
  

  
Abstract— In many real world industrial situations, quality 

of a product is considered to be a composite of a family of 
properties or multiple responses, which can often be interacting 
or correlated with one another, and nearly always measured in 
a variety of units. Optimal combination of properties rarely 
results from individual optimal condition of each response, and 
there is always a trade off between these responses. 
Optimization of multiple responses is always a challenge for 
researchers and practitioners. In this research paper, 
comparative study of the performance of two optimization 
techniques, Nelder-Mead simplex (NM) and hybrid 
Nelder-Mead simplex with simulated annealing (SIMSA) is 
discussed.  The results indicate superiority of SIMSA as 
compared to NM in varied case situations. 
 

Index Terms— Multiple Response, Nelder-Mead simplex, 
Optimization, Quality, Simulated annealing  
 

I. INTRODUCTION 
  A common interest in process parameter design involves 
meeting specifications and also to determine optimal 
trade-off among several response characteristics having 
linear or nonlinear interaction(s). In case of any process 
parameter optimization problem, two types of variables need 
to be identified first, viz. the independent or input variables 
and the dependent or response variables (so called quality 
characteristics of the process). The desired values of the 
dependent variable(s) need to be controlled by the 
independent variables. Simultaneous optimization of   more 
than one response is generally referred to as multiple 
response optimization problem. Process modeling and 
thereby optimization using conventional or heuristics is 
generally recommended by researchers for such situations. In 
this context, few important modeling and optimization 
approaches, which is relevant for multiple response 
optimization problem are discussed in the following section. 
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A. Regression-based Modeling  
Multiple regression modeling [1]  is one of the important tool 
used for predicting single response variable by more than one 
independent input variable. In case of multiple responses, if 
the same set of input variable and same modelling degree and 
form is used for all responses, then we can have different 
multiple regression model for individual responses [2].   
 
In case of multivariate regression model [3] several 
dependents, y ’s, are measured corresponding to each set of 

x ’s. Each of 1y , 2y , . . . , ry  is to be predicted by all of 1x , 

2x , . . . , px . The underlying expression is 

∧
Y  = X

∧
B   + E                    (1) 

where, 
∧
B  is the regression coefficient matrix and E  is error 

matrix. 
∧
B  is also expressed as, 

∧
B  = YXXX /1/ )( −               (2) 
  
The assumption of multivariate regressions is that the 
non-diagonal terms of error correlation matrix should be 
zero. Regression (conventional or unconventional) is found 
to be an excellent tool for process modeling in industrial 
situations. Based on the underlying process models, various 
optimization approaches are recommended by researchers. 
The following section discusses some of these multiple 
response optimization approaches.  
 

B. Overlaid contour plot  
Overlaying contour plot is a common approach for handling 
multiple response optimization problem, when there is two 
independent input variables. Models of each individually 
response are determined and then graphically superimposed 
in a contour plot. From the superimposed graph it is easy to 
determine optimal solution(s). This was first illustrated by 
Lind, Goldin and Hickman [4] and later popularized by 
various other scholars. However, as mentioned earlier, this 
approach can only handle problems, where the number of 
input (independent) variables is limited to maximum two.  
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C. Desirability approach 
Desirability function approach is one of the most popularly 
approach used for multiple response optimization problems.  
By this technique, a multiple response problem is converted 
to a single objective optimization problem using 
mathematical transformations. Harington [5] first proposed 
desirability functions for multiple response optimization 
problem. Derringer and Suich [6] extended and proposed a 
generalized transformation scheme to convert individual 

desirability jd  from predicted 
∧

jY  response. For nominal 

the better type of quality characteristics, desirability function 
is expressed as, 

jd = 

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

≤≤
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

><

∧
∧

∧
∧

∧∧

max
max

max

min
min

min

maxmin

1

1

0

jjj

t

jj

jj

jjj

s

jj

jj

jjjj

YYif
Y

YY

YYif
Y
YY

YYorYYif

τ
τ

τ
τ

   (3) 

where jd  is the desirability function of the thj response, 
min
jY  and max

jY are respectively lower and upper bound of 
thj response, 1s and 1t are the exponential parameters that 

determine the desirability function and shape, and jτ  is the 

target value of thj response. The functions are on same scale 
and are first order derivative discontinuous at the points 

min
jY , max

jY  and  jτ  .  

Within desirability functions approach, there exist many 
options for dimension reduction of objective functions. One 
of such option is to maximize the minimum of all individual 
desirability. This is also expressed as degree of customer 
satisfaction by Kim and Lin [7]. The concept uses a 
‘minimum operator’ for aggregating the individual 
desirability [ ( )j sd ] to a single objective function and 

expressed as 

sλ = 1( ) 2( ) ( )minimum{ , ,...., }s s r sd d d ,          (4) 

for 10 ≤≤ sλ , and for r responses at any ths  process 

stage.        

D. Generalized distance approach 
Khuri and Conlon [8] developed a generalized distance 
based optimization approach for multiple response problem. 
The proposed approach assumes same set of input variables 
which adequately represents the same order of polynomial 
regression models for all y ’s. They developed a function 
that measures the distance of the vector of estimated 
responses from the estimated "ideal" optimum. The “ideal” 

optimal is said to be achieve, if all the individual optima is 
achieved over the experimental region. Suitable operating 
conditions for the simultaneous optimization of the 
responses are specified by minimizing the prescribed 
distance function over the experimental region. 

 

E. Fuzzy-based Approach  
Kim and Lin [7] proposes an maximin approach, which first 
specifies practically allowable ranges to each of the 
responses, and then maximize the minimum value of degree 
of satisfaction with respect to all responses. It can also be 
viewed as a fuzzy logic approach, and desirability function as 
a special case of membership function as considered in fuzzy 
set approach. The maximin approach is equivalent to 
intersection of the corresponding membership function using 
logical “and” operator. 
 

F. Dual response approach 
In this mathematical approach, the primary response is 
maximized or minimized subject to appropriate constraints 
for all other responses as secondary objective. Myers and 
Carter [9] propose dual response systems (DRS) in the 
context of two responses optimization problem. The 
objective was to find the optimal operating conditions, which 
consider one response as the primary objective or most 

important response 
∧

pY to optimize, subject to the constrained 

condition that others are secondary 
∧

sY  response with target 
value or bounds. 

II. OPTIMIZATION TECHNIQUES 
The desirability functions are discontinuous for their first 
order derivatives. Therefore, direct search algorithm can be 
used to determine the optimality condition of input 
parameters using a direct search Nelder-Mead simplex search 
(1965), which is discussed below. 

A. Nelder-Mead simplex method 
The Nelder-Mead [10] is a direct search method that attempts 
to minimize a non-linear unconstrained optimization and 
does not use the gradient information. This derivative free 
optimization technique can handle discontinuous or 
non-smooth functions. The Nelder-Mead method (NM) 
attempts to minimize nonlinear function of real variables 
using only function values, without any derivative 
information (explicit or implicit). The NM thus falls in the 
general class of direct search methods. 
The search proceeds through recursive updates of the 
locations of the simplex vertices. In each step, depending on 
the values of the objective function in the vertices, the 
simplex is updated through a series of four basic operations. 
The four basic operations are reflection, expansion, 
contraction and shrinkage. 



  

 

B. Hybrid Simulated Annealing with Nelder-Mead 
Simplex  

 
Simulated Annealing (SA) is a meta-heuristic that performs a 
randomized search to reach near-optimal or optimal solutions 
of combinatorial or  continuous optimization problems. In the 
early 1980s, Kirkpatrick et al. [11] introduced the concept of 
annealing behaviour in combinatorial optimization problem. 
The SIMSA approach [12], a hybrid metaheuristic method, 
which is used for continuous non-linear optimization, is 
based on the combination of the non-linear simplex method 
and simulated annealing algorithm. The non-linear simplex 
[10] is used to generate system configurations i. e. 
hyper-geometric figure by joining (N+1) point in the 
N-dimensional space. 
The major steps to construct and implement SIMPSA method 
are: 

a) Setting annealing control parameters 

b) Constructing initial simplex 
c) Running full metropolis cycle at current temperature 
d) Simplex iteration steps 
e) Stopping criteria 

 
The following section discusses and compares the 
performance of NM and SIMSA for varied multiple response 
problem situations. This is an attempt to understand which 
will be most relevant and suitable for a multiple response 
optimization cases.  
 

III. CASES 
A solution methodology, as proposed by Mukherjee [13] is 
selected for this study, in which an integrated approach of 
regression based process modeling (e.g. multiple or 
multivariate), desirability functions for dimension reduction 
(e.g maximin), and a suitable optimization approach (NM or 
SIMSA) is considered for multiple response problems 
reported in literatures. The performance of NM and SIMSA 
for different modeling approaches is discussed below.  
The symbols and notations as used for problem formulation 
are: 

s :  ths  stage of operation 

)(spX :  In-process input parameters at ths  stage of 

operation. 

)(sRX :  Input variables at ths  stage 

)1( +sRX :  Output responses at ths  stage, which is input 

variable for ths )1( +  stage of operation. 

)(sjd :  Individual desirability measure of  thj  response at 

ths  stage of operation. 

sq : Functional relationship to convert into overall 
desirability 

sλ :  Overall desirability at ths  stage using sq  function 
 
A typical single stage process is first shown in Fig 1.  

 

 

 

 

 

 
Fig 1 A Typical Single Stage Multiple Response Process 
 

Without loss of generality, the underlying mathematical 

problem can be formulated as, 

X
sMaximize λ                      (5) 

subject to  

sj Xd λ≥)(    ∀ j = 1, 2, .  .   . r      

where  r = number of response variables, 

iα  ≤ ix  ≤ iβ            i  = 1, 2, .  .  .  ., p   

and p  is the number of  input variables. 

X is a p  elements input variables vector, and iα , iβ  are 

lower bound and upper bound of input variable ix  

respectively. )(Xd j is the desirability of thj  response 

variable. 
 
For each case, specific process modeling approaches are 
taken as mentioned in the literature. The “maximin” 
desirability index approach was selected to reduce problem 
dimensionality, and NM and SIMPSA are used to determine 
near optimal solutions and then compared. The detailed 
information of the selected cases is provided in the Table 1. 
The selected responses and their domain (as given in 
literatures) are provided in Table-2. 
 

Table 1 Data Set Information 

Literature Source Data  type 
Khuri, A. and Conlon, M. 
(1981), Example1 [say 
KC1] 

Central composite design 
(CCD) with axial distance 

1.414 
**Kim and Lin (2000) [say 
KL] 

Manufacturing process data, 
not experimental data 

Mukherjee, I (2006) [say 
MI] 

Manufacturing process data, 
not experimental data 
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Table 2 Domain of Response Variables for Each Case 
 
Data Set Response 

variables 
Domain 

y1 0.37 ≤ y1 ≤ 2.67 
y2 0.33 ≤ y2 ≤ 0.66 
y3 1.11 ≤ y3 ≤ 1.88 

KC1 

y4 0.23 ≤ y4 ≤ 0.71 
y1 43.1 ≤ y1 ≤ 52      Target = 47.55 
y2 26.3 ≤ y2 ≤ 48.08 

KL 

y3 20  ≤ y3 ≤ 43.67 
y1 1.41421 ≤ y1 ≤  1.87083 

Target = 1.64252 
y2 0.00028 ≤ y2 ≤  0.00049  

Target = 0.00039 
y3 97 ≤ y3 ≤  97.02    Target = 97.01 
y4 0 ≤ y4 ≤ 0.01 

MI 

y5  0 ≤ y5 ≤ 0.01 
 

To compare the success rate of the individual optimization 
techniques, average value of the objective function and 
sample standard deviation are summarized in Table 3, based 
on 100 trial runs. Two sample t-test (Table 4) verifies 
whether SIMPSA solution quality is significantly different 
from NM. Figure 1 illustrates how SIMPSA searches the 
best solution point, using simplex movement, at different 
values of control temperature. Success rate is defined as 
number of times the techniques can provide objective 
function values other than zero’s.  
 
Table 3 Output Performance Comparison for SIMPSA and 
NM 
Data  Optimization 

algorithm 
Success  
Rate (%) 

Average 
value of 

Objective 
function 

Standard 
deviation 
Objective 
function 

SIMPSA 100 0.5659 0.0201 KC1 
NM 90 0.5708 0.0002 

SIMPSA 99 0.5571 0.0692 KL 
NM 83 0.5039 0.0697 

SIMPSA 90 0.8112 0.0622 MI 
NM 53 0.7739 0.0612 

 
 
It is a clear indication from Table-3 that the success rate of 
SIMPSA to determine near optimal solution is higher as 
compared to NM for every data set selected for the analysis. 
The standard deviation of objective function values by NM is 
almost always less than the SIMPSA in all the situations. 
These may be attributed for two possible reasons as given 
below,   
(a)  NM cannot escape from local optima and usually stuck 

to the same solution point. 

(b)  SIMPSA can escape from local optima, and thereby 
provides multiple near optimal solutions. 

 
Table-4: Statistical Test for Average Value of objective 
function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Statistical t-test in Table 4 reveals that for KL and MI case, 
p-value for difference in average value of composite 
desirability is significant. However, generalizing this claim in 
more complex problem needs to be verified.  
 
 
 
 
 

 
 
 
 
 

Fig 1:  Best Point Solution vs.  No. of Iteration in SIMSA 
 

IV. CONCLUSIONS 
 

The summary of the research findings are given below. 
 

1. SIMPSA clearly shows higher success rate to 
determine near optimal solutions as compared 
to NM. 

2. NM shows the same solution results for multiple 
independent trial runs. It seems that the 
algorithm is sensitive to local optimal points or 
cannot escape local optima.   

3.  SIMPSA is expected to provide significantly 
higher objective function value(s) for single 
stage optimization problems.  

 
The authors are presently working on the comparative 
performance of NM and SIMSA and other metaheuristics for 

Data  Two sample t test  
( SIMPSA - NM > 0) 

KC1  
p-value = 0.9894 

KL  
p-value = 3.3921e-007 

MI  
p-value = 3.2824e-004 



  

higher order multivariate nonlinear models with varied 
process constraints.  
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