

Abstract— Software Development is subject to a constant

process of change. In the meantime Web-services, distributed

applications or access to remote services are already the

standard. Side by side with these techniques their demands rise

significantly. Defined support for security issues, coordination

of transactions and reliable communications are expected.

Windows Communication Foundation (WCF) - as a part of the

present and succeeding .NET Framework - by Microsoft

Corporation supports these requirements in line with wide

range interoperability. WCF.NET provides the development of

distributed and interconnected software applications by a

service-oriented programming model.

This paper introduces a service-oriented communication

concept based on WCF specifically designed for industrial

applications within a production environment with a central

manufacturing information system (MIS) database. It gives an

overview about some important design aspects and base service

sets of WCF and also shows a factual implementation of the

presented service-oriented communication concept in the form

of an industrial software application used in plastics industry.

Index Terms—Service-oriented communication concept,

publisher-subscriber pattern, web services hosting, windows

communication foundation, ws-discovery.

I. INTRODUCTION

Improvement in efficiency by process mastering is on top

of the priority list of manufacturing companies these days.

Efficient processes hand in hand with less wastefulness result

in more profit. Process mastering enables erratic success

especially in productivity, cycle and through-put time as well

as quality of production processes. Effective processes

without dissipation oriented on a lean value stream, ensure

efficient creation of value. Thus the methodical increase of

efficiency in manufacturing plays a major role. An important

prerequisite for that is to have a clear view of the current

production state in real time virtually a production-mirror.

Supervisory control and data acquisition systems

(SCADA) and distributed control systems (DCS)

respectively take care of this requirement.

Manuscript received December 30, 2009. This work was supported in part

by the Automation Research & Development Department of MKW
®
 Austria.

Special thanks to the major project promoters Hans and Johannes Danner.

Markus Stopper, Member IAENG, IEEE & DAAAM International, was

with Department of Production Engineering, Vienna University of Technology,

Vienna, Austria. He is now with the Industrial Automation IT Research &

Development Department of MKW
®
 Slovakia, Prešov, Slovakia (e-mail:

markus.stopper@ieee.org).

Bernd Gastermann, Member of DAAAM International, was with University

of Applied Sciences FHSTG Burgenland, Information and Communication

Solutions, Eisenstadt, Austria. He is now with the Industrial Automation IT

Research & Development Department of MKW
®
 Austria, Weibern, Austria

(e-mail: bernd.gastermann@mkw.at).

 However, in the category of these systems proprietary

communication and application solutions can be found

frequently. In fact the communication within SCADA or

DCS systems is characterized nowadays more and more by

the support of miscellaneous TCP-based internet techniques.

Workplaces on which visualization and monitoring takes

place usually are connected via wired or wireless Ethernet

and TCP. The goal of interoperability standardization for

communication, however, is far away from being achieved.

Previous attempts like OPC are commonly restricted to

certain operating systems and protocols, although in the

meantime a step forward for operating system/protocol

independence is made with OPC UA for example.

For developing ambitious distributed industrial software

applications this means, that software development underlies

a constant process of change, which makes it seriously dif-

ficult to decide for a certain and consciously not proprietary

communication technology. Additionally the demands for

modern software techniques - like defined support for

security issues, coordination of transactions and reliable

communications - rise significantly.

Windows Communication Foundation (WCF) - as a part of

the present and next .NET Framework - by Microsoft

Corporation supports these requirements in line with wide

range interoperability. WCF provides the development of

distributed and interconnected software applications (with

communication interoperability via parameterization) by a

service-oriented architecture (SOA) programming model.

This paper introduces a service-oriented communication

concept based on WCF.NET specifically designed for

industrial applications within a production environment with

a central manufacturing information system (MIS) database.

It gives an overview of some important design aspects of

WCF (next 4 sections), presents the developed SOA-conform

communication concept (solution sections) and finally also

shows the implementation of the presented solution by

describing a corresponding industrial software application.

II. MESSAGE EXCHANGE PATTERNS

WCF offers various ways to exchange messages between

client and service. These operation types are often referred to

as Message Exchange Patterns (MEPs). In general, the type

of operation used to communicate with the service is part of

the service, a certain MEP may even place some constraints

on the allowed bindings as not every WCF binding actually

supports all available MEPs [1].

Throughout the next six paragraphs the various MEPs

supported by WCF are presented.

Service-oriented Communication Concept

based on WCF.NET for Industrial Applications

Markus Stopper and Bernd Gastermann

A. Request-Reply

Request-Reply is WCF‟s default operation mode. Using

this MEP, the client issues a call to the service in the form of

a message and blocks until it gets a reply. If the service does

not respond within the specified timeframe, the client will get

a „Timeout-Exception‟. Using request-reply operations is

very simple and resembles programming using the classic

client/server model [1].

B. One-Way

In case an operation has no return value and the client does

not care about success or failure of the call, WCF offers

one-way operations to support this kind of „fire-and-forget‟

invocation. Contrary to request-reply calls, one-way calls

usually block the client only for the briefest moment required

to dispatch the call. As only a request message but no reply

message is generated by WCF, values (as well as exceptions

thrown on the service side) can't be returned to the client [1].

C. Callback / Duplex

Using duplex communication (or callbacks) WCF allows a

service to call back to its clients and invoke a client method.

Callback operations are especially useful when it comes to

events and notifying the client that some event has happened

on the service side. However, in order to enable the service to

call back to the client, it has to know the client‟s endpoint.

Therefore, it is necessary for the client to call a service

method (see Fig. 1/step 1) first, which saves the callback

channel to the client‟s endpoint for later use (see Fig. 1/step

2). Through that channel it is possible for the service to send

messages to the client and invoke certain methods [1].

Fig. 1: Base schema of callback /duplex communication [3]

D. Streaming

When client and service exchange messages, they are

buffered on the receiving side and delivered only once the

entire message has been received. This means, that the client

is unblocked only if the request message and the service‟s

reply message have been sent and received in its entirety.

This works well for small messages.

However, when it comes to larger messages (e.g.

multimedia content) blocking until the entire message has

been received may be impractical. Therefore, WCF enables

the receiving side to start processing the receiving data while

the message is still being received. This type of operation is

called streaming transfer mode and improves throughput and

responsiveness with large payloads [1].

E. Asynchronous Calls

Using asynchronous calls the client will not block and

control returns immediately after the request has been issued.

The service then executes the operation in the background.

As soon as the operation completed execution the client is

provided with the results of the execution. Asynchronous

calls improve client responsiveness and availability [1].

F. Queued Calls

Queued messages use Microsoft Message Queue (MSMQ).

WCF encapsulates each SOAP message in an MSMQ

message and posts it to the designated queue. Thus, the client

does not communicate directly with a certain service but with

a message queue. As a result, all calls are inherently

asynchronous and disconnected. On the service side, queued

messages are detected by the queue‟s listener, which

sequentially takes messages from the queue and dispatches it

to a service instance [1]

III. HOSTING

In order to run and access a WCF service it needs to be

hosted in an appropriate environment. Such an environment

consists of a process in which the service itself is running.

The only requirement for the host is to support .NET

application domains. For this reason the following four

common hosting methods are to be considered: Managed

.NET applications, Windows Services, Internet Information

Services (IIS) and Windows Activation Services (WAS).

Hosting in any custom application type is possible as long as

it supports application domains. Each of these types can be

classified to one of two categories: Self-Hosted and Hosted.

A type of host, which the developer has to write on his own

is considered a self-hosted environment. As it has to be

written completely by the developer himself, these hosts do

not contain any manageability features by default. However,

this approach offers full control over the hosted service and

its life cycle.

Hosted environments – contrary to self-hosted

environments – are prefabricated hosts that do not need to be

developed and already contain several management features.

As these pre-existing hosts handle the service in their own

way the developer only has limited influence on the service‟s

life cycle while hosted in this type of host [2].

Each of these hosting environments has certain

advantages and disadvantages. Thus, they are not suitable for

every application area. In a service-oriented architecture the

right host is essential for service robustness. When choosing

a hosting environment, it is important to identify the type of

service and its availability demands. As the service

implementation in WCF is platform agnostic it can easily be

ported from one host to another.

Over the next sections each of WCF‟s standard hosting

environments is introduced.

A. Managed Applications

Managed .NET applications are categorized as self-hosted

environment as they have to be written by the developer. That

also includes graphical applications like Windows Forms

and WPF applications but also console applications. This

type of host is easy to develop with only a few lines of code,

effortless to install and poses almost no demands to the

system it is running on – except for the .NET Framework

itself. Unlike other hosting methods this type is ideal for

testing, debugging and demonstrating. It can also be used for

user interaction and service control, if necessary. As this is a

completely self-made host, it does not contain any features

for high availability, easy manageability, recoverability,

robustness, versioning and deployment scenarios like IIS

does for example. Therefore, it is the developer‟s

responsibility to write the code for starting and stopping the

service. This implies that the service needs to be activated

manually. The developer thus gains full control over the

service‟s life cycle. Managed applications usually run under

limited user accounts and have to be started and stopped

explicitly. A service hosted this way is only available when

the host is running. However, managed applications support

all kinds of transport protocols available for WCF [2].

B. Windows Services

A Windows Service is maintained by the operating

system's Service Control Manager (SCM). Although the

developer has to write the Windows Service which in turn

hosts the WCF service, this Windows Service itself is hosted

and maintained by the SCM. This allows the developer to

have full control over the life time of the WCF service as it

has to be explicitly opened and closed by the code. Windows

Services are easy to develop but do not provide any graphical

user interface. This type of host is ideal for long-running

services as they are continuously monitored by the SCM of

Windows. It offers limited support for features like auto-start

on system boot and recovery in case of an error. This makes

the service available as soon as the computer starts,

regardless of whether a user is logged in or not. Furthermore,

it allows each service to have its own account and security

permission. Windows Services are easy to maintain by

administrators as they often do already have knowledge

about how to configure them. Nonetheless, installation

software is necessary to install a service on the system [2].

C. Internet Information Services Hosting

WCF services can also be hosted using Microsoft‟s

Internet Information Services (IIS) version 5.1 or higher. As

IIS is primarily used as web server it only supports HTTP as

transport protocol for WCF services. However, IIS 7.0

already includes Windows Activation Services (WAS) which

enables support for all WCF protocols. IIS is categorized as a

hosted environment and therefore controls each WCF

service‟s instantiation. This can only be influenced by a

custom Factory written by the developer. The huge advantage

of IIS lies in its many management features like process

health monitoring, idle shutdown, process recycling,

resource throttling and logging. It offers the same

functionality for WCF services as for ASP.NET applications.

Since IIS is a complete, stable environment no additional

development effort is necessary. Everything is done solely by

configuration. In comparison to managed applications and

Windows Services, IIS uses automatic, message-based

activation. It is important to know that many of its features as

well as its activation mechanism can also cause unexpected

behaviour compared to other hosting methods [2].

D. Windows Activation Services Hosting

Windows Activation Services (WAS) features all

advantages of IIS. Although it is part of IIS 7.0, it can be

installed, configured and operated independently. WAS also

uses message-based activation for services but contrary to

IIS, WAS supports all available transport protocols of WCF,

including HTTP, TCP, MSMQ and Pipe. For that purpose it

installs listener adapters for each protocol. WAS is only

available on Windows Vista and Windows Server 2008 or

higher [2].

IV. PUBLISHER-SUBSCRIBER PATTERN

The publisher-subscriber pattern is a design pattern often

used in connection with WCF in order to enable event-based

notification of clients through the network. It allows a service

to notify its clients that something has happened on the

service side. Using the duplex, MEP is necessary for this

pattern to work. One-way operation calls are possible but

optional.

This design pattern‟s basic principle is that one or more

clients subscribe (see Fig. 2/step 1) at the service in order to

receive events. The service then saves each client‟s callback

channel to a list. When an event occurs, the service publishes

(see Fig. 2/step 3) it to all subscribed clients in its list.

However, in most cases the origin of an event often isn‟t the

service itself but another client or service. In this case, the

publishing service just acts as a distributor. The

event-publishing client tells the distributor that an event

occurred (see Fig. 2/step 2) and the distributor informs all

other clients. If a client is no longer interested in receiving

events it simply unsubscribes from the service, which then

deletes the callback channel from its list [3].

Fig. 2: Base schema of publisher-subscriber pattern [3]

V. WS-DISCOVERY

In order to access a service, it is necessary for the client to

know its address. One possibility would be to include all

relevant service addresses in the client‟s code or

configuration files. However, as this approach results in a

tight coupling between service and client, it is often either not

desired or simply not suitable for the client's application area.

Therefore, methods exist which allow the client to

dynamically locate the desired service and its address.

One of these methods is WS-Discovery. WS-Discovery is a

lightweight WS-* specification to find services in the

network. Although WCF implements many WS-*

specifications, WS-Discovery is not one of them. Version 3.x

of Microsoft‟s .NET Framework does not provide support for

WS-Discovery by default. However, .NET 4.0 will be the first

version to officially include this specification. Support for

earlier versions is only possible either through custom or

third party implementations [4].

WS-Discovery uses SOAP and “User Datagram Protocol”

(UDP) Multicasts to find services on the network.

WS-Discovery knows four scenarios where each of them has

its own message type [4]:

 Hello: As soon as a service is started, it sends a “hello”

message via UDP multicast into the network in order to

inform other participants about its availability.

 Bye: During shutdown, the service sends a “bye” message

using UDP multicast to the network in order to indicate

it will no longer be available. Both “Hello” and “Bye”

messages are used to reduce network traffic and to avoid

service polling by the clients.

 Probe: Clients interested in a specific service send a

“probe” message containing information about service

type or scope of the service they want to use. All services

that match with this information will send a

“ProbeMatch” message directly to the client.

 Resolve: In order to locate a service‟s endpoint and its

address the client sends a “resolve” message that

contains the service name. All services with this name

will answer using a “ResolveMatch” message.

It is important to know that UDP multicasts are by nature

restricted to the local subnet. However, in order to

circumvent this restriction the use of a discovery proxy is

possible [5].

VI. SYSTEM ARCHITECTURE

The project driven application-oriented intended purpose

for the development of this kind of a service-oriented

communication concept based on WCF.NET is, to allow

distributed real-time visualisation of production process data

written to a central manufacturing information system (MIS)

database - with the basic condition to develop the frame

model with an underlying reusable distributed system

concept utilizable for other industrial applications.

The services of the frame model transfer new inserted data

from the relational database over a local area network to the

client applications where they are being visualized. This

generic system is distributed across three tiers described in

the following enumeration:

 The database tier includes both tables and database

triggers. These tables contain all the data necessary for

visualisation. “Common Language Runtime” (CLR)

triggers are coupled with certain relevant tables. The

triggers' function is to send newly added data to the

services immediately.

 The service tier is characterized by “Windows

Communication Foundation” (WCF) services. They are

building the link between database and visualization

client. Data provided by the database triggers are always

forwarded to all subscribed clients as soon as the service

receives them.

 On the client tier all transferred data from the services are

finally being displayed by the visualization application

(client). However, it is also possible to run multiple

clients on the same and/or other computers at the same

time without affecting each other.

Fig. 3: Schema of the service-oriented communication concept

In this distributed visualization system the database is the

ultimate source of the data to be displayed. Whenever a SQL

statement (either INSERT or UPDATE) is sent to the SQL

server and a new table record is inserted or updated, the

trigger associated with the affected table is fired. These

triggers are developed using .NET technology and run within

SQL server‟s CLR. These triggers gather all recently added

data and send them to one of the services. Each database

trigger is associated with its own WCF service and sends data

solely to this service.

The service offers two endpoints, one for the trigger and

one for the client. Via its trigger endpoint it takes data

packets from the trigger and forwards them to all subscribed

clients. In order to allow client subscriptions for trigger

events from the database, it uses the publisher-subscriber

design pattern. To receive these events, a client has to

subscribe to the service through its client endpoint which

then saves the client‟s callback channel to a list. In case a

trigger is fired and data are received, it sends this packet

through each client callback channel in this list. This pattern

allows the service to notify many clients at the same time.

Additionally, the service implements WS-Discovery to

enable clients to discover it in case its address has changed or

is yet unknown to the client.

The client receives data packets from all services, stores

them in its internal memory and finally visualizes them on

the screen. Before the client is terminated it unsubscribes,

which causes the services to remove this client callback from

their lists so that no more events are delivered.

Through this mechanism, only newly added data can be

transferred as database triggers, in general, only fire on

INSERT and UPDATE statements. However, to allow

visualization of historic data another kind of mechanism has

to be used. Therefore, this system uses a simple

synchronization mechanism, where the services access

custom database views in order to query the necessary data

from the database. This synchronization is initialized by a

specific client call through the service‟s client endpoint. The

service then gathers all data and sends them back to the client

using the same callback technique also used for trigger

updates. Then, everything is ready to be displayed by the

client application.

VII. CLIENT COMMUNICATION INTERFACE

The client application is designed to communicate with

several WCF services at the same time. Each of these services

has its own service contract and therefore uses a different

message layout with different data types. Furthermore, the

client has to provide methods for each service to call in order

to allow notification of trigger events.

Fig. 4: Schema of client communication interface

Thus, the client uses multiple so called “WCF Connectors”

to communicate with all WCF services. Each connector

allows only communication with one specific service. This

means that six services would also require six connectors on

the client side. The intention for this concept was to make the

code more structured and readable as well as to avoid

ambiguousness between identical service methods like

subscription.

Each connector provides its service with a method that the

service can call via the callback channel in case an event

occurs. This connector method takes the data packet and

forwards it to the responsible object of the client‟s implemen-

tation where it is processed, saved and visualized.

VIII. INDUSTRIAL APPLICATION EXAMPLE

To demonstrate and prove the functionality of the

developed service-oriented communication concept based on

WCF.NET an industrial application was implemented. The

purpose of this application is, to show all important

benchmarking data of production to the shift supervisor

during the currently running shift. Data of the current shift

include real-time data transferred by the triggers mentioned

in a previous section. Additionally, the supervisor has the

option to display historical data from up to five prior shifts.

The software is able to show data out of the following

areas: orders, current production output, moulding presses,

robots and quality assurance. These areas are presented per

machine, shift and order. For example, the following picture

(Fig. 5) shows tabs used to select a machine and an order

running on that machine. The active (high-lighted) lights

indicate the current status of the machine or order. The

machine's status is always visible from everywhere in the

application.

Fig. 5: User interface for selecting machines and orders

On two displays both raw data and charts are shown. Raw

data represent information about an order running on a

machine of the currently selected shift. For instance, they

consist of simple or complex overview values and statistical

calculations done in real-time with every single incoming

trigger event. Among others, these values are the number of

cycles processed by press and robot, combined duration of all

alerts as well as standard deviation and midpoint

calculations. The following screenshot (Fig. 6) shows the

data calculated and summarized by all robot cycles of the

selected shift.

Fig. 6: Calculated and summarized robot data of the selected shift

On the contrary, charts do always show all cycles from the

currently selected shift plus its previous shift. Cycles of both

press and robot are displayed in the charts.

Additionally, defects registered at quality control are

plotted at the quality chart. The basic layout of moulding

press and robot charts is simple. On the X-axis date and time

of the cycle is indicated. On the Y-axis the duration of that

cycle is shown. Quality‟s chart layout is the same apart from

the Y-axis, where the category-ID of the registered defect is

applied instead.

Looking at the following picture (Fig. 7), the whole

process works as follows:

One of many moulding presses starts producing an item.

After the item production process is done, the moulding press

control system writes an entry to the press's table of the

central manufacturing information system database, which

in turn fires the trigger connected to that table.

The trigger collects the data just written to the table by the

moulding press control system and sends it to the service.

The service forwards that event to every client application

currently subscribed, where the cycle is displayed at the

appropriate chart and the moulding press‟s raw data are

updated based on the received event.

In the meantime, that product item is carried to the next

place of the production process: the robot station. The robot

takes each product and starts deburring, for example.

Fig. 7: Client data visualisation via one-to-many service events

After that process is done, the item is transferred to its

final destination: the quality assurance testing station. At the

same time, the robot control system writes this cycle‟s data

(like cycle length etc.) to the robot's table of the database.

Again, the according trigger is fired and the data are

transferred to the client. There, the robot‟s values and charts

are updated.

Finally, the product is checked for defects at the quality

assurance testing station. In case a defect is detected this will

also be recorded at the database. There are several defect

categories like “porous”, “filth” or “defect caused by robot”.

Each of these categories is related to a category-ID.

Instead of the cycle‟s length the ID-value is shown in the

chart when it comes to quality. As with each trigger event,

raw values of quality are also updated in real-time.

IX. CONCLUSION AND FURTHER RESEARCH

The described visualization and monitoring application

respectively the whole software system solution implements

the presented service-oriented communication concept based

on WCF.NET. It steadily delivers important information

about the current manufacturing processes in real-time. The

shift supervisor, who uses this software, can filter displayed

data by machine, order and shift. This gives him the

possibility to compare current production data with those of

previous shifts and days just to come to a conclusion how well

production went until now and how the machines behave

with different settings and optimizations. Thus, it also

becomes apparent how changes influence productivity across

the complete manufacturing process. All this information

also gives an indication of whether the order‟s deadline can

be reached or not. Status lights allow the shift supervisor to

check each machine‟s status (and thus its active orders) at a

glance. When comparing the data with other supervisors,

everyone is sure to talk about the same parameters.

The industrial application example demonstrates the

introduced communication concepts availability for practical

use. The presented structural design can easily be adapted to

serve similar conceptual formulations.

Due to strict layer architecture of WCF.NET various kinds

of transmission modes are supported. If necessary, a

comprehensive extension model enables the development of

own appropriate protocols.

Although the service-oriented communication concept

was designed and the system itself (regarding the projects

conceptual formulation) was finished respectively,

improvements are still possible. One of them proposed here

concerns the current implementation of WS-Discovery. As

WS-Discovery is not yet included in .NET version 3.5 a third

party library had to be used. However, it is recommended to

migrate to .NET 4.0 as soon as it is released as it already

implements WS-Discovery by default.

ACKNOWLEDGMENT

The authors are grateful to the Automation Team and the

Information Technology Team of MKW® Austria for

technical assistance as well as to Johannes and Hans Danner

for inspiring ideas and creative discussions.

REFERENCES

[1] Löwy, J., “Programming WCF Services”, ISBN: 978-0-596-52130-1,

2nd Edition, Published by O„Reilly Media Inc., Sebastopol, USA, 2008

[2] Peiris, C. & Mulder, D., “Pro WCF – Practical Microsoft SOA

Implementation”, ISBN: 978-1-59059-702-6, Published by Apress Inc.,

Berkley, USA, 2007

[3] Löwy, J., “What You Need To Know About One-Way Calls, Callbacks,

And Events”, 2006, Available from: http://msdn.microsoft.com/en-us/

magazine/cc163537.aspx

[4] Microsoft, “WS-Discovery Specification Compliance”, 2009, Available

from: http://msdn.microsoft.com/en-us/library/bb736562(VS.85).aspx

[5] WSDD, “Web Services Dynamic Discovery (WS-Discovery)”, 2005,

Available from: http://schemas.xmlsoap.org/ws/2005/04/discovery/

