essential segments for synchronizing
between M5 and SystemC. The M5 scheduler is wrapped in a
SystemC thread called ‘simulate’ which is sensitive to a
sc_event_queue called ‘scEventQueue’. The numbers shown
in Fig. 2 just correspond to those in Fig. 1.

M5 has excellent simulation speed which benefits from its
high abstraction level. When TLM methodology is used for
SystemC modules, the co-simulation speed is approaching to
M5 with the low cost of schedule of SystemC kernel. By
modeling only the necessary details, we can realize huge
gains in modeling accuracy as well as simulation speed.

IV. MPSOC CO-SIMULATION PLATFORM
With the method mentioned above, an MPSoC full-system

simulation platform is presented. The platform unites M5 and
SystemC, and it is convenient for any M5 module in the
platform to be replaced by timing-accurate SystemC model
and vice versa. The platform supports full-system simulation,
so a parallel application can be fully analyzed through
simulation to find out the performance bottleneck at the early
stage of design flow.

As shown in Fig. 3, the whole platform can be divided into
two parts: HW which is composed of two major components
(i.e. PEs and NoC), and SW which includes OS, MPI library
and parallel applications.

Each PE includes CPU, local memory and some periph-
erals. A PE is connected to NoC through network interface
(NI). All of the modules of PEs derive from M5, and the
peripherals of M5 are all connected to memory bus. NI
communicates with CPU via DMA, which can free up
processor cycles. NoC module which is composed of routers
is part of a NoC simulator written in SystemC. The topology
and routing algorithm of this module can be configured
during elaboration. Each router in the NoC module connects
to a NI module respectively.

NI can be considered as a transactor between M5 and
SystemC. It is a type of channel specialized to translate be-
tween modules with different interfaces. In M5 all of the
device modules inherit from class MemObject, and in Sys-
temC all of modules inherit from class sc_module. Therefore
NI must inherit from both of them. The physical-level
communication between M5 and SystemC can be imple-
mented by the Send FIFO and Receive FIFO in NI module.
NI reads data from local memory via DMA, and pushes the
data into Send FIFO. Then a SystemC thread in NI module
sends the data to routers. On the other hand, another SystemC
thread in NI module receives data from routers, and pushes

the data into Receive FIFO. Then an M5 event in NI writes
the data to local memory.

For data transfer and synchronization between processes
of the parallel application, the platform must provide a set of
communication primitives. The primitives must support two
kinds of inter-process communication: inter-processor
communication (path 1 in Fig. 3) which calls device driver of
NI to transmit data and intra-processor communication (path
2 in Fig. 3) which uses shared memory to communicate with
each other. A lightweight MPI library is implemented to
satisfy the request. The library contains six MPI functions,
and other communication protocols can be developed based
on these functions.

S
en

d
F

IF
O

R
ec

ei
ve

 F
IF

O

Figure 3. MPSoC co-simulation platform.

Figure 2. Segments of the SystemC-master scheme for synchronization.

 MPI_Init(): initializes the MPI execution environment.
 MPI_Finalize(): terminates MPI execution environ-

ment.
 MPI_Comm_size(): determines the size of the group

associated with a communicator.
 MPI_Comm_rank(): determines the rank of the calling

process in the communicator.
 MPI_Send(): blocking send.
 MPI_Receive(): blocking receive.

Figure 4. Process of data transfer.

The implementation of path 1 and path 2 in MPI library is
shown in Fig. 4. When a process wants to send data to other
process, it calls MPI_Send routine. Because only one process
can enter MPI_Send routine at a time, the process will be
suspended until it gets the mutex. Then, the routine checks
whether the destination process is in the same PE. If so, the
routine inserts data to a global list from which receiving
routine can obtain expected data (path 2). If not, the routine
will configure DMA register, and then start a DMA transfer
(path 1). On the other hand, when a process calls
MPI_Receive routine, it will be blocked until the expected
data is inserted in the global list by interrupt service routine
or by MPI_Send routine in the same PE.

V. PERFORMANCE ANALYSIS
In order to evaluate the performance of the co-simulation

scheme presented above, another intuitive scheme is imple-
mented, which can also ensure synchronization between
SystemC and M5. In this scheme, M5 is chosen as master,
and SystemC processes are executed every time at the end of
scheduling loop. During each iteration of the loop, SystemC
simulator will keep running until the execution time of next
M5 event comes. The simulation time of calling sc_start
routine each time is not more than a constant which ensures
that the start time of all M5 events notified by SystemC is
later than the finish time of the simulation. If not, a new event
may be inserted at the head of the event queue of M5, which
will break down the synchronization between SystemC and
M5. The implementation of this scheme is shown in Fig. 5.

These two schemes are compared in our co-simulation
platform, and the same application is executed in the platform.
The simulation environment is shown in Table II, and a par-
allel MUSIC algorithm is run on a four-core platform. The
result is shown in Table I, which indicates SystemC-master
algorithm is 7.6 times faster than the other.

TABLE I. COMPARISON OF SIMULATION TIME

 SystemC-master scheme M5-master scheme
Simulation
time (sec.)

332.07 2520.45

Figure 6. Parallelization of MUSIC algorithm.

SimLoopExitEvent * simulate(Tick num_cycles){
…

 while(1){
…

 mainEventQueue.serviceOne();
…

 while(mainEventQueue.nextTick()>curTick){
 if(mainEventQueue.nextTick() - curTick>CYCLE){
 sc_time sc_t(CYCLE, SC_PS);
 sc_start(sc_t);
 curTick+=CYCLE;
 }
 else{
 Tick t = mainEventQueue.nextTick() - curTick;
 sc_time sc_t(t, SC_PS);
 sc_start(sc_t);
 curTick+=t;
 }
 }
 }//end while(1)
}//end simulate

Figure 5. Segments of the M5-master scheme.

VI. CASE STUDY
In order to validate the MPSoC platform, and evaluate the

performance of the parallel programming models we im-
plement, a parallel MUSIC algorithm is designed with the
lightweight MPI library.

MUSIC, which is an acronym for MUltiple SIgnal Classi-
fication, is a classic spatial spectrum estimation technique. It
is based on partitioning the estimated multi-channel covari-
ance matrix from a linear or planar array into a noise and
signal subspace and finding a direction vector which is or-
thogonal to the noise subspace. The algorithm can be divided
into three stages: pre-processing, EVD and peak-search,
which is shown in Fig. 6. In the parallel MUSIC algorithm,
EVD and peak-search are parallelized. MPI routines are used
for communication among processes.

According to the flow graph in Fig. 6, the MPSoC
co-simulation platform can be configured as shown in Table
II.

TABLE II. PARAMETER OF MPSOC PLATFORM

network topol-
ogy

Size of net-
work

class of ser-
vice route algorithm

2D-mesh 2x2 best effort XY-routing

Speedup is commonly used to evaluate the performance of
parallel computation. Speedup for p processors is the ratio of
execution time for the serial program running on single
processor to execution time for the parallel program running
on p processors. As shown in Table II, the parallel MUSIC
algorithm is executed on a four-core platform, and the
speedup we gain is 2.6. The result is compared with speedup
in [13] which uses fore-core DSP for computation and shared
memory for communication. With our platform, the speedup
is enhanced by 9%.

VII. CONCLUSION
In this paper, a novel method for synchronizing M5 and

SystemC module is proposed, and an MPSoC full-system
simulation platform is presented which unites the advantage
of M5 and SystemC. The simulation result shows that our
scheme is 7.6 times faster than M5-master scheme. A parallel
MUSIC algorithm is used to validate the MPSoC platform,
and the speedup is 2.6. In the near future, we will extend our
MPI library to support more complicated applications.
Moreover, we will develop an interface for co-simulation
between our MPSoC platform and Verilog modules.

REFERENCES
[1] J. Ceng et al., “MAPS: An Integrated Framework for MPSoC Appli-

cation Parallelization,” DAC 2008, June 8–13, 2008, Anaheim, Cali-
fornia, USA, pp.754–759.

[2] K. Huang et al., “Simulink-Based MPSoC Design Flow: Case Study of
Motion-JPEG and H.264,” DAC 2007, June 4–8, 2007, San Diego,
California, US, pp.39–42.

[3] E. Cheung, H. Hsieh and F. Balarin, “Fast and Accurate Performance
Simulation of Embedded Software for MPSoC,” ASP-DAC 2009,
January 19–22, 2009, pp. 552–557.

[4] http://www.m5sim.org/wiki/index.php/Main_Page.
[5] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi and S. Reinhardt,

“The M5 Simulator: Modeling Networked Systems,” IEEE Micro,
Volume 26, Issue 4, July-August, 2006, pp. 52–60.

[6] N. Pouillon, A. Becoulet, A. Mello, F. Pecheux and A. Greiner, “A
Generic Instruction Set Simulator API for Timed and Untimed Simu-
lation and Debug of MP2-SoCs,” Rapid System Prototyping, June
23–26, 2009, pp. 116–122.

[7] S. Boukhechem and E. Bourennane, “TLM Platform Based On Sys-
temC For STARSoC Design Space Exploration,” Adaptive Hardware
and Systems, June 22–25, 2008, pp. 354–361.

[8] C. Jalier, D. Lattard and G. Sassatelli, “A Flexible Modeling and
Simulation Framework for Design Space Exploration,” Sys-
tem-on-Chip, November 5–6, 2008, pp. 1–4.

[9] S. Boukhechem and E. Bourennane, “TLM Co-simulation for an Open
Source MPSoC Platform under STARSoC Environment,” Sys-
tem-on-Chip, November 5–6, 2008, pp. 1–6.

[10] “MPI: A message passing interface,” Supercomputing, November
15–19, 1993, pp. 878–883.

[11] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi and M. Poncino,
“Legacy SystemC Co-Simulation of Multi-Processor Sys-
tems-on-Chip,” Computer Design: VLSI in Computers and Processors,
September 16–18, 2002, pp. 494–499.

[12] S. Cordibella, F. Fummi, G. Perbellini and D. Quaglia, “A HW/SW
Co-Simulation Framework for the Verification of Multi-CPU systems,”
High Level Design Validation and Test Workshop, November 19–21,
2008, pp. 125–131.

[13] H. Liu, P. Wei and X. Xiao, “Parallel Implementation of MUSIC Based
on a Special Parallel Processing Machine,” Systems Engineering and
Electronics, Vol.23 ,No.1, 2001, pp. 86–89.

	I. INTRODUCTION
	II. Related Work
	III. Technology of Co-simulation
	IV. MPSoC Co-simulation Platform
	V. Performance Analysis
	VI. Case Study
	VII. Conclusion

