
 

 

 

 

Abstract—This paper presents a systematic methodology for 

analyzing the maintenance data of offshore system to gain 

insight about the system reliability performance and identify the 

critical factors influencing the performance. The study 

approach is based on problem and data-led rather than 

technique-driven. The results of trend test propose that the 

system under studied can be modeled using a simple 

Homogeneous Poisson process (HPP) where the failure rate is 

constant. Analyses of covariates are done using Kaplan Meier 

and Proportional hazards models. The results indicate that the 

preventive maintenance (PM) plus engine wash has a 

significance positive influence on the system failure distribution.  

 
Index Terms— HPP, Kaplan Meier, Proportional hazards 

model, Trend test. 

I. INTRODUCTION 

  The details and statistics of equipment performance in the 

plant are mostly stored in the maintenance record, and these 

include the frequency and time of failures, shutdown duration, 

failure breakdown, types of mitigation and details of 

scheduled maintenance. Proper, reliable and systematic 

maintenance record is vital for the sustenance of high standard 

maintenance practice and the successful of equipment failure 

analysis or troubleshooting activities. Another benefit of 

maintenance data which is generally untapped is its potential 

to provide understanding of the system performance level and 

assistance in decision making. Maintenance data with proper 

statistical analysis techniques can help management to assess 

plant performance by giving insights on how well the 

performance of the existing system and what critical factors 

influencing the system performance [1]. 

An effective analysis of maintenance data requires a 

systematic approach in which skill, experience and care are 

the utmost importance for success [2]. Nevertheless, a 

systematic approach has few salient elements. The first one is 

a clear objective. The analysis should be based on a clear 

objective since the objective will set the proper approach in 

the whole aspects of analysis process. The collection of right 

data in an appropriate format is fundamental in development 

of model and subsequent prediction based on that model. 

Many issues in the data gathering and subsequent analysis 

processes can be related to the lack of clear objectives at the 

beginning of data collection process [2]. Poor data will lead to 

incorrect assumptions and hence produces error in estimates. 

Next, the analysis approach should be problem-led and data 

driven rather than technique-driven. Many approaches 
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however are more towards techniques-driven which produce 

outcomes that neither addressing the problem nor practical for 

implementation in real industry. The technique-driven 

approach also tends to make a general assumption about the 

failure model (i.e. most common is constant failure rate) 

without first conducting proper data analysis in order to 

legitimate the use of certain technique in the analysis. In many 

cases, such assumption may not be true thus the results 

produced will be inaccurate. It is also common to find many 

research papers on maintenance data analysis focusing too 

much on mathematical modeling rather than solution to the 

problems [3]. The problem with this approach is that it will 

make it difficult for practitioners to grasp the idea and 

interpret the analysis process due to their incompetence in 

complex mathematics. Lastly, the analysis should be 

conducted first by using a simple model before extending it 

into a more complex model [1]. There is a tendency to apply 

complex techniques for solving plant problems where in many 

times these problems can be solved simply by using fairly 

simple models. The assumption of simpler model to describe 

the maintenance data can only be rejected when there is 

enough evidence that the model is inappropriate.  

The objective of this study is to present a methodology to 

systematically analyze the maintenance data to gain insight 

about the system performance and identify the critical factors 

influencing that performance. In this study, a practical 

step-by-step analysis based on problem-led approach is 

employed. Suitable techniques and models are explored and 

used based on the finding from the previous steps.  

 

II.  MODELS FOR A REPAIRABLE SYSTEM  

Most of the equipment on offshore platforms are repairable 

items, which means that upon failures the equipment are 

repaired and restored to the functional state. By contrast, 

non-repairable items are replaced or discarded when they fail. 

The probabilistic model for studying the occurrence of 

failures in the repairable system is based on stochastic point 

processes. The point process can be described as the 

occurrence of randomly distributed events in time with 

negligible events duration [4]. The events here are the failure 

times of a repairable item. Several point process models for 

repairable system are proposed in the literature and they 

generally can be classified under three types of repair actions; 

perfect repair, minimal repair and imperfect repair [5]. 

In the perfect repair model, the equipment upon failure is 

either repaired or restored to „as good as new‟ condition. The 

distribution of time between failures is independent and 

identically distributed (IID). When the failure times exhibit 

exponential distribution (constant failure rate throughout the 

observation time) the process is called a homogeneous 

A Systematic and Practical Approach of 

Analyzing Offshore System Maintenance Data 

H. Hussin, F. M. Hashim, M. Muhammad, and S. N. Ibrahim. 



 

 

 

Poisson process (HPP). The HPP is the simplest model in the 

point process models where the expected cumulative number 

of failures for given interval of time follows Poisson process. 

If the distribution follows any arbitrary distribution, the 

process is called a renewal process (RP). The minimal repair 

model refers to the condition where the repair could only 

restore the equipment back to functioning state („as bad as 

old‟) just before failure. The inter-arrival time distribution 

here is not IID and the process is modeled by a 

non-homogeneous Poisson process (NHPP). Two models 

commonly used for NHPP are the power law (Crow model) 

and log-linear model (Cox-Lewis model). Finally, the 

imperfect repair model is applied when the repair action 

results in the equipment condition between the „as good as 

new‟ and „as bad as old‟. The proportional age reduction and 

proportional intensity variation models are examples of two 

point processes that can be used to describe the imperfect 

repair model [6]. 

 

III. GAS COMPRESSION TRAIN SYSTEM 

The system under study is a gas compression train system 

on an offshore platform for exporting gas to onshore reception 

facilities.  The system comprises of two similar types of train; 

train 1 and 2, which each consists of a gas turbine, a 

centrifugal compressor and auxiliary subsystems.  The 

function of the system is to compress both high pressure (HP) 

and low pressure (LP) gas drawn from wells at two 

compression stages. An overview of the process flow is 

illustrated in Figure 1. After the separation process to separate 

gas from oil and water, the associated gas (LP) goes into the 

1
st
 stage compression and then joins with the non-associated 

gas (HP) into glycol system before entering 2
nd

 stage 

compression. After the compression, the gas is metered 

through the gas metering skid and then sent to onshore 

facilities. 

Fig.1: Schematic of an offshore gas compression system 

Based on the field data, the trains can be either in mutually 

operating (shared loading) or single operating (single 

loading). Both trains are operating when the demand is high 

(high production). When the demand is low, normally only 

one train operates, the other will be in standby mode. During 

high production rates when both are operating, the production 

capacity is shared between both trains. In the case of one unit 

shutdown, another unit has to produce more output to 

compensate the loss; however the load imposed is less than 

the maximum loading level to avoid additional stress on the 

operating unit. This approach however will reduce the overall 

production output.  

The train and system downtime are caused either by 

failures (unplanned shutdown (USD)) or scheduled 

maintenance (planned shutdown (PSD)). Scheduled 

maintenance includes preventive maintenance (PM) for every 

4,000 and 8,000 operation hours (4K ppm and 8K ppm), and 

engine wash. Each maintenance action undertaken is 

supposed to extent the lifetime of the system. During peak 

production time, the plant sometimes opts for deferring 4K 

ppm to maximize equipment uptime and productivity. 

A. Maintenance Data 

The existence of complete condition of maintenance data 

stored in proper format is fundamental for successful data 

analysis and accurate prediction of system performance [2]. 

In this case, the offshore facility under studied had relevant 

and systematically recorded maintenance data based on the 

calendar time which consist of detailed failure data, related 

maintenance action and operation mode (i.e. operating, 

standby, shutdown, shared loading). 

The data were collected for the period of April 2002 

through December 2008. Although the offshore platform was 

commissioned in 2001, the handover of operation to the 

maintenance team effectively took place in April 2002. 

Hence, there were no data available prior to April 2002. As 

with many typical plant records, there are many uncertainties 

in maintenance data that need to be verified before they can be 

further analyzed.  In this study, these data were verified and 

screened by the plant field engineer.  

Table 1 presents the shutdown events reported for both 

trains based on the operating time (days). Shutdown data 

based on the operating time is preferred over the calendar 

time since the former represents the actual time the equipment 

is in operation. The analysis based on the operating time can 

show the actual condition of the system performance i.e. 

improving, deteriorating or unchanged [5] which may be 

unnoticeable if it is done on the calendar time. The operating 

time is defined as the calendar time minus the shutdown and 

standby time. The time between the events or also known as 

inter-arrival time is the time gap between two consecutive 

events. From the data, both trains experienced 27 failures 

during the observation period.  

Table 1: Time of shutdown based on operation time (days) 

Operating days days between events Operating days days between events

15 15 22 22

21 6 53 31

124 103* 380 327

216 92 512 132

337 121 589 77

511 174 595 6

618 107 699 104

747 129 716 17

812 65 758 42

832 20 803 45

854 22 1011 208

972 118 1033 22

1003 31* 1061 28

1004 1 1069 8

1267 263 1125 56

1380 113 1147 22

1385 5 1154 7

1440 55* 1184 30

1469 29 1189 5*

1500 31 1335 146

1523 23 1352 17

1566 43 1411 59*

1639 73* 1416 5

1783 144 1505 89

1789 6 1605 100

1840 51* 1679 74*

1841 1 1685 6

1967 126 1689 4

1997 30 1780 91

2009 12 1847 67*

2012 3 1904 57

2079 67* 1925 21*

2080 1

2083 3

2142 59*

Train 2Train 1

 

* denotes PM events and end time observation 

To onshore 
facilities  



 

 

 

B. Factors Influencing System Performance 

After discussions with the plant personnel, the following 

factors or covariates are suspected to have influence on the 

system performance.  

i. Train: Both trains are designed to produce similar 

performance, however based on the data, train 2 

indicates longer shutdown duration than train 1.  

ii. Operation loading mode: When one train is down, 

another train has to take up the entire load i.e. single 

loading. This extra loading may result in increased 

stress on that running train. 

iii. Subsystem: Almost 50% of the failures come from 

gas turbine and gas compressor. It is useful to 

understand the impact of these failures to the overall 

system failure frequency. 

iv. Start up operation: Frequent start up operation due to 

switching back of operation mode from shutdown or 

standby to operating could be detrimental since it 

can induce stresses on the equipment that lead to 

wear-out problem. The number of switching 

operation depends on the frequency of failures and 

standby mode events. In the case of standby mode, a 

start up operation is assumed only when the 

equipment has been in standby for more than four 

hours. 

v. Maintenance activities: PM activities are supposed 

to reduce number of failures and increase the time 

between failures of the system. Sometimes the 

maintenance impact can be insignificant or 

detrimental to the system performance. 

 

IV. METHODOLOGY 

The analysis of the data is divided into two stages. The first 

stage is to look at the pattern of failures occurring over time 

for any possible trend indicating the non-steady state of the 

system performance i.e. improving or degrading. The next 

stage is to assess the impact of various factors or covariates on 

the system failure distribution as mentioned in the previous 

section, thus enable management to take appropriate actions if 

any of them is found to significantly deteriorate the system 

performance. 

A. Trend Test 

A trend plot of cumulative number of failures over time can 

provide a snapshot of how the system performance is heading 

to. When the inter-arrival time is getting shorter, the plot will 

tend to concave up implying that the system is deteriorating. 

The opposite condition is observed when the system is 

improving. A linear plot is an indicator that that the system 

performance is constant. Ascher and Feingold [7] refer these 

conditions as „sad‟, „happy‟ and „non-committal‟ system 

respectively. These system conditions can be assessed using  

an analytical trend test which basically tests whether the 

process has a monotonic trend or not (stationary). Ascher and 

Feingold [7] stress the important of trend test as the first step 

of the reliability data analysis and model development and 

this is strongly supported by other researchers [8-10]. Several 

trend tests had been developed, but the most commonly used 

is the Laplace test. This test is used to statistically test for the 

null hypothesis that the failure distribution is stationary (HPP) 

against the alternative of a monotonic trend (NHPP). Other 

trend tests include MIL-HDBK-189 (HPP vs. non-HPP), 

Mann and Lewis-Robinson (renewable process, RP vs. a 

monotone trend) [7].  

B. Laplace Trend Test 

Consider the data consists of a series of n failures observed 

during the period of (0,tf). The Laplace test statistics, UL is 

defined by 
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where: 

 ti = the time to failure for ith event 

n = total number of failures during the observation period 

(0, tf) 

tf = observation end time (termination time). If the 

observation end time is a failure time at nth event, the 

above expression need to be modified by replacing n with 

n-1. 

Under the null hypothesis, the test UL approximately follows 

a standard normal distribution. Thus   large positive or 

negative UL values suggest that the process is not stationary 

(not HPP). The null hypothesis is rejected if UL is smaller than 

a critical minimum value or greater than the maximum critical 

value read from the standard normal table for a given 

significance level. UL value greater than 0 indicates 

degradation (concave up pattern) and less than 0 signifies 

improvement (concave down pattern) in the system 

performance.     

C. Rate of Occurrence of Failure  

The changes in the pattern of failures can also be detected 

by examining the failure rate trend against the time. For 

repairable system, the failure rate, or also known as the failure 

intensity, can be estimated by calculating the rate of 

occurrence of failure (ROCOF). For the HPP process, the 

graphical plot of ROCOF over time should be constant since 

the HPP process has a constant failure rate. ROCOF for 

interval i can be estimated by the mean failure rate, vi, which is 

the number of failures occurred in the evenly distributed time 

interval (ti-ti-1) divided by that time interval;    
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The graph shape of ROCOF is highly dependence on the 

selection of time interval, thus proper selection of the time 

interval is important. Smoothing technique such as kernel 

density smoothing can be used to smooth the graph [11].  

D. Covariates Analysis 

Several methods are proposed in the literature for analyzing 

the effects of covariates on the system and the most popular 

one is based on a semi-parametric Proportional hazards model 

(PHM). PHM applications can be found widely in literature 

for both non-repairable and repairable system due to its 

effectiveness as a robust exploratory technique for identifying 

relative influence of explanatory variables [12]. The 



 

 

 

applications of PHM in repairable system are generally 

confined to the situation where the system failure distribution 

is assumed to behave like an HPP [13]. In the case of NHPP, 

the more appropriate model is the Proportional intensity 

models (PIM), an extension of the PHM. For detailed 

discussion on the PIM refer to [14,15]. The selection of which 

model to be used depends on the finding of trending test 

described earlier (HPP vs NHPP). Besides the PHM, a 

non-parametric Kaplan Meier (KM) estimator method can 

also be used as an exploratory tool. This method, however, is 

only suitable for univariate and not for multivariate analysis. 

E. Modeling of covariates 

Let the time to failures of n number of failures be t0, t1, t2, 

t3,…,tn, with  t0 < t1 < t2 < .. <tn. t0 is an arbitrary time which 

mark the beginning of the observation period. The time 

between failures (inter-arrival) are denoted by Xi, where Xi = ti 

– ti-1. For an illustration, let consider a PM as the covariate 

(Figure 2). Assume there is a PM activity being carried out in 

between t1 and t2 . In this model the impact of that PM on the 

failure distribution is measured basically by the length of X2; 

how effective is the PM to extend the X2 period. All of the 

covariates in this study follow the same notation except for the 

start up covariate, where the impact of start-up covariate is 

measured based on X3 instead of X2. Here, we are interested to 

know the impact of start up failures to the next failure event 

and not prior to that. 

 

 

 

 

Fig. 2: Modeling of failures for PM covariate 

V. DATA ANALYSIS AND RESULTS 

The trend plots of the cumulative number of failures over 

the operating time for both trains taken from Table 1 are 

shown in Figure 3 and 4 respectively.  
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Fig. 3: Cumulative failures versus operating days for Train 1 
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Fig. 4: Cumulative failures versus operating days for Train 2 

The trend plots for both trains exhibit a linear pattern an 

indication of the train performance is neither improving nor 

degrading. To test for this assumption, the statistical Laplace 

tests are conducted. For train 1, the calculated Laplace 

statistics value, UL is 1.66 and for train 2 is 0.68. These 

results were found not to be statistically significance at 95% 

confidence level (z = +/- 1.96). Thus the assumption based on 

the graphical method earlier is acceptable that the data do not 

exhibit any monotonic trend. This non-monotonic failure data 

trend suggests that the process can be modelled as an HPP.  

To look at how the failure rate change over time, ROCOF 

based on time interval of 200 days is calculated.  The plots of 

ROCOF for respective train are shown in Figure 5 and 6. The 

plots have been smoothed using Gaussian kernel smoothing 

technique [16] with kernel bandwidth is set to 125 days. 
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Fig. 5: ROCOF against cumulative operating time for Train 1 
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Fig. 6: ROCOF against cumulative operating time for Train 2 

The plots indicate that there are no increasing or decreasing 

trends in failure rates for both trains.  The failure rate for train 

1 looks rather constant with little fluctuation throughout the 

observation time. For train 2, the plot also exhibits somewhat 

constant   trend over the time period. However, a slight 

increase in failure rate is noticeable near the midpoint of 

observation period. Based on the equation [2] the estimated 

failure rates for train 1 and 2 are around 0.013 and 0.014 

respectively.  

A. Analysis of Covariates 

The next stage of analysis is to study whether the covariates 

are the critical factors affecting the system performance. 

Since the earlier testing indicates that the HPP is a suitable 

model for the system‟s failure distribution, the analysis on 

covariates can be done using Kaplan Meier estimator and 

PHM methods.  In the following analyses the data for both 

trains are combined and analyzed assuming that both trains 

are having the same failure distribution. 

B. Kaplan Meier Estimator 

KM estimator [17] is a non-parametric method of estimating 

the reliability (survival) function from life-time data. It can be 

used for data with complete and censored events. The 

estimated reliability function, Ȓ (t), is a step function given by 

tt i

i

i
n

d
tR 1)(      (3) 

Where Ȓ (t) is the estimated reliability for any particular point 

of time; ni is the number of individual at risk just prior to time, 

ti ; and di is the number of individual that fails up during time 
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period ti. Thus, Ȓ (t) is based on the conditional probability 

that an individual survives at the end of interval provided that 

individual was existed at the start of the time period. Ȓ (t)   is 

the product of these conditional probabilities and provides the 

point estimator for the reliability function at any particular 

time t.  

The KM survival function plot can be used to visually 

compare the survival rates between two groups to determine 

which one is performing better (e.g. train 1 versus train 2). A 

statistical hypothesis test called the log-rank is employed to 

test the null hypothesis that there is no significant difference 

between the survival data of these two groups. Table 2 lists 

the grouping for each of the covariates. The covariates 

identified for the analysis were train, operation mode, 

sub-system, start up operation and maintenance activities. The 

maintenance activities, however, had been further broken 

down into two more covariates; the PM and PM plus engine 

wash. The PM covariate only includes 4K and 8K ppm but not 

engine wash. This will enable separate assessment to be done 

on the effectiveness of PM action with and without engine 

wash. The results of log-rank statistical tests calculated using 

SPSS software are tabulated in Table 3. 

 

Table 2:  Covariates and their grouping 

Covariates Group 0 Group 1 

Train Train 1 Train 2 

Operation mode Shared load Single load 

Subsystem Other sub-systems Gas Turbine + Compressor 

Start-up operation Others Start-up failures 

PM Others Failures after PM 

PM +  wash Others Failures after PM +  engine wash 

 

Table 3: Log-rank statistical test on covariates  

covariates Train Operation Subsystem Start-up PM PM+Wash

mode operation

chi sq. 0.046 0.027 3.34 0.01 2.41 8.52

sig. (P value) 0.83 0.087 0.07 0.9 0.12 0.004  

  The results indicate that only the PM plus wash covariate 

has significant effect on the system failure distribution 

(P-value less than 0.05). The results also show there is no 

significant difference between the two trains performance, 

thus the assumption that both trains have similar failure 

distribution is acceptable. Figure 7 describes the survival plot 

of PM plus wash covariate where it shows this covariate has a 

positive influence in extending the system inter-arrival failure 

time.  
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Fig. 7: KM plot of cumulative survival for failures after PM 

plus engine wash  vs. other failures 

C. Proportional Hazards Model (PHM) 

The PHM can be used to evaluate the simultaneous
 
effect of 

multiple covariates on the system failure distribution. Here, it 

enables the difference between the survival data of different 

groups to be tested while allowing for other covariates to be 

taken into consideration. The PHM or Cox regression model 

[18] is the most important distribution-free regression model 

used for the analysis of censored data [19]. In the PHM, the 

hazard function is composed of two parts; a baseline hazard 

function and a covariates dependent function. The model 

assumes a multiplicative effect of covariates to the baseline 

hazard function. The basic form of the PHM is given by  

 

)()():( 0 zthzth T     (4) 

Where ho(t)  is the baseline hazard function,  is the arbitrary 

function of the row vector covariates, z, and  is the column 

vector of unknown regression parameters.  can be 

represented in many  functional forms, such as exponential, 

logistic and inverse linear and linear form. Cox [18] proposes 

an exponential function due to its simplicity. Thus the PHM 

with k covariates can be expressed as 
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ho(t)  is modeled as a non parametric thus making the PHM a 

semi-parametric model.  

 The results of PHM analysis on the covariates are shown in 

Table 4. Here, the results also indicate only PM plus wash is 

the influential factor with the statistical significant value (P 

value) is 0.044. This p-value is however higher than the one 

derived from the KM log-rank test (0.004) since the PHM 

model includes the effects of all covariates in the analysis. 

Based on the equation (5) the PHM plus wash covariate will 

reduce the hazard of failures for the system by a factor of 0.43. 

The estimated survival plot for PM plus wash covariate is 

shown in Figure 8.  

 

Table 4: PHM results analysis on covariates 

 

 

 

 

Covariates  Std error Wald df Sig. (P value) Exp( ) 

Train .045 .296 .024 1 .878 1.046 

Operation mode .533 .557 .917 1 .338 1.704 

Subsystem -.368 .323 1.302 1 .254 .692 

Start up operation .090 .405 .049 1 .824 1.094 

 PM .006 .466 .000 1 .989 1.006 

 PM + Engine 

Wash 
-.837 .416 4.050 1 .044 .433 
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Fig. 8: PHM plot of cumulative survival for failures after PM 

plus engine wash vs. other failures 

VI. DISCUSSIONS ON RESULTS 

The trend charts and Laplace test indicated both train 1 and 

2 exhibited a linear and non-monotonic trend. The calculated 

ROCOF showed fairly similar results, where there were no 

indications of increasing failure rate trend in both trains. Train 

2, however showed a slight ROCOF spike in the middle of the 

study period. The predicted failure rate for train 1 and 2 were 

0.013 and 0.014 respectively, which was almost the same.  

Covariates analysis using the PHM and KM techniques 

found that the train type is not an influencing factor 

determining the system failure events. There were no 

significant differences between both train failure 

performances. Nevertheless, in the aspect of downtime, based 

on the maintenance data train 2 had experienced downtime 

seven times higher than train 1. These downtime events had 

occurred mainly between 2003 and 2006.  

The single operation mode was assumed to cause more 

failures due to increased in stress load on the individual train. 

Based on the number of failures occurred during this single 

mode operation, it was shown not a major factor. There were 

only four failures associated with this operation mode. 

Besides, the operation mode had been dominantly under 

shared mode since 2005 due to high production demand and 

decreased trend in failures with high downtime. 

Failures associated with gas turbine and gas compressor 

were found not significantly difference compared to failures 

related to other subsystems. In term of downtime, however, 

both subsystems contribute to 60 and 90 percent of total 

downtime period for train 1 and train 2, respectively. 

Based on the failures occur right after start up operation, 

the start up failure did not have any significant influence on 

the system failure distribution. The scope of the study, 

however, did not count the compounding effect of cumulative 

start up events due to limited data availability. 

The analysis on maintenance activities revealed that the 

PM (4K and 8Kppm) did not have a significant influence on 

the system failure rates. Nevertheless, the PM together with 

engine wash was found to play a critical role in extending the 

inter-arrival time of failures thus improving the system 

performance. 

 

VII. CONCLUSSIONS 

   In this paper, a systematic and effective approach of 

extracting and analyzing maintenance data to gain important 

information about the system performance was clearly 

demonstrated. The approach was based on problem and 

data-driven rather than model and technique-led. The study 

found that the system failures is neither deteriorating nor 

improving and can be appropriately modeled by an HPP 

model. In analyzing the critical factors influencing the 

inter-arrival failure times, the non-parametric KM and PHM 

techniques were applied. These methods were shown to be 

adequate in identifying the critical factors affecting the system 

failure distribution.  
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