
  
Abstract — This paper presents a development of a design of 
experiment technique for quality improvement in automotive 
manufacturing industrial.  The quality of interest is the colour 
shade, one of the key feature and exterior appearance for the 
vehicles.  With low percentage of first time quality, the 
manufacturer has spent a lot of cost for repairing work as well as 
the longer production time.  To permanently dissolve such 
problem, the precisely spraying condition should be optimised.  
Therefore, this work applied the multiple regression and 
response surface methods or RSM to investigate significant 
factors and to determine the optimum factor level in order to 
improve the quality of paint shop. Firstly, 2k full factorial was 
employed to study the effect of five factors including the paint 
flow rate at robot setting, the paint levelling agent, the paint 
pigment, the additive slow solvent, and non volatile solid at 
spraying of atomising spraying machine. The response value of 
colour shade at 15 and 45 degree are measured using 
spectrophotometer. Then the regression models of colour shade 
at both degrees were developed from the significant factors 
affecting each response. Consequently, both regression models 
were placed into the form of linear programming to maximise the 
colour shade subjected to 3 main factors including the pigment, 
the additive solvent and the paint flow rate. This led to the 
determination of new levels of decision variables and brought 70 
% reduction on paint repairs cost and improve first time quality 
from 70% to 88% for the production of interest 
   
Index Terms — Precisely Atomising Spraying Process, Colour 
Shade Mismatch, Multiple Regression, Constrained Response 
Surface Optimisation  

I. INTRODUCTION 
 Currently, the stiff competition in automotive firm increases 
the need for quality improvement. The selections of the 
vehicle are based on the performance, the feature and the 
appearance.  The first two are the perceived quality for each 
company. For the appearance, a colour shade, and paint 
durability are important since they are the first noticeable 
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quality for the user. It is found that the case of interest has 
faced with the problem of lower quality of colour shade at the 
final quality gate of assembly. The colour of body and the 
painted hang on the part are mismatch being complained by 
customer. The first time quality is low at 70%, especially for 
silver colour tone, resulting in high production cost for 
repairing and retrofitting. Furthermore, the production lead 
time is longer due to the change of a new painted part from 
supplier. To decrease such problem, a precisely atomising 
spraying bell gun, the new spraying technology is invested for 
car painting process. The selected machine would provide a 
good appearance, good levelling rate of spraying, good 
metallic effect and can also reduce consumption of purging 
and solvent being good for environment [1].  
 With high technology machine, the problem has still 
existed. It is found that the process performance capability 
(Ppk) is still quite low at 1.05 comparing to the minimum 
target at 1.33, as shown in Fig 1. In this case, the deep detail of 
spraying process should be investigated so that the optimum 
working condition would be determined. Consequently, the 
problem of interest would be dissolved.  

 

 

 

 

 

 

 

 

 

Fig.1 Performance of Current Operating Condition 

II. PRECISELY ATOMISING SPRAYING PROCESS (PASP) 

A. Process Review 
Paint shop consists of four operation steps as shown in Fig 2.  

The electrodepositing film is performed in the first step. Joint 
and hem flange of bodies are sealed in the second step to 
prevent corrosion. The final process is inspection and 
polishing a painted body. These three processes do not relate 
to an exterior spraying, the third step, since they are separated 
and unrelated processes. In this case, the cause of the problem 
is narrowed to the process of spraying and coating. However, 
this study also waives the primer spraying and baking 
condition because there have been found commonly with other 
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colour. Therefore, the determination of the base coating 
operation using atomising spraying robot, as shown in Fig 3 is 
mainly focused.  

 

 
Fig.2 Details of PASP 

 

 
Fig.3 Operation Process of Atomising Spraying Robot 

 

B. Atomising Spraying Process   
From Fig 3, paint was pumped from the mixing tank 

through the line to the paint booth. Gear pump help controlling 
paint flow rate while pressure air is supplied to atomising 
robot for driving bell dish to disperse the paint material into 
very small flaked size. Spraying will resume when the vehicle 
is transferred to the zone where robots R1 and R2 will perform 
the first coat on the exterior fender, the doors, the pillars, the 
box side, and the exterior tailgate panel surfaces. Robot R4 
will paint the hood, the roof, and the box floor surfaces.  
Robots R3 and R6, then, perform the second coat for the area 
being first coated form R1 and R2 whereas the robot R5 will 
process the second coat for the rest. Once painting is 
completed, all robots will return to the original stage and 
prepare the color for the next vehicle. Painted body will be 
flashed before spraying clear coat and baking. Finally, the 
painted will be assessed based on the key product 
characteristics including film thickness, smoothness, glossy 
and color shade.  

C. PASP Parameters   
      Control parameters of base coat include the paint material, 
spraying robot setting, the velocity of down draft air, booth 
temperature, and humidity. By brainstorming from the teams 
who work for a paint shop, e.g. product and process engineers, 
maintenance operators, quality engineers and paint suppliers it 

has been found that the five key controllable parameters are 
declared including (1) a paint flow rate at robot setting, (2) a 
paint levelling agent, (3) a paint pigment, (4) a additive slow 
solvent, and (5) non volatile solid at spraying. Although there 
are many conditions for setting the robot, such as a gun 
distance, a bell speed, a shaping air, a voltage, but these 
conditions were fixed at the specific standard performance of 
the machine.  

D. PASP’s Quality Measurement   
The problem of interest is the mismatch of colour shade, 
especially for silver colour. Silver colour is bright shade and 
more sparkling from aluminium pigment; therefore, the 
brightness and the darkness were selected as the control value 
calling “L value”.  It consists of the determination of colour 
shade at 15 and 45 visualised degrees. 

III. METHODOLOGY FOR COLOUR SHADE MISMATCHED 
IMPROVEMENT 

A. Response Surface Methodology (RSM) 
The steepest ascent procedure, proposed by Box and Wilson 

[2], has been widely used in the area of Response Surface 
Methodology (RSM) or EVolutionary OPerations (EVOP). 
The objective of the RSM is to describe how the response of a 
process varies with changes in k process variables (Fig. 4). 
The process variables determined will depend on the specific 
field of the application [3].  

 
Fig.4 Response Surface and its Contour Plot 

Most industrial processes have some process variables. For 
example, a response in a chemical reactor might be 
concentration of product and the process variables affecting 
this concentration might be temperature and pressure of a 
chemical plant [4]. The process variables such as speed of 
lathe and advance of cutting tool in machining can be adjusted 
by plant operators or by automatic control mechanisms to 
enhance the efficiency of the machine. Care must be taken to 
operate industrial processes within safe limits, but optimal 
conditions are rarely attained and increased international 
competition means that deviations from the optimum can have 
serious financial consequences. In many cases the optimum 
changes with time and there is a need for a routine mode of 
operation to ensure that the process always operates at optimal 
or near-optimal conditions. 

On the theory and practice of RSM, it is assumed that the 
mean response (η) is related to values of the process variables 
(ξ1, ξ2, …, ξk) by an unknown function f. The functional 
relationship between the mean response and k process 



variables can be written as η = f(ξ), if ξ denotes a column 
vector with elements ξ1, ξ2, …, ξk. Estimation of such 
surfaces, and hence identification of near optimal settings for 
process variables is an important practical issue with 
interesting theoretical aspects. The procedure begins with a 
factorial experiment around the prevailing operating condition. 
A sequence of first order models and line searches are justified 
on the basis that such a plane would be fitted well as a local 
approximation to the true response [5]. The estimated 
coefficients for the first order model are determined using the 
principles of least squares. A sequence of runs is carried out 
by moving in the direction of steepest ascent. When curvature 
is detected, another factorial experiment is conducted. This is 
used either to estimate the position of the optimum or to 
specify a new direction of steepest ascent. 

In this study, response surface method is deployed to set up 
a relationship of the targeted and constrained responses and 
influential process variables. Sequential procedures of RSM 
are followed. A factorial experiment design is used to 
investigate the responses of the process. Analysis of variance 
(ANOVA) is then applied to find statistically significant 
process variables and determine the most effective levels. 
Regression analysis is used to fit a relationship equation of the 
response and its process variables. A restriction of process 
variables is also considered as the constraints of the process. A 
use of mathematical programming is to find the optimal levels 
in each process variables that can bring the suit levels of 
colour shade in both measurements of 15 and 45 degrees.  

B. Constrained Response Surface Optimisation (CRSO) 
In order to optimise the response of the brilliance of colour 

shade (L value) that might be influenced by several process 
variables, various sequential procedures via statistic tools are 
then used. One among those is the multiple regression 
analysis. It is used to determine the relationship between the 
influential variable of x’s and the dependent variable or 
response of y that is modelled as a linear or nonlinear model. 
Multiple regression fits a nonlinear relationship between the 
value of x’s and the corresponding conditional mean of y and 
has been used to describe nonlinear phenomena. Although 
Multiple regression fits a nonlinear model to the data, as a 
statistical estimation problem it is linear, in the sense that the 
regression model is linear in the unknown parameters which 
are estimated from the experimental data.  

Multiple regression models are usually fit using the method 
of least squares. The least-squares method, published by 
Legendre and Gauss, minimises the variance of the unbiased 
estimators of the coefficients. Multiple regression analysis 
played an important role in the development of regression 
analysis, with a greater emphasis on issues of design and 
inference. The aim of regression analysis is to formulate a 
model of the expected value of a dependent variable y in terms 
of the value of an influential variable (or vector of influential 
variables) of x’s. In multiple linear regression, the model 
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is used, where ε is an unobserved random error with mean 
zero conditioned on a scalar influential variables of x’s. In this 

model, for each unit increase in the value of x, the conditional 
expectation of y increases by  units of . Conveniently, 
these models are all linear from the point of view of 
estimation, since the regression model is linear in terms of the 
unknown parameters of β0, β 1, .... Therefore, for least squares 
analysis, the computational and inferential problems of 
multiple regressions can be completely addressed using the 
multiple regression techniques. This is done by treating 
x, x2, ...  as being distinct independent variables in a multiple 
regression model. 

The procedure of steepest ascent is that a hyper plane is 
fitted to the results from the initial 2k (fractional) factorial 
designs. The direction of steepest ascent on the hyper plane is 
then determined by using principles of least squares and 
experimental designs. The next run is carried out at a point 
which is some fixed distance in this direction and further runs 
are carried out by continuing in this direction until no further 
increase in yield is noted. When the response first decreases 
another 2k design is carried out, centred on the preceding 
design point. A new direction of steepest ascent is estimated 
from this latest experiment. Provided at least one of the 
coefficients of the hyper plane is statistically significantly 
different from zero, the search continues in this direction. 
More details are referred to in many statistical texts, for 
example [6] and [3]. Once the first order model is determined 
to be inadequate, the area of optimum is identified via a 
finishing strategy [7]. The procedure of steepest ascent method 
is shown in Fig. 5. 

Many response surface problems involve the analysis of 
several responses or product specifications. However, they can 
be categorised in to the major and minor responses when 
compared. In this research, the main objective is to focus on 
the only one response of y1 and the remaining of y2 will turn to 
be only the constraints that need to be met their acceptable 
ranges. The method of constrained response surface 
optimisation (CRSO) is then applied for this study. Either 
linear or non linear programming methods will be fitted to 
measure the most suitable to the problems. Moreover, the 
boundary limitations of the process variables are also 
determined as model constraints. The details of sequential 
procedure for setting up the optimum value via a relationship 
of significant variables and responses are followed. 

1. Fit various multiple regression models associated with 
influential variables and its response of colour shade data 
at 15 degree measurement and formulate the most suit 
model as a problem objective. 

2. Fit various multiple regression models associated with 
influential variables and its response of colour shade data 
at 45 degree measurement and formulate the most suit 
model as a problem constraint to meet its specification.  

3. Complete the models above with the limitation of 
feasible ranges of the process variables of x and form a 
model as follow. 

Maximise 1ŷ  
   Subject to x and 2ŷ the requirement, where 1ŷ  
and 2ŷ  are estimated major and minor responses, 
respectively. 

4. Solving a model via a generalised reduced gradient 
method to find the optimum levels of process variables 



5. Possibly adjust the obtained levels of process variables to 
implement the process of PASP. 

  

 
Fig.5 Flowchart of the Steepest Ascent Method to Improve the 

Process Response towards the Optimum [8] 

IV. EXPERIMENTAL RESULTS AND ANALYSES 
 From previous discussion, the response of colour shade 
difference or mismatch categorised are measured 15 and 45 
degrees. The lower and upper specifications for both 
measurements are shown in Table 1. In the preliminary study, 
a two level experimental design was performed to determine 
the statistically significant from five process variables which 
consist of the pigment (A), levelling agent (B), additive 
solvent (C), percentage of paint solid (D) and paint flow rate 
of atomising spraying machine  (E). The feasible ranges and 
the current operating condition is provided in Table 2.  
 
Table 1 Process Responses and their Feasible Ranges  

Feasible Ranges Responses 
Lower Upper 

L15 -2.60 -0.30 
L45 -0.50 +2.50 

 
Table 2 Process Variables, their Feasible Ranges and Current 
Operating Conditions 

Feasible Ranges Factors 
Lower Upper Current 

A 6.14 6.40 6.40 
B 0.92 1.51 1.00 
C 0 3.2 1.50 
D 70.1 76.8 74.6 
E 180 250 250 

 
At this step of using a factorial experiment design the 

objective is to analyse both main effects of process variables 

and also its interaction effects. A 25 experimental design with 
single replicate provides 32 treatments. The two levels of low 
and high are selected cover values of feasible ranges from the 
actual operating conditions in production line. Responses were 
measured and categorised by the different measurements of 
colour data at 15 and 45 degrees.  

The primary goal of screening experimental designs is to 
investigate the critical few factors or process variables that 
influence the responses of colour data at 15 degree and 45 
degree measurement. There are two graphs of Normal and 
Pareto plots, to be used to identify these influential factors. 
From the normal probability plot the relative magnitude of the 
effects are compared and evaluated their statistical 
significance.  If design points do not fall near the line usually 
signal important effects, important effects are larger and 
further from the fitted line than less important effects. Less 
important effects seem to be smaller and centred around zero. 
In this preliminary study, it has been shown that with the 
normal probability plot using a significance level of 0.05, 
there is no significance effect on the response of colour data at 
15 degree or no colour shade mismatch (Fig. 6(a)). In contrast 
to this, the main factors of C and E affect the response of 
colour data at 45 degree (Fig. 6(b)).  
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Fig.6 Normal Probability Plot of Effects for Responses of 
Colour Shade at 15 (a) and 45 (b) Degrees 

 
The experiments were analysed using a general linear form 

of analysis of variance (ANOVA) including a source of 
variance and P-value as shown in Table 3. Numerical results 
with the terms in the model up through the third order reveal 
that significant variables (to L15) consist of A, C and E as the 
p-value is less than or equal to 0.10. The results remain the 
same on the response of L45, but the interaction effect of A 
and E is also statistically significant at 10% confidence 
interval.  



Table 3 ANOVA with all Main Effects and Estimable 2 and 3-
Way Interactions for the 25 Full Factorial Designs with Single 
Replicate  

Sources of 
Variation 

P-value for 
L15 

P-value for 
L45 

A 0.042 0.054 
B 0.596 0.840 
C 0.053 0.003 
D 0.989 0.198 
E 0.075 0.006 

A*B 0.289 0.501 
A*C 0.922 0.080 
A*D 0.760 0.828 
A*E 0.327 0.050 
B*C 0.771 0.521 
B*D 0.343 0.624 
B*E 0.138 0.147 
C*D 0.129 0.761 
C*E 0.456 0.689 
D*E 0.350 0.701 

 
In order to determine the appropriate setting of the decision 

variables, the main and interaction effect plots on the 
experimental results based on each improvement operation 
were illustrated in Figures 7 and 8. When compared to the 
previous operating condition, proper levels of the decision 
variables on L15 from main effect plots are 6.14, 0, and 250 
for A, C and E, respectively (Fig. 7). When focusing on L45, it 
has been shown that A, C, and E are set at 6.14, 0 and 250, 
respectively, from both main and interaction effects (Fig. 8). 
These results are summarised in Table 4. 
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Fig.8 Significant Main and Interaction Effect Plots for L45 

 
Table 4 Summarised Main and Interaction Effect of Influential 
Variables from Preliminary Experiment  

Influential Variables 
Responses Main Effects Interaction 

Effects 
L15 A, C, E None 
L45 A, C, E AC, AE 

The goal of the primary data analysis in Fig. 6 is to identify 
statistically significant variables and their interactions. 
Although some analytical results via normal probability plot 
of effect and analysis of variance are slightly different, the 
sequential procedures of the constrained response surface 
optimisation method (CRSO) consider all process variables 
affecting the responses following Table 5.  
 
Table 5 A Comparisons of Influential Variable Levels after the 
First Improvements 

Operating Conditions Parameters Decision Variables Current 1st Cycle 
A Pigment 6.40 6.10 
B levelling Agent 1.00 0.50 
C additive solvent 2.50 1.82 
D Percentage of Paint 

Solid 
74.6 74.6 

E Paint Flow Rate of 
Atomising Spraying 
Machine   

250 300 

L15 Colour Data at 15 
Degree of 
Measurement 

-0.40 -1.37 

L45 Colour Data at 45 
Degree of 
Measurement 

2.30 1.44 

 
The method of steepest ascent is then applied to determine 

to the most preferable fitted equation of associated process 
variables to the responses of L15 (Fig. 9) and L45 (Fig. 10).  
 
The regression equation is      
L15 = 30.7 - 5.84 A - 0.440 C + 0.0181 E      
      
Predictor Coef SE Coef T P-Value  
Constant 30.660 14.630 2.100 0.045  
A -5.837 2.313 -2.520 0.018  
C -0.440 0.188 -2.340 0.027  
E 0.018 0.009 2.100 0.045  
      
Analysis of Variance      
Source DF SS MS F P-Value
Regression 3 47.101 15.700 5.430 0.005
Residual Error 28 81.033 2.894 2.894
Total 31 128.134  

Fig.9 Regression Model on L15 including its significant 
coefficients and ANOVA Table 

 
The regression equation is      
L45 = - 9.54 + 2.02 A + 0.323 C - 0.0129 E      
      
Predictor Coef SE Coef T P-Value  
Constant -9.541 7.503 -1.27 0.214  
A 2.019 1.187 1.7 0.1  
C 0.32344 0.09641 3.35 0.002  
E -0.01288 0.00441 -2.92 0.007  
      
Analysis of Variance      
Source DF SS MS F P-Value
Regression 3 17.2728 5.7576 7.56 0.001
Residual Error 28 21.319 0.7614 0.7614
Total 31 38.5918  

Fig.10 Regression Model on L45 including its significant 
coefficients and ANOVA Table 

 
The equation of L15 (Fig.9) is used to form an objective 

function of the PASP. The latter, equation of L45 (Fig.10) is 
for a constraint of the process ranged within the product 
specification. The feasible region of influential process 
variables are for remaining constraints of the model. In a 



CRSO, the response models where 1ŷ  and 2ŷ    can be linear, 
quadratic or even cubic polynomials. A nonlinear 
programming algorithm has to be used for the optimisation of 
a generalised reduced gradient algorithm to guarantee global 
optimal solutions.  

The estimates of coefficients were significant from the table 
of testing individual regression of coefficients. The values of 
three components (A, C, E) of a PASP need to be selected to 
maximise a major response, Colour data at 15 (L15), subject 
to satisfactory levels of the minor response; namely, Colour 
data at 15 (L45) and the remaining of the limitations of 
feasible ranges of process variables (A, C, E). The fitted 
models of two fitted response equations are: 

1ŷ  = 30.7 - 5.84 A - 0.440 C + 0.0181 E                  

2ŷ   = - 9.54 + 2.02 A + 0.323 C - 0.0129 E 
, where  

1ŷ denotes the colour data at 15 degree of measurement 

2ŷ denotes the colour data at 45 degree of measurement. 
The contour of 1ŷ is also determined as a series of parallel 

lines. A path of steepest ascent is applied to move the design 
points or drive the response of 1ŷ towards the optimum most 
rapidly. This direction is parallel to the normal to the fitted 
response surface. Usually we take as the path of steepest 
ascent the line trough the centre of the region of interest and 
normal to the fitted surface. Thus the step along the path is 
proportional to the regression coefficients (β). The actual step 
size is determined by the experimenter base on process 
knowledge or other practical considerations. Conventional 
experimental runs are conducted along the path of steepest 
ascent until no further improvement in response is observed. A 
new first order model will be then fitted to determine the new 
path of steepest ascent and the procedure, as explained, will be 
continued. Eventually the experimenter will arrive in the 
vicinity of the optimum. This is usually indicated by lack of fit 
of a first-order model. However, many industrial systems are 
complex they need more tools to be implemented instead of 
only a consideration of conventional response surface methods 
as above. The mathematical programming model is then 
formulated to maximise the desired response value of colour 
data at 15 degree of measurement is followed. 

 
Maximise 1ŷ  = 30.7 - 5.84 A - 0.440 C + 0.0181 E 
Subject to  

-0.50 ≤ - 9.54 + 2.02 A + 0.323 C - 0.0129 E ≤ 2.50 
      6.1 ≤ A ≤ 10 
      0.30 ≤ C ≤ 4.0 

120 ≤ E ≤ 300 
 
The results of new levels of decision variables via those 

models are then adjusted with an application of Solver. The 
proper levels of 6.1, 1.82 and 300 are for A, C and E, 
respectively. After an implementation, it has been found that 
the results on L15 are in specification and seem to be better. 
L45 is within its specification.  

V. CONCLUSIONS AND RECOMMENDATIONS 
The process settings for all influential variables are shown 

in Table 5. The performance after 1 cycle of the improvement 
can be explained by the box plots in Fig. 11. These results 
show that the performance of the new settings under the basic 
linear regression element of CRSO method seems superior to 
the previous levels. The new levels of decision variables also 
bring the 70 % reduction on the paint repairs cost and improve 
first time quality from 70% to 88%.  

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

Fig. 11 Two Independent Box Plot Comparisons showing the 
Performance of the Mean Responses and the Standard 

Deviation of L15 and L45 Responses. 
 
As stated earlier, the experiments in this research was 

restricted to only one cycle. Consequently conclusions may 
not be optimal.  Other stochastic approaches could be 
extended to the method based on conventional factorial 
designs to compare its performance, especially in terms of 
speed of convergence, and when the error standard deviation 
is at higher levels. Other stochastic approaches could be 
extended to the method based on conventional factorial 
designs to compare its performance, especially in terms of 
speed of convergence, and when the error standard deviation 
is at higher levels. 
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