
 
 

 

  
Abstract— Recurrent neural networks (RNN) are a class of 

densely connected single layer nonlinear networks of 
perceptrons. The network’s energy function is defined through 
a learning procedure so that its minima coincide with states 
from a predefined set. . However, because of the network’s 
nonlinearity a number of undesirable local energy minima 
emerge from the learning procedure. This has shown to 
significantly effect the network’s performance. In this work we 
analyze the rate of convergence for three iterative procedures 
namely- Mann, Ishikawa and J-iterations in recurrent network 
and many important results have been worked out for 
decreasing as well as increasing functions. The results obtained 
are very useful for designing of inner product kernel of support 
vector machine with faster convergence rate.   
 

Index Terms—Stable States, Mann Iteration, Ishikawa 
Iterations, J-Iteration, Convergence  
 

I. INTRODUCTION 
               Neural networks are a class of non-linear function 

approximators. It is  originated by McCulloch and Pitt [1] , 
Hebb[2], and Rosenblatt[3][4]. Hopfield defined a 
single-layer network consisting of interconnected individual 
perceptrons and modified perceptrons (with sigmoidal 
non-linearties) [5][6][7]. The basis for network operation as a 
content addressable memory is the Hebbian learning 
algorithm. The idea is to choose network connections in a 
way that the energy function associated with the network can 
be minimized for a set of desired network states. 
Unfortunately, because of its nonlinear character, the 
network has also exhibited non-desirable, local minima. This 
has shown to affect the network performance, both in its 
capacity and its ability to address its content [8][9][10]. 
Several approaches based on simulated annealing and other 
techniques have been proposed that deal with the problem of 
local minima [11][12][13][14][15][16]. In these approaches, 
an inherent assumption of the final network state (Gibbs) 
distribution is proposed. The motivation for these 
assumptions is that the Gibbs distribution provides a 
mechanism for the characterization of the global minima. In 
many applications, such as neural networks, however, the 
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desired final network state distribution corresponds to 
particular local minima, and not necessarily to the global 
minima. The use of Gibbs distribution is thus undesirable in 
many applications. A modification of this approach can be 
used to enhance the performance of neural networks. 

                 In this work we have compared the number of iterations 
required to achieve the stable state in recurrent auto 
associative neural networks for the three iterative processes 
i.e. Mann, Ishikawa and J-iteration. The paper is organized as 
follows: In section II we introduced some preliminaries and 
definitions regarding the Mann, Ishikawa and J-iterative 
processes. In section III we relate the memory convergence 
concept in recurrent autoassociative neural network. Section 
IV describes the detailed experimental output obtained 
pertaining to these iterative processes. This is followed by 
applications in section V and concluding remarks are given in 
VI.  

 

II. PRELIMINARIES 
In this section, we will discuss the basic concepts related to 
Mann, Ishikawa and J-iterations. 

Let XXT →:  be a self mapping and ),( dX  be a 
metric linear space. The three iterative processes are defined 
as: 
Definition2.1: Let A  be a lower triangular matrix with 
nonnegative entries and it is defined that )(1 nn VTZ =+  , 

where ∑= knkn ZaV  .The Mann iterative process is 

obtained by choosing a sequence }{ nα which satisfy (1) 

10 =α  (2) 10 <≤ nα  for 0>n  and (3) ∑ ∞=nα . 

Then the entries of A   become nnna α=  

, nka iknk <−∏= ),1( αα  . The above representation 

of A  leads the following form:  

nnnnn TZZZ αα +−=+ )1(1  . It should be noted that 

for 1=nα , this form reduces to the Picard iterative process 

i.e. nn TZZ =+1 .  
Definition2.2:  The Ishikawa iterative procedure is defined 
as- Let Xx ∈0 , 

nnnnnnnnnn TXXyTyXX ββαα +−=+−=+ )1(,)1(1  , 0>n  , 

where }{,}{ nn βα  are sequences of positive numbers. They 

also satisfy the conditions (1) 10 ≤≤≤ nn βα    (2) 

0lim =nβ  and (3) ∑ ∞=nn βα . In [18] the inequality 
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condition has been replaced by nα≤0    and 1≤nβ  and 
thus broaden the class of Ishikawa process. It also helps to 
reduce it to the Mann process by setting 0=nβ . In spite of 
this similarity, however, there is no any resemblance in 
convergence of these methods. 
Definition2.3: The Jungck iterative procedure is commonly 
known as J-iterative procedure. It is defined as. 
For ,....1,0,,),()(,: 10 ==∈⊆→ + nTXSXXxXSXTXXS nn  

It is worthwhile to mention that if S  is the identity map 
on X , this procedure will be reduce to the Picard iteration. In 
[17], various applications of J-iterative procedures have been 
discussed in numerical praxis. 
Theorem2.4: Let ],[],[, babaTS → be differentiable 

with SbSa ≠ . Let XT '  and XS '   both are equal to zero 
for any  ] [bax ,∈  . Then the pair ),( TS  is said to be 
J-contraction of ],[ ba  if and only if there exists a positive 

number 1<q  such that ySqyT '' ≤  for all  ] [bay ,∈  
. 

                   Let }{ nX  be a sequence generated by an iterative 
procedure ),( nXTf of the neural network that converges to 

a stable state ofT . It is important to mention that for any 
mapT , the initial choice x0 determines the stable state of T  
where the sequence }{ nX  will converge. Thus, if T  is 
non-decreasing with three distinct stable states rqp ,,  and 
satisfies the conditions 10 ≤<<≤ rqp , then 

),0[ qX o ∈  implies that pX n →  where as ]1,(0 qX ∈  
implies rX n →  . The stable states  p  and r   are known 
as the attractive global minima whereas q  is a repulsive 

global minima. The sequence }{ nX  will not converge to the 
unstable state q  unless and until qX =0  [18]. 

    If }{ nX and }{ nZ  are two iteration schemes which 

converge to the same global minima p , then }{ nX is better 
than }{ nZ if pZpX nn −≤−  for all n i.e. 

}{ nX converges to p faster than }{ nZ . This allows us to 
compare the rate of convergence of two iterative schemes.  
 

III. MEMORY CONVERGENCE CONCEPT 
 

We now look in more detail at the convergence of recurrent 
auto associative networks. Since the energy function )( XE     
is bounded from below, the network evolves under the 
asynchronous dynamics toward )( 1+nXE  such that 

                                 )()( 1 nn XEXE ≤+                                              (1) 

It should be noted that vector 1+nX and nX   differ during 
the memory transitions by at most a single component, the 
stabilization of )( 1+nXE  means that  

           )()( 1 nn XEXE =+       For  0nn >                         (2) 
The transition stop at the energy minimum, which also 
implies that 

                         
1+nX =    nX                                                    (3) 

Thus the network reaches its stable state  nX  , at the energy 

minimum )( nXE . It is also obvious from energy function 
study that the only attractors of the discussed network are its 
stable states. 

                    
       Let us begin with a one-dimensional recurrent system. 
For the output at 1+= nt    we have  

                                                                  
                               1+nX =      ),( nXwf                                               (4) 

 
The stable state is defined at *X  if the following 
relationship holds: 

                                    )( ** XfX =                                                       (5) 
Where it has been assumed that network parameter w  in 
equation (4) is constant. In geometrical terms the global 
minima is found at the intersection of function )( Xf  
and X . In terms of the recursive formula (4), the global 
minima is said to be stable if  

                                       
                             *lim XX n

n
=

∞→
                                           

(6) 
                                                                                                              

                                           Or 
                                     0lim 1 =+

∞→

n

n
e       .                                                 (7) 

 

Where e   is the recursion error which can be defined as 
                               *11 XXe nn −≅ ++   

The recursion error can be expressed using equation (4) as 
                *1 )( XXfe nn −=+                                           (8) 

 and further rearranged to the form 
 

nnnn eXXXfXXXfe ****1 /()]()}({[ −−−+=+               

(9) 
It is obvious that for a differentiable function f  responsible 
for network’s feed forward processing, this further reduces to 
                      nn eXfe )(' *1 ≅+                                             

(10) 
Now the condition (10) translates to the form  

 
                  1)(' * <Xf                                                             (11) 

This is sufficient condition for the existence of stable global 
minima in the neighborhood where condition (11) holds [19]. 

 
 
 

IV. EXPERIMENTS 
 

Experiments have been conducted for studying the 
convergence rate of three iterative processes namely Mann, 
Ishikawa and J-iteration and it has been observed that for 
decreasing energy functions on [0, 1], computational analysis 



 
 

 

of Mann and Ishikawa iteration exhibit interesting results. 
We programmed both schemes for the 
functions mXXf )1()( −= , for m =7, 8… 29, taking 

initial choice 0X  = 0.9 and 2/1)1( −+== nnn βα . It is 
observed that in each case, the Mann process converges to a 
stable state (accurate to eight places) in 9-12 iterations 
whereas the Ishikawa method requires 38-42 iterations for 
the same accuracy. 

   In this section, we will continue this computational study 
and find the stable states of h  and p  given below. 

Problem1. mXXh )1()( −= , m = 7,8,……,29 
 Problem2. 2872)( 23 −+−= XXXXp   

First, we consider problem 1 and developed a computer 
program for Mann iterative procedure whose inputs are the 
initial guess 0X   and a value of m  . The execution of 

program for m =7, 0X  = 0.9 and 2/1)1( −+= nnα  yield 
the results listed in table I. 
  Further, a program is developed to solve the same problem 
using Ishikawa iterative procedure. The program is executed 
taking m=7, x0 = 0.9 and αn = βn = (n+1)-1/2 and results are 
listed in the table II. 
   Now, in order to solve the equation using J-iterative 
process, it is rewritten in the form of )()( XgXf =  

as XXf =)(  and 7)1()( XXg −= . It should be noted 
that the image of g  is contained in the image f . Further, 

)('1)1(7)(' 6 XfXXg =≤−= for X ∈[0.2,0.9]. 

Considering these f   and g , again program is developed 
whose input is the initial guess 0X  . The program is executed 
taking 0X  = 0.9 and the reading are recorded in the table III. 
 
Table I: The Mann Process  

 
 
 
 
 
 
 
 
 
 
 

Table II: The Ishikawa Process 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table III: The J-iterative Process 
             
 
 
 
 
 
 
 
 
 
   
 

Table IV: The Mann Process 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Table V: The Ishikawa Process  
 
        
 
 
 
 
 
 
 
 
 
 
 

 
   Following the same method, programs are developed to 
solve the problem 2 
i.e. 2872)( 23 −+−= XXXXp ,

0X =0.9 for Mann 
and Ishikawa processes. The readings are listed in table IV 
and V.  
   Now a program is developed to solve problem 2 using 
J-iterative process taking  

2872)( 23 −+−= XXXXf , and 27)( XXg = . 
The outputs of program for 0X  = 0.9 are given in table VI. 
In order to provide a detailed study, these programs are again 
executed changing the parameters such as 0X  = 0.2, m = 29 

and 4/1)1( −+== nnn βα  in problem 1 and 0X  = 0.6 

and 4/1)1( −+== nnn βα in problem 2. 
 
 
 
 

n fxn xn+1 
0 1e-07 1e-07 
1 0.999999 0.70706 
2 0.000185 0.298965 
3 0.08321 91088 
4 0.226626 0.206981 
. . . 
. . . 

17 0.203456 0.203456 

n fxn xn+1 
0 1e-07 0.999999 
1 8.235413e-4

4 
0.355393 

2 0.046245 0.2979776 
3 0.084036 0.262381 
4 0.118802 0.24034 
. . . 
. . . 
 
 

  

29 0.203456 0.203456 

n gxn fxn+1 xn+1 
0 0.9 0.9 0.014939 
1 0.014939 0.014939 0.451486 
2 0.451486 0.451486 0.107387 
3 0.107387 0.107387 0.27295 
4 0.27295 0.27295 0.169307 
. . . . 
. . . . 

29 0.203456 0.203456 0.203456 

n fxn xn+1 
0 0.988 0.988 
1 0.999853 0.996381 
2 0.999987 0.998463 
3 0.999998 0.99923 
4 0.999999 0.999574 
5 1 0.999748 
6 1 0.999843 
. . . 
. . . 

27 1 1 

n fxn xn+1 
0 0.988 0.999853 
1 1 0.999957 
2 1 0.999982 
3 1 0.9999991 
4 1 0.999995 
5 1 0.999997 
6 1 0.999998 
. . . 
. . . 

12 1 1 



 
 

 

 
Table VI: The J-iterative Process  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
  The experiments have been repeated by taking different 
parameters and it is observed that for the decreasing 
function mXXh )1()( −= , for m =7 and 

0X =0.9, the 
Mann process converges to a stable state in 17th iteration, the 
Ishikawa in 29th iteration and J-iterative in 29th iteration 
(Table I, II, III). Similarly, for m =29 and 0X =0.9, the 
Mann and Ishikawa iterative processes take 10 and 32 
iterations respectively whereas J-iteration takes only15 
iterations to converge to  a stable state. It is also noted that 
when

0X =0.2 i.e. nearer to stable state, the number of 
iterations for Mann, Ishikawa and J-processes are 7, 30 and 
16 respectively. Moreover, when  4/1)1( −+== nnn βα  . 
We obtain the stable state in 17 and 45 iterations for Mann 
and Ishikawa. It has also been observed that when 1=nα  
i.e. Picard process the result is an oscillating sequence 
consisting of 0 and 1. 
      The experiments revealed interesting facts for increasing 
function     2872)( 23 −+−= XXXXp  when 

0X  = 
0.9, the number of iterations required for Mann and Ishikawa 
are 27 and 12 respectively whereas J-iteration requires 165 
iterations (Table IV, V, VI). It is also observed that when the 
initial guess is away from the stable states e.g.  

0X  = 0.6, we 
get the stable states in just 5 iterations for all the three 
processes. Similarly, for 4/1)1( −+== nnn βα , the Mann 
process takes 9 iterations while the Ishikawa process takes 
only 5 iterations to convergence to a stable state. It is worth 
mentioning that for 0X  = 0.5 or 2, all the three processes 

converge to 0X  itself,        but when 0.5< 0X <2, 
then }{ nX in all the three cases converge to 1.Further, when  

nα  =1 in algorithm, the result is    obtained just in two 
iterations. 
 
 
 
 
 
       

V. APPLICATIONS 
 
In this section, we will describe the engineering application 
domain of our work. The results obtained in this work 
possess multifaceted real-life applications but here emphasis 
is given on support vector machine. Support vector machine 
is a learning machine and was initially designed to deal with 
binary classification with their linear decision functions. A 
support vector machine first maps the input points in to a high 
dimensional feature space and then finds a separating 
hyperplane that maximizes the margin between two classes in 
this feature space. Without any knowledge of mapping, the 
SVM uses kernels as the dot product functions in feature 
space. The solution of the optimal hyperplane can be written 
as a combination of a few input points called support vectors.  
     The important types of support vector machines are: (1) 
Polynomial learning machine and the inner product 
kernel NiXXK i ,......,2,1,),( =  for this SVM 
is )1( +i

T XX , where p is specified a priori by the user (2) 
Radial-basis function network , the kernel for RBF is defined 
as 

 
⎟
⎠
⎞

⎜
⎝
⎛ −−

=
2

22
1

ixx
ey σ . The width 2σ , common to all the 

kernels, is specified as priori by the user (3) Two-layer 
perceptron for which the inner product kernel is 

)tanh( 10 ββ += i
T xxy , and (4) Gaussian, for which the 

inner product kernel is 2

2

2
)(

22
1 σ

πσ

ax

ey
−−

= . The detail 

study of support vector machine is beyond the scope of this 
paper. For in-depth study of SVM, interested readers are 
requested to refer [20]. The results obtained in this work can 
be used for designing the inner product kernel with higher 
convergence rate. We can consider it as future work of this 
paper. 
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        Fig (1) Learning curve for Radial-Basis Function  
 

n fxn fyn xn+1 
0 5.758 5.758 0.9069

57 
1 5.84077

5 
5.84077

5 
0.9134

53 
2 5.91853

5 
5.91853

5 
0.9195

13 
3 5.99150

1 
5.99150

1 
0.9251

64 
4 6.05989

8 
6.05989

8 
0.9304

3 
. . . . 
. . . . 

165 6.99999
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6.99999
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           Fig (2) Learning curve for Two-Layer Perceptron 
 

                      
                  Fig (3) Learning curve for Polynomial SVM 
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                  Fig (4) Learning curve for Gaussian SVM 
 

VI. CONCLUSION 
 
In this paper we analyze and compare the convergence rate 
for three iterative processes. For decreasing functions it has 
been concluded that for all combinations of

0X , m , nα  and 

nβ , the decreasing order of rate of convergence of iterative 
procedures is: Mann, J-iterations and Ishikawa.  On 
increasing the value of m , the Mann and Ishikawa processes 
require more number of iterations while J-iterative process 
requires less number of iterations to locate the stable state. 
For the initial guess nearer to the stable state, the Ishikawa 
scheme shows an increasing tendency whereas the 

J-iterations have decreasing tendency in number of iterations 
but the Mann process shows no change. Indeed, the speed of 
iterative procedures depend on the position of { nα } and 

{ nβ } in the interval (0, 1). If nα  and nβ  are larger, the 
stable state is obtained in more number of iterations for both 
Mann and Ishikawa scheme. 
      It has also been worked out that for increasing functions 
for all combinations of

0X , nα  and nβ , the decreasing 
order of rate of convergence of iterative processes are:  
Ishikawa, Mann and J-iterations. If the initial guess is away 
from the stable state, the number of iterations increases in 
each of the three processes. It explicitly indicates that if initial 
guess is closer to the stable state, the results will be obtained 
quickly. Similarly, larger values of nα and nβ , produces the 
results quickly for the Mann and Ishikawa process. The 
Picard iterative procedure i.e. nα  = 1is the best process for 
the approximation of stable state in increasing function. 
       Most importantly, we may use the results obtained in this 
work for the design of inner-product kernel ),( iXXK of 
support vector machine to construct the optimal hyperplane 
in the feature space without having to consider the feature 
space itself in explicit form. 
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