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Abstract— In this paper we propose a new method,
called multiple particle swarm optimizers with di-
versive curiosity (MPSOα/DC), for improving the
search performance of the convenient multiple par-
ticle swarm optimizers. It has three outstanding fea-
tures: (1) Implementing plural particle swarms simul-
taneously to search; (2) Exploring the most suitable
solution in a small limited space by a localized random
search for correcting the solution found by each parti-
cle swarm; (3) Introducing diversive curiosity into the
whole particle swarms to comprehensively deal with
premature convergence and stagnation. To demon-
strate the effectiveness of the proposed method, com-
puter experiments on a suite of benchmark problems
are carried out. We investigate the characteristics of
the proposed method, and compare the search per-
formance with other methods such as EPSO, OPSO,
and RGA/E. The experimental results indicate that
the search performance of MPSOα/DC is superior to
EPSO, OPSO, and RGA/E for the given benchmark
problems.
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1 Introduction

As a new member of genetic and evolutionary computa-
tion (GEC) 1 , particle swarm optimization [9] has been
rapidly developed since the last decade. Because of in-
tuitive understandability, ease of implementation, and
the ability to solve various optimization problems, this
stochastic and population-based optimization method
has been widely applied in various fields of science and
technology [16, 17].

Many variants of the original particle swarm optimizer
(PSO) such as PSO with inertia [18], canonical PSO [4],
and fully informed particle swarm [10] were proposed for
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1GEC usually refers to genetic algorithms (GA), genetic pro-
gramming (GP), evolutionary programming (EP), and evolution
strategies (ES).

improving the convergence and search ability of PSO. The
principal objective of these methods was mainly put in
methodology, i.e. search strategy and information trans-
fer in the interior of a particle swarm.

Whereas, in recent years, many studies and investigations
on cooperative PSO in relation to symbiosis, group be-
havior, and sensational synergy are in the researcher’s
spotlight. Consequently, different forms of cooperative
PSO, for example, cooperative PSO (CPSO S), hybrid
PSO (CPSO H), and multi-population PSO (MCPSO)
were published [1, 7] with deepening on group searching
and search space resolution. In contrast to those meth-
ods that only operate a singular swarm, various attempts
to the multi-swarm approach mainly focus on the ratio-
nality of information transfer and exchange within the
plural particle swarms for significant enhancement of the
search performance of PSO [3, 8, 14].

Due to great requests to search performance and swarm
intelligence specially for social awareness and symbiosis in
the real-world, utilizing the techniques of group searching
and parallel processing in optimization has become one of
extremely important approaches. Accordingly, the tech-
nique of cooperative PSO is taking on an essential mis-
sion in dealing with various optimization problems and
actual applications as a current trend of the development
of particle swarm optimization research.

This is the motivation to deepen the study for promoting
new development of cooperative PSO research and the
enhancement of swarm intelligence. In order to certainly
realize the purpose, i.e. obtaining a practical cooperative
PSO model with superior search performance, in this pa-
per we propose a new method, called multiple particle
swarm optimizers with diversive curiosity (MPSOα/DC
2 ).

There are the following three strong points: (1) Decen-
tralization in multi-swarm exploration with hybrid search
(MPSOα) 3; (2) Concentration in evaluation and state

2The sign, α, denotes that a localized random search is intro-
duced into MPSO/DC, which explores the most suitable solution
in a small limited space surrounding the solution found by PSO.
When if the localized random search is not included or implemented
in the procedure, the algorithm is called as MPSO/DC.

3The hybrid search, here, is composed of PSO search and the
localized random search.



control with diversive curiosity (DC); (3) Their effective
combination. These features are expected to effectively
alleviate premature convergence and stagnation in opti-
mization, and to improve the search performance of the
convenient multiple particle swarm optimizers (i.e., coop-
erative PSO).

It is obvious that the essential search strategies and con-
struction of MPSOα/DC are quite different from the ex-
isting methods such as parallel particle swarm optimiza-
tion proposed by Chang et al. [3], which only implements
plural PSO simultaneously and hybrid genetic algorithm
and particle swarm optimization proposed by Juang [8],
which implements GA and PSO by the mixed operation
to a singular swarm. Accordingly, the integrated search
strategies and their effective combination are considered
as the originality of MPSOα/DC. The proposed method
is suitable to complex search environments and to efficient
solving of various optimization problems by comprehen-
sive management of the trade-off between exploitation
and exploration [5, 20].

The rest of the paper is organized as follows. Section 2 de-
scribes basic architectures including algorithms of PSO,
EPSO, LRS, and internal indicator. Section 3 introduces
an algorithm of MPSOα/DC and its characteristics. Sec-
tion 4 analyzes and discusses the results of computer
experiments applied to a suite of five-dimensional (5D)
benchmark problems. Finally Section 5 gives the conclu-
sions.

2 Basic Architecture

This section describes the mechanism of PSO, a localized
random search, and internal indicator, respectively.

2.1 Particle Swarm Optimizer

Let the search space be N -dimensional, Ω ∈ <N , the
number of particles in a swarm be P , the position of the
ith particle be ~x i = (xi

1, x
i
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N )T , and its velocity be
~v i = (vi
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N )T . In the beginning of PSO search,
the particle’s position and velocity are generated in ran-
dom, then they are updated by
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where c0 is an inertial coefficient, c1 is a coefficient for
individual confidence, c2 is a coefficient for swarm con-
fidence. ~r1, ~r2 ∈ <N are two random vectors in which
each element is uniformly distributed over [0, 1], and ⊗
is an element-by-element multiplication operator. ~p i

k(=
arg max

j=1,···,k
{g(~x i

j)}, where g(·) is the fitness value of the

ith particle at time-step k.) is the local best position of
the ith particle up to now, and ~qk(=arg max

i=1,2,···
{g(~p i

k)})
is the global best position among the whole swarm up

to now. In the original PSO, the values of parameter,
c0 = 1.0 and c1 = c2 = 2.0, are set [9].

2.2 Localized Random Search

As common sense in optimization, random search meth-
ods are the simplest ones of stochastic optimization, and
are effective in many problems [19]. For obtaining higher
search performance, in this paper we propose to use LRS
which explores the most suitable solution from a limited
space surrounding the solution found by PSO. The pro-
cedure of LRS is implemented as follows.

step 1: Let ~q s
k to be a solution found by the sth parti-

cle swarm at time-step k, and set ~q s
now = ~q s

k . Give
the terminating condition, J (the total number of
random data), and set j = 1.

step 2: Generate a random data, ~dj ∼N(0, σ2
N ) (where

σN is a small positive value given by user, which
determines the small limited space). Check whether
~q s
k + ~dj ∈ Ω is satisfied or not. If ~q s

k + ~dj 6∈ Ω then
adjust ~dj for moving ~q s

k+~dj to the nearest valid point
within Ω. Set ~qnew = ~q s

k + ~dj .
step 3: If g(~qnew)>g(~q s

now) then set ~q s
now =~qnew.

step 4: Set j = j + 1. If j ≤ J then go to step 2.
step 5: Set ~q s

k = ~q s
now to correct the solution found by

the sth particle swarm. Stop the search.

Because the search is localized to a small limited space,
the execution of LRS is expected to rapidly locate the
most suitable solution with heuristic.

2.3 Internal Indicator

Curiosity, as a general concept in psychology, is an emo-
tion related to natural inquisitive behavior for humans
and animals, and its importance and effect in motivat-
ing search cannot be ignored [6, 15]. For clarifying the
potential causes, Berlyne categorized it into two types:
diversive curiosity and specific curiosity [2]. In the mat-
ter of the mechanism of the former, Loewenstein insisted
that “diversive curiosity occupies a critical position at the
crossroad of cognition and motivation” in [11].

Based on the assumption of “cognition” is the act of ex-
ploitation, and “motivation” is the intention to explo-
ration, Zhang et al. proposed the following model of in-
ternal indicator to specification [24, 25].

yk(L, ε) = max
(
ε−
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l=1
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L
, 0

)
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where ~q b
k (=arg max

s=1,···,S
{g(~q s

k )}, where S is the total num-

ber of plural particle swarms) denotes the best solution
found by the whole particle swarms at time-step k. L is



duration of judgment (endurance), and ε is the positive
tolerance coefficient (sensitivity).

3 Proposed MPSOα/DC

Figure 1 illustrates the flowchart of the proposed method,
MPSOα/DC. The most difference to the existing method
PSO/DC [24, 25] in construction is that plural particle
swarms are implemented simultaneously to explore, and
LRS is used to correct the solution found by each par-
ticle swarm, respectively. Here, the hybrid search only
consists of both PSO and LRS (i.e. memetic algorithm
[13]). Consequently, the best solution, ~q b

k , found by the
multi-swarm is determined by maximum comparison, and
it is kept to judge the search condition, and to control the
behavior of multi-swarm search for a specified time-step.

Figure 1: Flowchart of the proposed MPSOα/DC

The mission of the internal indicator is to monitor
whether the status of the best solution ~q b

k continues to
change or not. While the value of the output yk is
zero, i.e. the value of cumulative criterion,

∑L
l=1 |g(~q b

k )−
g(~q b

k−l))|, is still bigger than the value of sensitivity ε, this
means that the multi-swarm is exploring the surround-

ings of the solution ~q b
k for “cognition”. If once the value

of the output yk become positive, this means that the
multi-swarm has lost interest, i.e. feeling boredom, in the
solution ~q b

k for “motivation”. Namely, the multi-swarm
identifies that the phenomena of premature convergence
or stagnation occur at present, and spontaneously sends a
control signal, dk = 1, to make each particle swarm active
by reinitialization for exploring other unknown solutions
in the search space, Ω, as a resort of escaping boredom.

In addition, the PSO models optimized by evolutionary
particle swarm optimization (EPSO) [22, 23] are used
in MPSOα/DC for ensuring higher search performance.
Therefore, EPSO is carried out as a preliminary step
for obtaining the optimized PSO models to the given
various optimization problems before the execution of
MPSOα/DC.

4 Computer Experiments

To facilitate comparison and analysis of the performance
of the proposed method, MPSOα/DC, we use the follow-
ing suite of multidimensional benchmark problems [26].
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For finding an optimal solution corresponding to each
benchmark problem, the following fitness function re-
garding the search space, Ω ∈ (−5.12, 5.12)N , is defined
by

gω(~x) =
1

fω(~x) + 1
, (3)

where the subscript, ω, stands for one of the followings:
Sp (Sphere), Gr (Griewank), Ra (Rastringin), and Ro
(Rosenbrock), respectively.

Table 1 gives the major parameters used in EPSO and
MPSOα/DC. In the beginning of MPSOα/DC search,
positions of all particles in the used multi-swarm are set
randomly, and their velocities are set to zero.

Table 2 indicates the resulting values of parameters in



Table 1: The major parameters used in EPSO and
MPSOα/DC

Parameters Value
the number of individuals, M 10
the number of generation, G 20
probability of BLX-2.0 crossover, pc 0.5
probability of random mutation, pm 0.5
the number of particles, P 10
the number of iterations, K 400
the maximum velocity, vmax 5.12
the number of particle swarms, S 3
the range of LRS, σ2

N 0.05
the number of LRS runs, J 10

PSO models corresponding to each 5D benchmark prob-
lem with 20 trials 4, which are selected by comparison of
search performance.

Table 2: The resulting values of parameters in PSO mod-
els for each 5D benchmark problem.

Parameters in PSO
Problem c0 c1 c2

Sphere 0.677±0.23 1.129±0.09 0.937±0.65
Griewank 0.510±0.26 2.086±0.42 1.025±0.61
Rastrigin 1.345±0.54 10.28±3.52 24.92±21.8

Rosenbrock 0.902±0.06 1.309±0.56 0.761±0.16

From Table 2, we observed that the average of the pa-
rameter values are quite different from that of the orig-
inal PSO, and the average of the parameter values, c0,
of the PSO models optimized by EPSO are less than 1
except for the Rastrigin problem. This suggests that the
active behavior of particles is convergence in exploring an
optimal solution corresponding to each given problem. In
contrast to this, the average of the parameter values in
PSO model, c0, drastically exceeds 1 that means that the
exploration needs to have more randomization without
restriction for the Rastrigin problem.

These experimental results emphasize the importance of
implementing EPSO in obtaining the optimized PSO
models without prior knowledge. These PSO models in
Table 2 as PSO∗ are adopted in MPSOα/DC for ensuring
the convergence and search accuracy.

For investigating the characteristics of MPSO∗α/DC, the
experiments were carried out by tuning the parameters, L
and ε, of the internal indicator. Figure 2 gives the result-
ing search performance of MPSO∗α/DC, which include
the average of fitness values and the average of reinitial-
ization frequencies for each given problem. From Figure

4Computing environment: Intel(R) Xeon(TM); CPU 3.40GHz;
Memory 2.00GB RAM; Computing tool: Mathematica 5.2; Com-
puting time: about 13 min.

Figure 2: Distribution of the obtained results with tuning
the parameter values in the indicator for each problem.
(b) Average of fitness values, (c) Average of reinitializa-
tion frequencies.

2, the following characteristics of MPSO∗α/DC are ob-
served.

• The averages of reinitialization frequencies seem to
monotonously increase with increment of the toler-
ance parameter, ε, and decrement of the duration
of judgment, L, for every problem. Whereas, the
changes of the average of fitness values are non-
monotounous.

• The average of fitness values does not change at all
with tuning the parameters, L and ε, for the Rastri-
gin problem.

• For obtaining the superior search performance of
MPSO∗α/DC, the recommended range of the pa-
rameters, L∗Sp ∈ (30 ∼ 90) and ε∗Sp ∈ (10−6 ∼
10−4) for the Sphere problem; L∗Gr ∈ (20 ∼ 50)
and ε∗Gr ∈ (10−5 ∼ 10−3) for the Griewank prob-
lem; L∗Ra ∈ (10 ∼ 90) and ε∗Ra ∈ (10−6 ∼ 10−2)



Table 3: The mean and standard deviation of fitness values in each method for each 5D benchmark problem with 20
trials (The values in bold signify the best result for each problem).

Problem MPSO∗α/DC EPSO OPSO RGA/E
Sphere 1.0000±0.000 1.0000±0.000 1.0000±0.000 0.9980±0.0016

Griewank 1.0000±0.000 0.9876±0.0104 0.9448±0.0439 0.7966±0.1175
Rastrigin 1.0000±0.000 1.0000±0.000 0.2652±0.1185 0.9616±0.0239

Rosenblock 0.9893±0.012 0.4694±0.2806 0.3926±0.1976 0.3723±0.1364

for the Rastrigin problem; L∗Ro ∈ (40 ∼ 80) and
ε∗Ro ∈ (10−4 ∼ 10−3) for the Rosenbrock problem
are available, respectively.

As to the Rastrigin problem, the resulting best fitness
value and the average of fitness values are mostly un-
changed with tuning the parameters, L and ε. This
phenomenon indicates that the PSO model optimized by
EPSO will be sufficient to handle the multimodal opti-
mization problem well.

On the other hand, due to stochastic factor in PSO search
and complexity of the given benchmark problems, some
irregular change of the experimental results can be dis-
covered in Figure 2 (Gr.a) and (Ro.a). Moreover, because
of the effect of the adopted hybrid search, the fundamen-
tal finding, “the zone of curiosity,” in psychology [6] is not
distinguished except for the Rosenbrock problem. The
top curve of “the average of fitness values” seems to be
a plane without the change of the parameters, L and ε.
This suggests that the proposed method, MPSO∗α/DC,
has a good adaptability.

We observed that the average of reinitialization frequen-
cies is over 300 at the case of the parameters, L=10 and
ε = 10−2, for the Rosenbrock problem in Figure 2 (Ro.b).
The average of fitness values is the lowest than that by
other cases. This means that the active exploring of the
whole particle swarms seems to have entered “the zone
of anxiety,” which is the reason leading the search per-
formance of MPSO∗α/DC to be lower. In the opposite
sense, this result also indicates that the effect of diversive
curiosity is conspicuous to relatively complex problems,
because the used method has powerful ability in search.

For further illuminating the effectiveness of the proposed
method, here we compare the search performance with
other methods such as EPSO, OPSO (optimized particle
swarm optimization) [12], and RGA/E (real-coded ge-
netic algorithm with elitism strategy) [21].

Table 3 gives the experimental results of implementing
these methods with 20 trials. It is well shown that the
search performance of MPSO∗α/DC is better than that
by EPSO, OPSO, and RGA/E by comparison with the
average of fitness values. The results sufficiently reflect
that the merging of both multiple hybrid search and the

mechanism of diversive curiosity takes the active role in
handling various optimization problems. In particular,
we observed that a big increase, i.e. the average of fitness
values grows from 0.4694 to 0.9893, in search performance
is achieved well for the Rosenbrock problem.

5 Conclusions

A new method of multiple particle swarm optimizers with
diversive curiosity, MPSOα/DC, has been proposed in
this paper. Owing to the essential concept of decen-
tralization in search and concentration in evaluation and
state judgment, the combination of the adopted hybrid
search and the execution of diversive curiosity, theoret-
ically, has good capability, which greatly improves the
search accuracy to the best solution and alleviates prema-
ture convergence and stagnation by comprehensive man-
agement of the trade-off between exploitation and explo-
ration in multiple particle swarms run.

Applications of MPSOα/DC to a suite of 5D benchmark
problems well demonstrated its effectiveness. The exper-
imental results verified that unifying the both character-
istics of multiple hybrid search and LRS is successful and
effective in convergence and adaptability. By comparing
the search performance of EPSO, OPSO, and RGA/E,
it is confirmed that the proposed method has an enor-
mous latent capability in handling different benchmark
problems.

The experimental results of MPSOα/DC are verifiable,
and basically accord with the fundamental finding, “the
zone of curiosity,” in psychology. Accordingly, the basis
of the development study of cooperative PSO research in
swarm intelligence is expanded and consolidated.

It is left for further study to apply MPSOα/DC to com-
plex problems in the real-world and dynamic environ-
ments, and to expect that the fruitful results can be ob-
tained in its applications.
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