
A Formal Model Of SystemC Components Using

Fractal Hypergraphs

Nicolas Vallée Bruno Monsuez
∗

Abstract— In this paper, we introduce a new math-

ematical structure: fractal hypergraph. Due to the hi-

erarchical and compositional nature of fractal hyper-

graphs, representations based on fractal hypergraphs

can capture and abstract the object-oriented nature

of SystemC. We propose a formal semantics of Sys-

temC components based on fractal hypergraphs that

has already be used in a formal debugger of SystemC

components.

Keywords: SystemC, Formal semantics, Hierarchical

Models, Hypergraphs

1 Introduction

SystemC becomes a popular language for modeling com-
plex hardware systems. Compared with other hardware
description languages, SystemC is more feasible for de-
signing large-scaled systems and modeling high level be-
haviors.

While a major goal of SystemC is to enable system ver-
ification at an higher level of abstraction, formal verifi-
cation of SystemC design is still in its infancy. The diffi-
culty to statically analyze and verify SystemC comes from
the object-oriented nature of SystemC that supports hi-
erarchy, modularity and parametricy as well as from its
sophisticated event driven simulation semantics.

If we focus on the object-oriented nature of SystemC, we
can identify the following key aspects of SystemC that
should be captured and fully supported by the formal rep-
resentation of SystemC components in a formal verifica-
tion tools to provide a valuable verdict.
∙ The formal representation copes with different ab-
straction levels; it also must support the refinement.

∙ The formal representation must support program
code as well as hardware description; a semantics for
program execution and a semantics for system simu-
lation must be provided.

∙ The formal representation must support assembling
modular and parametrized components.

In this paper, we propose a new hierarchical model based
on hypergraphs that can represent SystemC components
and that provide the adequate constructions to capture

∗École Nationale Supérieure de Techniques Avancées, UEI, 32 Bd
Victor, 75739 Paris cedex 15, France, FirstName.LastName@ensta.fr

the object-oriented nature of SystemC components. We
also define a trace-based semantics based on hypergraphs
and show how this hypergraph based semantics is ade-
quate to represent SystemC components. We finally show
how object-oriented and component-oriented operations
like connecting a sub-component to a main component,
instanciating a component with respect to type or value
parameters can easily be expressed with this semantics.

The paper is organized as follow; section 2 gives the math-
ematical definition of the hypergraphs model: fractal hy-
pergraphs and introduces the underlying trace based se-
mantics; section 3 gives the semantics of SystemC com-
ponents and finally section 4 presents how fundamental
concepts like the compositional approach are nicely cap-
tured by this fractal hypergraphs based semantics.

2 A Fractal hypergraph based semantics

Graphs are certainly one of the simplest and most univer-
sal model for a large variety of systems including hardware
models as well as programs. If graphs define the structure
of the model, graph transformation can be exploited to
explain how the model is built (compilation or synthesis
of the system) and how the model evolves (computation)
of the system.

However, when we want to represent complex circuits or
systems as well as complex object-oriented system descrip-
tion, the absence of hierarchy [1] is certainly one of the
main default of graph-based representations. To overcome
the limitation of graphs, we introduce a new mathematical
extension of graphs called fractal hypergraphs.

2.1 Fractal Hypergraphs

Hypergraphs [2] are a mathematical extension of graphs:
A hypergraph is a graph whose hyperedges may connect
two or more vertices. Directed hypergraphs [3] are hy-
pergraphs where the hyperedges connects a set of one or
more vertices to another set of one or more vertices. Like
in standard directed graphs where the directed edges of a
graph modelize a transition between an initial state and a
final state, the directed hyperedges of a hypergraph mod-
elize one or more transition that connects a set of initial
states to a set of final states.

With respect to this approach, the hyperedges denote any
system that connects a set of initial states to a set of fi-
nal states. An interesting subset of those ones are the

systems that can also be represented using a graph. For
instance, automata’s and other graph based representa-
tion like petri nets define a transition system that maps
a set of initial states to a set of final states. Those tran-
sition systems could be abstracted by a hyperedge that
maps the initial states to the final states. We would like
to generalize this notion to hypergraphs, restricting the
hyperedges to hypergraphs. To quickly summarize, fractal
hypergraphs [4, 5] are hypergraphs where the hyperedges
between the vertices are defined by hypergraphs.

Definition 1 (Basic fractal hypergraph)
A basic fractal hypergraph H B is defined as:

∙ a set of vertices V ,

∙ a set of sub-fractal hypergraphs H =
(ℎ𝑖 = (V𝑖,H𝑖,

inV𝑖,
outV𝑖,

in∂𝑖,
out∂𝑖,

inE𝑖,
outE𝑖, E𝑖))𝑖∈𝐼

∙ a set of edges inE – ie. a binary relation inE ∈ ℘(V ×

(
∪

𝑖
in

V𝑖)) – whose every edge connects a vertex 𝑣 ∈

V to an entry vertex in𝑣𝑛 ∈ inV𝑛 of the sub-fractal
hypergraph ℎ𝑛,

∙ a set of edges out
E – ie. a binary relation out

E ∈
℘((

∪
𝑖
outV𝑖)×V) – whose every edge connects an exit

vertex out𝑣𝑛 ∈ outV𝑛 of the sub-fractal hypergraph ℎ𝑛

to a vertex 𝑣 ∈ V ,

∙ a set of edges E - ie. a binary relation E ∈ ℘(V ×V)
- each edge connects a vertex 𝑣𝑜 to another one 𝑣𝑑

Definition 2 (Fractal hypergraph)
A fractal hypergraph is defined as :

∙ a basic fractal hypergraph H B = (V ,H , inE ,outE ,E)

∙ a set of entry vertices inV , a set of exit vertices outV ,

∙ a set of entry edges in∂ – ie. a binary relation in∂ ∈
℘(inV × V) that connects the entry vertices inV to
vertices of the basic fractal hypergraph V

∙ a set of entry edges out∂ – ie. a binary relation
out∂ ∈ ℘(outV × V) connecting the entry vertices
inV to vertices of the basic fractal hypergraph V

2.2 Interesting properties of the model

Using fractal hypergraph as representation of SystemC
components allow to capture among others the following
key aspects of modular and parametrized components.

2.2.1 Multiple hierarchy

A hyperedge corresponds to a given abstraction level. Hy-
peredges may contain an embedded fractal hypergraph;
each hyperedge of this embedded fractal hypergraph can
express a different abstraction level. Refining a behavior
is achieved by substituting a simple hyperedge with a hy-
peredge that embeds a fractal hypergraph.

Each hyperedge also plays the role of an abstract inter-
face of a sub-component. Sub-components are modeled
by fractal hypergraphs. The model supports substitu-
ing a component with another component; a fractal hy-
pergraph that models a component may be replaced by
another fractal hypergraph that represents another com-
ponent, the only requirement is that both fractal hyper-
graphs share the same abstract interface (i.e. the same
set of initial and final states) and consequently the same
abstract properties.

2.2.2 Concurrency

A hyperedge E that connects a set of initial states to a set
of final states may encapsulate two or more concurrent
transitions, each of those transitions are represented by
a sub-hyperedge E sub

𝑖 that is located in the fractal sub-
hypergraph that describes the hyperedge E . The concur-
rent transitions denoted by the sub-hyperedges E sub

𝑖 can
generate events or can be activated by some signal are
triggered; this is exposed in 3.

2.2.3 Aggregation & Parametrization

Components are represented by fractal hypergraphs.
Components may statically aggregates sub-components,
each sub-component is also represented by a sub-fractal
hypergraph; section 4 describes the binding between com-
ponents and sub-components. Components may also be
parametrized by sub-components or values. In this case,
the component will be represented by a fractal hypergraph
H and each time a parameter is required, an empty sub-
hypergraph H

param
𝑖 is inserted in the fractal hypergraph

H . When instantiating the parametrized fractal hyper-
graph H , the empty sub-hypergraphs H

param
𝑖 get re-

placed by the hypergraphs that denote the selected imple-
mentation; the process is described in section 3.

2.3 A semantics based on fractal-
hypergraphs

2.3.1 Defining an underlying semantics for fractal
hypergraphs

Fractal hypergraphs are the model for system representa-
tion. Their structure and their transformations define an
underlying semantics. This semantics is a storeless trace-
based semantics, which enables processing both symbolic
execution and static analysis.

A trace-based semantics [6, 7] manipulates paths repre-
senting the execution traces. The traces contains the his-
tory of the symbolic execution or static analysis ; it totally
defines the current context.

Storeless semantics [8] do not require any external struc-
tures. Storeless semantics also avoid to manage both en-
vironment and system representation. Figure 1 describes

how a value embedded into a fractal hypergraph, which
is associated to an identifier. Using a storeless seman-
tics instead of a classical semantics reduces the number of
fastidious manipulations that occur when handling some
advanced constructions; like exceptions in denotational se-
mantics [9] or closures in operational semantics [10] as well
as concurrent executions.

Fractal hypergraphs represent the execution traces. In
fact symbolic execution unroll the fractal hypergraph. At
each step, the structure of fractal hypergraphs represents
all the history of the execution.
Fractal hypergraphs represent values, function closures, as
well as objects. An evaluation of such an fractal hyper-
graph returns whatever value is associated.
To summarize, fractal hypergraphs provide the values of
variables, the closures of functions, the structures and
the instances of classes and the execution traces in the
meantime. Merging data and code is a key idea of object-
oriented design. Fractal hypergraphs mimics this concept
for representing SystemC components.

The value associ-
ated to the identi-
fier 𝑖𝑑 the subhyper-
graph of the near-
est hyperedge la-
belled by the iden-
tifier 𝑖𝑑, when we
go back through the
execution trace – ie
when we go back
on the hypergraph
traversal. During
this reverse, enter-
ing a lower hierar-
chical level is pro-
hibited.

Figure 1: Embedding environment into fractal hypergraph

Notice that a lookup function is required. This function
takes as argument an identifier and returns the expected
result. If the identifier designates a variable, this function
returns its value. If the identifier is associated to a func-
tion or a method, it returns the fractal hypergraph that
represents its closure.

Definition 3 A system state is represented by :

∙ 𝑡 : the current time ;

∙ H𝑒 : the hypergraph that denotes the history of the
system execution ;

∙ H𝑠 : the hypergraph representing the whole system.

We define a transition function that maps a system state
to another system state.

2.3.2 Some relevant semantics rules

The simplest case consists in the parallel execution of sim-
ple instructions.

a

c

a

c

b

d

Execute
in parallel

Figure 2: Concurrent execution

Execution sometimes depends on a test, corresponding to
the dispatch point pattern..

I1 I2

cond
c=false

cond
c=true c

value I
eval(c)

Figure 3: Conditional branching

2.3.3 For information

The whole construction of the C++ programming lan-
guage in fractal hypergraphs has already been detailled
in [11]. A semantics based on fractal hypergraph of a small
behaviour on an intraprocedural language MiniC can be
found here [12].
We detail the description of SystemC components and
their synchronization through fractal hypergraphs.

3 Representing a SystemC component

with Fractal Hypergraphs

The obvious mean to build a fractal hypergraph from a
SystemC component is to parse the description into a frac-
tal hypergraph, which represents the Control Flow Graph.
In this part, we show the translation of some patterns into
the corresponding fractal hypergraphs. Note that we will
call the set of all possible execution paths Σ.

Sequences are represented by a sequence of hyperedges
where each member is labelled by one of the terms of con-
junction.

𝑡𝑒𝑟𝑚1 . . .
𝑡𝑒𝑟𝑚𝑁

Figure 4: Sequence of instructions

{𝑠 ∈ Σ ∣ 𝑠 = 𝑡𝑒𝑟𝑚1 . ∗ . 𝑡𝑒𝑟𝑚𝑁}

Conditional dispatch points are useful to represent
some conditional branching translated from instructions
such as if, switch, etc.

𝑐𝑜𝑛𝑑1
. . .

.

𝑒𝑙𝑠𝑒 . . .

Figure 5: Conditional dispatch point

{𝑠 ∈ Σ ∣ 𝑠 = 𝑐𝑜𝑛𝑑1.𝜎1 ∨ ⋅ ⋅ ⋅ ∨ 𝑠 = ¬(𝑐𝑜𝑛𝑑1 ∨ . . .).𝜎𝑒𝑙𝑠𝑒}

Concurrent dispatch points are useful to represent
the creation of several concurrent executions.

Figure 6: Concurrent dispatch point

Loops represent a sequence of iterative actions, such as
for loops or while loops. These actions are very useful
with automata.

test

c

Figure 7: Conditional guarded loop
{𝑠 ∈ Σ ∣ 𝑠 = 𝜎𝑖𝑛𝑖𝑡.𝜎𝑎𝑐𝑡𝑖𝑜𝑛.(¬𝑡𝑒𝑠𝑡.𝜎𝑙𝑎𝑡𝑒𝑠𝑡.𝜎𝑎𝑐𝑡𝑖𝑜𝑛)∗} ∪

{𝑠 ∈ Σ ∣ 𝑠 = 𝜎𝑖𝑛𝑖𝑡.𝜎𝑎𝑐𝑡𝑖𝑜𝑛.(¬𝑡𝑒𝑠𝑡.𝜎𝑙𝑎𝑡𝑒𝑠𝑡.𝜎𝑎𝑐𝑡𝑖𝑜𝑛) ∗ .𝑡𝑒𝑠𝑡.∗}

Synchronized hyperedges SystemC provides a “wait-
/notify” mechanism which plays an important role in the
SystemC scheduler [13] and serves as the basic engine of
implementing interactions between processes. When mod-
elizing the interactions between components, we should
also modelize the interaction between processes and so
modelize the “wait/notify” mechanism. Synchronized hy-
peredges denote two kind of hyperedges: hyperedges that
wait for some event to be activated as well as hyperedges
that activate those events.

Definition 4 A hyperedge E is called a standard hyper-
edge, if all the awaited events and all the generated events
can only be produced and consumed by synchronized hy-
peredges of its embedded fractal hypergraph.

Definition 5 A hyperedge E is called a synchronized hy-
peredge, if one of the following condition is verified :
∙ E may generate an event ;

∙ E may wait for an event ;

∙ there is at least one event generated by an embedded
synchronized hyperedge that may be consumed by a
synchronized hyperedege that is not located in its em-
bedded hypergraph ;

∙ there is at least one event consumed by an embed-
ded synchronized hyperedge that may be produced by
a synchronized hyperedege that is not located in its
embedded hypergraph ;

Synchronized hyperedges or their embedded fractal hyper-
graph may also produce or consume events by communi-
cating with other synchronized hyperedges.
A synchronized hyperedge E sends all the events that it
may generate or that any of its sub-hyperedges may gen-
erate to all synchronized hyperedges that are waiting for
these events and that belongs to the same fractal hyper-
graph as E and to its embedded fractal hypergraph. If a
synchronized hyperegde E receives the notification of an
event, it will propagate this event to all its synchronized
sub-hyperegdes that are waiting for this event.

Objects extends data structures adding member func-
tions (also called methods) to those structures. Member
functions are easily represented by fractal hypergraphs.

Since the environment is embedded, fractal hypergraphs
manage both environment and system representation.
Fractal hypergraphs provide the values of variables, the
closures of functions and the execution traces in the mean-
time. An additional function will be necessary. This func-
tion takes as argument an identifier and must return the
expected result. If the identifier corresponds to a variable,
this function will return its value. If the identifier is as-
sociated to a function, it will return a fractal hypergraph
representing the closure of the function.

Value hyperedges are
hyperedges embedding a
fractal hypergraph that
defines a value.

value

Figure 8: Value hyperedge

Data structures, such as
arrays or records, can be
defined as different vari-
ables embedded in a vari-
able. Arrays need their
index as identifiers, while
records need their field
names as identifiers.

value of
field1

value of
field2

field2field1

Figure 9: Date structure

In fractal hypergraphs
defining a variable is
just labelling a hyper-
edge, that embeddes its
value, with the variable
identifier.

value

Id

Figure 10: Variable location

Functions are represented by a fractal hypergraph
made up of the function body and its bound arguments,
represented by a fractal hypergraph. Each argument is
represented by an empty hyperedge. The value of the ar-
guments are represented by fractal hypergraphs.

arg

function body

f

Figure 11: Function hyperedge

Lookup function must find the hyperedge labelled by
its identifier. With data structures, the search function
then enters into the hyperedge. By the same way, the
search function will find the hyperedge of the embedded
fractal hypergraph, that is labelled by the field identifier
– field name for records, index for arrays, attributes or
methods for objects.

Template is an abstract construction of the C++ lan-
gage, which enables to use generic programming. Tem-
plates can have value, class or simpler types in arguments.
In SystemC, templates enable parametrizing components
with values or other components. Template management
consist of two steps : the template declaration and the
template instantiation.

Step 1 – Template declaration
At beginning a template declaration, we create a fractal
hypergraph in order to embed the template representa-
tion. It consists in an entry hyperedge, an exit hyperedge
and a content hyperedge which aims at embedding the
template representation. At this moment, the context hy-
peredge contains an empty subhypergraph.
Each times an instance of a template argument class is
encountered, we check whether a new public method or
public attribute is used. In this case, we add the external
fractal hypergraph representing this public method – re-
spectively attribute – to the content hyperedge.
At the end of this template declaration, we also have in-
ferred the minimal interface that a template argument
must respect to be used as an argument of this template.
This minimal interface describes all public methods and
attributes used in this template declaration.

Step 2 – Template instantiation
The first this template is instantiated with given argu-
ments, a new fractal hypergraph is created to represent
this instance. For each template argument, we select the
hyperedges representing its used public methods and at-
tributes. At this moment, these hyperedges only contains
an empty subhypergraph. We also full them with their real
content by duplicating the fractal hypergraphs represent-
ing these attributes or methods in the template argument
– as the template processor does before compilation; see
the dotted boxes on the following figure1 :
template<class TValue> class Value
{

public :
TValue arg ;

void f 1 (int n) { /∗ . . . ∗/ }
void fT (TValue t) { /∗ . . . ∗/ }

}

1Static members are not represented, but can easily be managed

f1 fT

body

n
int type

of T

type
of T

f1 fT

body

n
int T

T t

Value<T>Value

Instantiatiation

Figure 12: Template instantiation

Note Since we infer a fractal hypergraph representing
the minimal interface of each template argument, using
fractal hypergraph in a template processor enables check-
ing contracts at this step of the compilation. This is a
major difference with a C++ compiler whose template
processor only does a syntaxtic work at template instan-
tiation and lets the compiler checks for errors later. This
method has a drawback : errors are detected after having
modifying the original source code. The error messages
are also quite difficult to read given the potential com-
plex template nesting used in the source code. Since our
method does not aim at only producing a new source code,
we have to keep semantical information about templates
during their construction. Our template management can
also be used in compilation to provide clearer error mes-
sages when templates are used, as the C++ concepts wish.

4 Connecting Fractal Hypergraphs

In SystemC, components aggregates subcomponents. The
aggregation of the components may be statically defined
but can also be dynamically defined. However, connect-
ing components is done dynamically. In the same way,
associating components to signals and events is also done
dynamically. In this section, we present how those opera-
tions impact fractal hypergraphs.

binding

/∗ . . . ∗/
com1 . sub com (com2

) ;
/∗ . . . ∗/

In SystemC, this instruction binds
the component 𝑐𝑜𝑚2 as the sub-
component called 𝑠𝑢𝑏 𝑐𝑜𝑚 of the
component 𝑐𝑜𝑚1.

Here you can see how a sub-component 𝑠𝑢𝑏 𝑐𝑜𝑚 of the
component 𝑐𝑜𝑚1 will be initialized with the component
𝑐𝑜𝑚2. At this moment, there are two ways to bind a com-
ponent to another one. Binding is a method call in truth.
Binding can also be an external binding or an internal/in-
lined binding.

external binding means that the subcomponent is ac-
ceded through a function call. When this subcomponent

is used, the processing first calls a function to access to
the real component. Then it works with the component.
When building the fractal hypergraph representing the
binded subcomponent, the processing generates wrappers
to connect the internal subcomponent to the external real
component. Each call of a subcomponent method goes
through a hyperedge embedding a sequence of fractal hy-
pergraphs representing the argument values. This hy-
peredge goes from the current hypernode to the first hy-
pernode of the fractal hypergraphs representing the func-
tion body. Then the processing creates another hyperedge
from each exit hypernode of the method body hypergraph
to the hypernode when exiting function call hyperedge.

f(arg)

arg

function body

f

arg

value
{

1. Search
function
returns

arg

function body
f arg

value

f(arg)

2. Then generates
the function call

Figure 13: External function call

Given two fractal hypergraphs ℎ1 =
(∅, ∅, ∅, ∅, ∅, inV1,

outV1, ∅, ∅) for the unini-
tialized com1.sub com, and ℎ2 =
(V2,H2,

inE2,
outE2, E2,

inV2,
outV2,

in∂2,
out∂2)

for com2, we can define a fractal hyper-
graph for the final com1.sub com, as ℎ =
(V2,H2,

inE2,
outE2, E2,

inV , outV , in∂, out∂) and :

∙ there exists a relation 𝑒𝑛𝑡𝑟𝑦 ∈ 𝒫(inV × inV2)

∙ there exists a relation 𝑒𝑥𝑖𝑡 ∈ 𝒫(outV × outV2)

∙ in∂ = {(𝑣1, 𝑣2) ∈ in∂2∣∃𝑣 ∈ inE2, 𝑒𝑛𝑡𝑟𝑦(𝑣, 𝑣1)}

∙ out∂ = {(𝑣1, 𝑣2) ∈ out∂2∣∃𝑣 ∈ outE2, 𝑒𝑥𝑖𝑡(𝑣, 𝑣1)}

internal binding means the methods to access the sub-
component are embedded into the main component.
Each call to a subcomponent method is substituted by a
hyperedge boxing the body of this method. The fractal
hypergraphs representing argument values are then em-
bedded into the argument hyperedges. Finally execution
trace records the method call and the processing enters
the inlined hyperedge.

f(arg)

arg

function body

f

arg

value
{

1. Search
function
returns

2. Then inlines
the code

arg

function body

f

value

f(arg)

Figure 14: Inlined function call

Given three fractal hypergraphs ℎ1 =
(∅, ∅, ∅, ∅, ∅, inV1,

outV1, ∅, ∅) that denotes the wrap-
pers that embed the method calls of com1.sub com,
ℎ2 = (V2,H2,

inE2,
outE2,E2,

inV2,
outV2,

in∂2,
out∂2)

that denotes the external real sub-component com2, and
ℎ𝑝 = (V𝑝,H𝑝,

inE𝑝,
outE𝑝,E𝑝,

inV𝑝,
outV𝑝,

in∂𝑝,
out∂𝑝)

that denotes the main component com1, we trans-
form ℎ𝑝 into ℎ′

𝑝 by integrating the description of
com2 directly inside the description of com. The final
ℎ′
𝑝 = (V ′

𝑝 ,H
′
𝑝 ,

inE ′
𝑝,

outE ′
𝑝,E

′
𝑝,

inV𝑝,
outV𝑝,

in∂𝑝,
out∂𝑝) is

defined as follows :

∙ there exists a relation 𝑒𝑛𝑡𝑟𝑦 ∈ 𝒫(inV1 × inV2)

∙ there exists a relation 𝑒𝑥𝑖𝑡 ∈ 𝒫(outV1 × outV2)

∙ V ′
𝑝 = V ′

𝑝 ∪ V2

∙ H ′
𝑝 = H𝑝∖ℎ1

∙ inE ′
𝑝 = {(𝑜, 𝑑) ∈ inE𝑝 ∣ 𝑑 ∕∈ in∂1}

∙ outE ′
𝑝 = {(𝑜, 𝑑) ∈ outE𝑝 ∣ 𝑜 ∕∈ out∂1}

∙ E ′
𝑝 = E𝑝 ∪E2 ∪{(𝑑, 𝑜)∣∃(𝑛, 𝑛′), (𝑜, 𝑛) ∈ inE𝑝 ∨ (𝑛′, 𝑑) ∈

in∂2∨𝑒𝑛𝑡𝑟𝑦(𝑛, 𝑛′)}∪{(𝑑, 𝑜) ∣ ∃(𝑛, 𝑛′), (𝑛, 𝑜) ∈ outE𝑝∨

(𝑑, 𝑛′) ∈ out∂2 ∨ 𝑒𝑥𝑖𝑡(𝑛, 𝑛′)}

standard event association

/∗ . . . ∗/
SCMETHOD p <<

c l o ck ;
/∗ . . . ∗/

The fractal hypergraph that represents the method 𝑝 is
embbeded in a synchronized hyperedge that consumes the
𝑐𝑙𝑜𝑐𝑘 event produced by the scheduler.

parallel event association

/∗ . . . ∗/
SC THREAD p <<

c l o ck ;
/∗ . . . ∗/

The fractal hypergraph that represents the method 𝑝 is
embbeded in a synchronized hyperedge that consumes the
𝑐𝑙𝑜𝑐𝑘 event produced by the scheduler. More generally the
event may be produced by the global scheduler for global
system generated events or by a synchronized hyperedge
as seen in section 3.

5 Conclusion

This paper presents a new mathematical structure fractal
hypergraph that can capture the object oriented nature of
SystemC components. After providing the mathematical
definition of fractal hypergraph and showing how we can
define a formal storeless trace-based semantics based on
fractal hypergraphs, we introduce how SystemC compo-
nents may be represented using fractal hypergraphs; this
includes classes, objects as well as template and template
instantiation. We also show how the connection between
SystemC components or the association of methods de-
fined in a SystemC component to an event translate into
this fractal hypergraph based representation.

This model based on fractal hypergaphs is successfully
used in a SystemC formal debugger [4] and a complete
formal SystemC semantics has been defined using fractal
hypergraphs.

Since a hyperedge between the vertices of fractal hyper-
graphs may embed a fractal hypergraph, fractal hyper-
graphs can represent complex systems that mix program
codes, hardware designs and logical formulae; each hyper-
edge of the hypergraph may be either a fractal hypergraph
that represent a sequence of instructions (program rep-
resentation), a sequence of logical operations (hardware
representation), a logical formulae (specifications). We
currently are working on static automatic analysis that
incrementally replaces an implementation hyperedge with
a logical hyperedge: ie. a hyperedge that describes logical
formulae. We are also exploring an algorithm that checks
if the implementation hyperedge verifies the constraints
expressed by a logical hyperedge.

References

[1] F. Drewes, B. Hoffmann, and D. Plump, “Hierar-
chical graph transformation,” J. Comput. Syst. Sci.,
vol. 64, no. 2, pp. 249–283, 2002.

[2] C. Berge, Graphs and Hypergraphs. Elsevier Science
Ltd, 1985.

[3] G. Gallo and M. G. Scutella”, “Directed hypergraphs
as a modelling paradigm,” Tech. Rep., 1999.

[4] B. Monsuez, F. Védrine, and N. Vallée, “on the de-
sign of a formal debugger for system architecture,”
in ICC’08: Proceedings of the 12th WSEAS inter-
national conference on Circuits. Stevens Point,
Wisconsin, USA: World Scientific and Engineering
Academy and Society (WSEAS), 2008, pp. 462–467.

[5] B. Monsuez, F. Védrine, M. Mayero, and N. Vallée,
“How an ”incoherent behavior” inside generic hard-
ware component characterizes functional errors ?” in
CISST’09: Proceedings of the 3rd WSEAS interna-
tional conference on Circuits, systems, signal and
telecommunications. Stevens Point, Wisconsin, USA:

World Scientific and Engineering Academy and Soci-
ety (WSEAS), 2009.

[6] C. Colby and P. Lee, “Trace-based program analy-
sis,” in POPL ’96: Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM,
1996, pp. 195–207.

[7] D. A. Schmidt, “Trace-based abstract interpreta-
tion of operational semantics,” Lisp Symb. Comput.,
vol. 10, no. 3, pp. 237–271, 1998.

[8] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wil-
helm, “A semantics for procedure local heaps and its
abstractions,” in POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. New York, NY, USA:
ACM, 2005, pp. 296–309.

[9] L. Liquori and M. L. Sapino, “Dealing with explicit
exceptions in prolog,” in GULP-PRODE (2), 1994,
pp. 296–308.

[10] S. Prasad and S. Arun-Kumar, “Introduction to op-
erational semantics,” in The Compiler Design Hand-
book, 2002, pp. 841–890.

[11] F. Védrine, “Analyses totales de programmes par in-
terprétation abstraite, application au langage c++,”
Ph.D. dissertation, ENS Ulm, 1999.

[12] B. Monsuez, F. Védrine, and N. Vallée, “Creating an
adaptative semantics upon fractal hypergraphs,” in
waiting for publication, 2010.

[13] B. Monsuez, Y. ZHANG, and F. Védrine, “Systemc
waiting-state automata,” in VECoS’07, Algiers, Al-
geria, May 2007.

[14] F. Nielson and H. R. Nielson, “Infinitary control flow
analysis: a collecting semantics for closure analy-
sis,” in POPL ’97: Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM,
1997, pp. 332–345.

[15] R. Giacobazzi, “”optimal” collecting semantics for
analysis in a hierarchy of logic program semantics,”
in STACS ’96: Proceedings of the 13th Annual Sym-
posium on Theoretical Aspects of Computer Science.
London, UK: Springer-Verlag, 1996, pp. 503–514.

