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Abstract—This work concerns the stochastic mod-

eling of business information received by a company

from managerial’s point of view. A mean reverting

stochastic process is proposed to model the percent

of information that a company can receive at any time

t. Explicit iterative formulas are provided under cer-

atin assumptions. Numerical scheme is derived for

computing the total effective information received for

a given period.
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1 Introduction

A company’s managerial function can be described as an
information processing system, where the external world
is treated as information generator and the management
team of the company as information receiver. External
information, in forms such as industry regulations,
market competition, feedback from client, and credit
ratings, creates a business climate in which that the
company need to fit. The task of a manager is to
process the received information and make sensible
decisions in order to accomplish the executive goal. To
respond to the external information in a timely manner
is crucial for the company to survive the more than ever
competitive market in the e-commerce era. Because
of the important implications in real economy, there
exist considerable studies devoted to such topics. Many
of the previous studies are from the point of view of
organizational learning, the semantic of which can be
found in [7], for instance. Similar approaches are applied
in [4, 5, 12], [9]. A more complete literature review
relevant to organizational learning can be found in [6].
Here we are more interested in the stochastic modeling
of information flow in itself and providing a rigorous
mathematical model to calculate how much information
a company may lose or receive in a given period of time
and given number of qualified managers.

Our study is built on the assumption that the pro-
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cessing ability of any manager is not infinite. First,
let us consider a very special case where the external
world, as an information generator, generates N bits
of information periodically at every T unit time. and
the manager has an information processing capability of
greater or equal to N/T , which means that the manager
is able to process at least N bits of information in the
time interval T . It is assumed that the information
transmitting time from the external world to the man-
ager is negligible. In this case, no information loss at
the manager’s office would occur. Hence no deputy
managers are needed. Here a deputy manager could
mean a consultant, a secretary, or a vice manager.

However, in real situations, the external informa-
tion arrives at random rates and at random speed. It
may arrive at the managerial office any time before or
after office hours. Here we are interested in what percent
of information a company may lose at any given number
of business managers z and time t. We seek a method to
compute what quantity of the total information that a
company may receive or miss in a infinite period of time,
given the function (could be stochastic) governing infor-
mation growth. Introduce, say, q(z, t) be the percentage
of information loss we are interested in. Intuitively
q is decreasing in z for fixed t, since more managers
will increase the capability of information processing.
In the following sections, we first study a discrete
case, where z is assumed to be non-negative integers.
Under some assumptions, one can see explicit iteration
formulas for computing information inefficiency can be
obtained. Then we focus on the continuous case, and
propose a stochastic differential equation for modeling
the percent of information that a company can receive
in a specified time duration. The analytical features
of the process, including the approximated transitional
density functions, are provided. An algorithm is derived
for computing the singular integrations appeared in the
model. We finished the paper by providing numerical
simulations and implications.

2 Discrete Information Processing

Let’s descretize the time interval [0, T0] by a vector of
points (t1, t2, t3, ..., tk, ...). Since the inflow of informa-
tion is of stochastic nature in both time and quantity,



so we first introduce a two dimensional random vector
ξ = (ξ1, ξ2), the sample space of which is [0,∞)× [0,∞),
where ξ1 = a ∈ [0,∞) means information inflow occurs
at time a, and ξ2 = b ∈ [0,∞) means the quantity of
information inflow is b. Define by ρ(τ, x) = 1 − ρ̄(τ, x)
the joint probability density function of ξ, we seek to
find a recursive system determining the probability
of manager insufficiency at any given time and given
number of managers.

For simplicity, we assume that the manager can
only start to process the information at discrete times
t = t1, t2, t3, etc. This assumption is justified for
the following reasons. First, managers can not make
decisions continuously. Typically, business reports and
documentations arrive in the managerial’s office at a
fixed pace, say, every hour or twice a day. The executives
then sign documents, or provide opinions, within fixed
but small amount of time. Second, the time needed
for decision making itself is negligible compared to the
duration between decision making times. In another
word, we assume information continuously accumulates
while managers’ processing is periodic and instant, even
though their capacity may not allow them to consume all
the information accumulated by those instants. When
the number managers needed exceeds the number of
managers available, an information loss occurs, thus
poses a risk for the company. It is clear that even
the information processing speed of the managers is
faster than the average speed of information received,
information loss still can occur. Additional managers
are needed to reduce the information loss.

Suppose there have m managers in the company.
Let ψ(ξ2(s) ≤ C(m)) defines the probability of the
first m, (m ≤ I), managers are needed to accommo-
date the incoming information at time s. Similarly,
ψ(ξ2(s) > C(m)) defines the probability of more than
m managers are needed to accommodate the incoming
information, hence the probability of information loss if
only m managers are hired, at time s. We are interested
in recursive formulas for computing ψ(s,≤ m) and
ψ(s,> m) for m = 1, 2, ...i, ..., I. We would like to
remark that C could be time dependent, but it suffices
to illustrate the main idea using a time homogeneous C.
Consider the information loss phenomenon as a stochastic
process. Without loss of generality, suppose s > t ≥ 0.
Partition the space [0,∞) into the union of the the
disjoint sets Ω1 = [0, C(1)],Ω2 = [C(1), C(2)], ...,Ωi =
[C(i − 1), C(i)], ...,Ωm+1 = [C(m),∞), use the condi-
tional probability density at time t, we have an iterative
algorithm for computing the probability of incoming
information levels at next time step s:

ψ(ξ2(s) ∈ Ω1) =
m+1∑

i=1

ψ(ξ2(t) ∈ Ωi)
∫ s

t

∫

Ω1

ρ(τ, x|ξ2(t) ∈ Ωi)dxdτ

ψ(ξ2(s) ∈ Ω2) =
m+1∑

i=1

ψ(ξ2(t) ∈ Ωi)
∫ s

t

∫

Ω2

ρ(τ, x|ξ2(t) ∈ Ωi)dxdτ

...

ψ(ξ2(s) ∈ Ωj) =
m+1∑

i=1

ψ(ξ2(t) ∈ Ωi)
∫ s

t

∫

Ωj

ρ(τ, x|ξ2(t) ∈ Ωi)dxdτ

ψ(ξ2(s) ∈ Ωm+1) =
m+1∑

i=1

ψ(ξ2(t) ∈ Ωi)
∫ s

t

∫

Ωm+1

ρ(τ, x|ξ2(t) ∈ Ωi)dxdτ

When information inflow as a function of x and as a func-
tion of t are statistically independent, ρ(x, t) may be ex-
pressed as a product of two independent distributions [3].
In this scenario, one can approximate, by standard cen-
tral limit theorem (see, for instance, [3], [1]), the inflow of
information measured in the number of mangers needed
for processing such information, by standard normal dis-
tribution. In the same spirit, one can approximate the
marginal density in t using, say, a Winer process [17].
Higher computational efficiency is expected with these
reasonable approximations.

3 Stochastic Modeling Information Pro-
cess

To have a model more conforming to the real business
world, one needs to compute the total percent of available
information that a company can actually receive. Only
after such information is obtained shall the probability
of information loss by managers be meaningful. Let pt

be the percent of all external information received by the
company at time t > 0, we propose that pt be governed
by the stochastic process

dpt = k(µ− pt)dt + σ
√

(1− pt)ptdWt, (1)

where k, µ, σ > 0 are constants, and Wt is standard Brow-
nian motion. To compute the total amount percent of in-
formation received by the company, one need to evaluate
the following integrals:

T := E[
∫ t

0

Q(τ)pτdτ ], (2)

where Q(t) defines the total information governing the
business at time t. Without loss of generality, we assume
Q(τ) follows the stochastic differential equation

dQ(t)
Q(t)

= rdt + ωdWt, (3)

where the drift parameter r > 0 generates the long term
growth and ω measures the volatility of the growth.
Known as geometric Brownian motion, the model is
widely used in the field of financial option pricing, as



used for modeling the movement of stock prices [11].

To our best knowledge there is no closed form ana-
lytical expression for the transitional probability density
function determined by (1). But one can at least use
Monte-Carlo simulation to graph the density for given p0

and t. In Figure 2, the plot on the left is one simulated
sample path for the mean-reverting process, and the plot
on the right is the interpolated density of function p(y) for
t = 0.1, starting from p0 = 0.5, using 10,000 simulations.
For both plots in Figure 2, the parameter values used
for simulations are k = 1, µ = 0.5, σ = 0.2, and dt = 0.01.

In a complete competitive market (see, [13], for in-
stance) where the companies are so many that each
company’s market share is very low, it is reasonable to
believe that each company’s information received is only
a very small fraction of the whole set of information. In
this case, one can let pt → 0, and approximate the above
process (1) by the famous CIR model [14], i.e.,

dpt = k(µ− pt)dt + σ
√

ptdWt. (4)

The benefit of such an approximation, from mathematical
analysis point of view, is that the transitional density for
CIR model is explicitly known, i.e.

pt(x) = γχλ,η(γx),

where

γ =
4k

σ2(1− e−4kt)
,

λ =
4kθ

σ2
,

η = γp0e
−kt,

and χ(a, b) denotes the chi-square distribution with pa-
rameter a measuring the degrees of freedom and b mea-
suring the concentricity. To illustrate the transitional
density, we simulate two numerical plots in Figure 3, one
for small t = 0.1 and the other for large t = 10, using
the same parameter values k = 1, µ = 0.5, σ = 0.2, and
dt = 0.01.

4 Numerical Implementation

To numerically compute the total amount of information
received by the company defined by the equation (2),
an efficient integration quadrature is necessary since the
integrand is usually highly singular. Examples of such
integrals and relevant quadratures for their evaluations
can be found in [11], for instance. When pt follows CIR
model, the right hand side of (2) can be reduced to the
integration defined by

X(k, l, p, x) :=
∫ ∞

x

yke−lyIp(
√

y)dy, (5)

where l, p ∈ R and k > 0 are given constants, and Ip’s
are usually special mathematical functions determined
by underlying processes. We remark this type of integral
arises naturally in many physical problems including,
for instance, the valuation of fixed rate mortgages where
the underlying market interest follows a given stochastic
model model [8].

We shall evaluate X(x) in terms of incomplete gamma
functions and modified Bessel functions of the first
kind. To this end we first introduce some basic facts
about incomplete gamma functions and modified Bessel
functions. The incomplete gamma function of order α
(see [15] and [16], for instance) is defined by

γ(α, x) =
∫ x

0

tα−1e−tdt. (6)

and the differentiation of the incomplete gamma function
gives

d

dx
γ(α, x) = xα−1e−x. (7)

The modified Bessel function [15] of the first kind of order
ν is defined as

Iν(x) =
(x
2 )ν

√
πΓ(ν + 1

2 )

∫ 1

−1

(1− t2)ν− 1
2 e±xtdt ν > −1

2
.

(8)
and it has integral relation of

∫ x

0

t−(ν−1)Iν(t)dt = x−(ν−1)Iν−1(x)− 2−(ν−1)

Γ(ν)
(9)

and differentiation relation of

x
ν−1
2 Iν−1(2

√
x) =

d

dx
[x

ν
2 Iν(2

√
x)] (10)

From these differential and integral relations, we have, by
integral by parts, that

X(x) =
∫ x

0

yke−lyIp(
√

y)dy

= 4
∫ x/4

0

(4z)ke−4lzIp(2
√

z)dz

= 4k+1

∫ x/4

0

zk− p
2 e−4lzz

p
2 Ip(2

√
z)dz

= 4k+1

∫ x/4

0

zk− p
2 e−4lzd[z

p+1
2 Ip+1(2

√
z)]

= 4k+1[zk− p
2 e−4lzz

p+1
2 Ip+1(2

√
z)]|x/4

0 − P

where

P = 4k+1

∫ x/4

0

z
p+1
2 Ip+1(2

√
z)d[zk− p

2 e−4lz]

= 4k+1(k − p

2
)
∫ x/4

0

z
p+1
2 Ip+1(2

√
z)zk− p

2−1dz
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Figure 1: Simulated sample path of pt and the probability density function at fixed t.

−4l4k+1

∫ x/4

0

z
p+1
2 Ip+1(2

√
z)zk− p

2 e−4lzdz

= 4k+1(k − p

2
)
∫ x/4

0

zk− 1
2 Ip+1(2

√
z)dz

−4k+2l

∫ x/4

0

zk+ 1
2 Ip+1(2

√
z)e−4lzdz,

thus we arrive at an recursive relation of X function, on
basis of which the integral of arbitrary order of Bessel
and expenentials functions can be evaluated.

5 Conclusion and Discussion

A stochastic model of information transfer has been pro-
vided in the context of business management. Iterative
formulas for computing the probability of information in-
efficiency have been derived under certain assumptions.
A mean reverting stochastic process is proposed to model
the percent of information that a company can receive at
time t. Both analytical and numerical features of this
process are provided. However, the cost pertaining to
acquiring the information is not considered, nor is the
salary paid to managers. A direction for future research
would be to address the limitation by including financial
cost in the model.
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