
 
 

 

  
Abstract—Several researchers have referred to the 

capacitated production lot-sizing allocation problems as 
NP-Hard. Consequently, it is more difficult to solve the 
capacitated production allocation problem considering 
practical characteristics, such as allocation problems among 
bottleneck machines, photo masks, and products with different 
re-entrant layers. In this paper, we proposed a novel variation 
of the particle swarm optimization (PSO) model, which is a 
binary PSO model with adaptable inertia weight and mutation 
mechanism. It is converted to be able to solve the model of 
binary decision variables. Moreover, it improves some 
weaknesses, including a propensity for obstruction near the 
optimal solution regions that hardly improve solution quality by 
fine tuning. In order to compare effectiveness, the traditional 
PSO, genetic algorithm, and the proposed PSO in this study are 
compared by the practical production planning problem in the 
TFT Array process. Based on the results of the experiments, it 
can be concluded that the proposed PSO is more effective than 
the other approaches in terms of superiority of solution and 
required CPU time. 
 

Index Terms—TFT Array; production planning; allocation; 
particle swarm.  
 

I. INTRODUCTION 
The capacitated lot sizing problem (CLSP) is to planning 

the lot sizes of multiple items over a planning horizon with 
the objective to minimize setup and inventory holding costs 
[1]. Berretta & Rodrigues [2] presented heuristic methods 
based on evolutionary algorithms in order to address the 
complex multi-stage CLSP (MSCLSP), including setup costs 
and setup times. In the work of Ozdamar & Bozyel [1], the 
CLSP is extended to include capacity consuming setups and 
overtime decisions. The objective function consists of 
minimizing inventory holding and overtime costs. The 
different approaches including the hierarchical production 
planning (HPP) approach, the iterative relaxation approach, 
the genetic algorithm (GA), and a simulated annealing (SA) 
approach, are proposed to compare among them. Song & 
Chan [3] proposed a dynamic programming algorithm to 
solve a single-stage CLSP (SSCLSP) with backlogging. The 
objective is to minimize the total cost of setup, stockholding, 
and backlogging to satisfy demands. Al-Fawzan [4] 
considered the problem of determining lot size and 
production sequence when production rate, setup cost, and 
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unit processing cost are sequence-dependent. Using a 
standard CLSP model with backorder, a tabu search 
algorithm is proposed. 

The capacitated lot sizing and loading problem (CLSLP) 
deals with the issue of determining the lot sizes of product 
families/end items, and loading them on parallel facilities to 
satisfy dynamic demand over a given planning horizon. 
Ozdamar & Birbil [5] dealt with the CLSLP that is a synthesis 
of three problems, namely, the CLSP with overtime decisions 
and setup times, minimizing total tardiness on unrelated 
parallel processors, and the class scheduling problem, each of 
which is NP in the feasibility and optimality problems. In 
addition, hybrid heuristics involving SA, tabu search (TS), 
and GA are developed to solve the CLSLP. In relation to this, 
Sambasivan & Yahya [6] developed a Lagrangian-based 
approach to solve a multi-plant, multi-item, multi-period 
CLSLP. A real problem in a company manufacturing steel 
rolled products is provided. 

The capacitated plant location problem (CPLP) is for 
finding the subset of plants that will minimize the total fixed 
and transportation costs such that the demand of all 
customers can be satisfied [7]. In the CPLP, there are a set of 
potential locations for plants with fixed costs and capacities, 
and a set of customers, with demands for goods supplied 
from these plants. First, a choice is made of the subset of the 
plants to be opened, and second, the assignment of the 
customers to these plants is made. When each customer must 
be served only from a single plant, the problem is called 
CPLP with single source constraints (CPLPSS). When the 
capacities are unrestricted, the problem is known as the 
simple or uncapacitated plant location problem (SPLP). 

Capacitated production lot-sizing allocation problems 
pose challenges due to its combinational nature [6]. When 
capacity constraints and setup costs are considered, this 
problem is NP-Hard. Bitran & Yanasse [8] showed that 
several cases of a single item can be solved with a 
polynomial-time algorithm, and that the problem turns to be 
NP-Hard when a second item with an independent setup is 
introduced. When we consider non-zero setup times, the 
feasibility decision problem becomes NP-Complete. 

Due to the computational complexity of solving the 
capacitated lot-sizing allocation problem in an exact way, 
researchers have chosen to use heuristics. These heuristic 
methods on production planning issues include the GA [1][9] 
[10][11], TS [4][12], SA [1], and ant colony optimization 
(ACO). 

The PSO approach is an evolutionary computation 
technique developed by Kennedy & Eberhart [13]. It is a 
stochastic global optimization method which is based on the 
simulation of social behavior. Similar to the GA, the PSO 
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approach exploits a population of potential solutions to 
explore the search space.  

Compared with the GA method, there are no operators 
involved in the PSO; instead, natural evolution is applied to 
extract a new generation of candidate solutions. In contrast 
with the mutation mechanism, PSO rests on the exchange of 
information between individuals (named particles), and of 
the population (named swarm). Each particle adjusts its 
flying trajectory according to its own previous best position 
and the best previous position obtained by all members of its 
neighborhood. Furthermore in PSO, the whole swarm is 
considered as the neighborhood. Thus, there occurs global 
sharing of information and particles profit from the 
discoveries and previous experience of all other members 
during the searching process.  

Initially, assuming that the search space is D-dimensional, 
the i-th particle of the swarm is represented by a 
D-dimensional vector Xi = (xi1, xi2, …, xiD) and the position 
change (velocity) of the i-th particle is Vi = (vi1, vi2, …, viD). 
The best particle of the swarm, that is, the particle with the 
best objective function value, is denoted by gBest. The best 
previous position of the i-th particle in its own searching 
trajectory is recorded and represented as pBest. 

The velocities and positions of the particles are 
manipulated according to the following equations (the 
superscript k denotes the iteration): 
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where i = 1, 2, …, N, and N is the size of the population; w 

is the inertia weight which was developed to better control 
exploration and exploitation; c1 and c2 are two positive 
constants, called the cognitive and social parameters 
respectively; and ri1 and ri2 are random numbers uniformly 
distributed within the range [0, 1]. Eq.(1) is used to determine 
the i-th particle's new velocity, at each iteration, while Eq.(2) 
provides the new position of the i-th particle, adding its new 
velocity to its current position. The performance of each 
particle is measured according to a given fitness function, 
which is problem dependent. In the optimization problems in 
general, the fitness function is the objective function under 
consideration. 

The role of w is considered important for the PSO's 
convergence behavior. It is employed to control the impact of 
the previous history of velocities on the current velocity. 
Therefore, the parameter w regulates the trade-off between 
the global (wide-ranging) and the local (nearby) exploration 
abilities of the whole swarm. Usually, a larger inertia weight 
facilitates exploration for searching new regions; while a 
small one tends to facilitate exploitation; that is, it fine-tunes 
the current search space. An appropriate value for the inertia 
weight w thereby provides the balance between the global 
and local exploration ability of the swarm, resulting in better 
quality of solutions. Experimental results show that it is 

preferable to initially set the inertia to a large value in order to 
induce global exploration of the search space, and then 
gradually decrease it to obtain refined solutions. 

Therefore, it is even more difficult to solve the capacitated 
production allocation problem considering practical 
characteristics. In this paper, we involve the production 
planning problem in the TFT (thin film transistor) Array 
process. First, the TFT Array process is a re-entrant flow in 
which a similar sequence of processing step is repeated for 
five times. Further, the photolithography stage, the 
bottleneck in the TFT Array process, requires a second 
resource in addition to machines. Photo masks and scanners 
are both indispensable while executing exposure operation in 
the photolithography stage. Every product with a different 
re-entrant layer requires a unique mask, and consequently, 
each has a set of mask with five different pieces. Moreover, 
there is a tool eligibility issue between the masks and 
scanners. Masks are approved to be used in specific scanners 
for quality considerations. The TFT Array process is 
characterized as reentry and mask constraints, so it is 
regarded as a complicated scheduling problem and is more 
difficult to solve than the classical ones. 

 

II. A PRODUCTION PLANNING PROBLEM 
We formulate the programming model for the production 

planning problem in this paper. The symbols are defined as 
follows. 

Indexes: 
t = period index (day), t=1,2,…,T. 
p = product index, p=1,2,..,P. 
s = re-entrant layer index, s=1,2,…,S. 
c = bottleneck machine index, c=1,2,…,C. 
 
Parameters: 
ft = the fixed charge incurred whenever a product is 

produced in period t. 
scp = the setup cost for product p. 
hpt = unit cost of inventory for product p in period t. 
yd = the yield rate in the TFT Array process. 
unitp= the converted production unit for product p, 

transferring from a “lot” to large glass substrates (sheets). 
That is, the release production unit in the TFT Array process 
is a “cassette (or lot)” including about 20 glass substrates. 
Then, unitp equals 20 for a certain product p. 

dpt = the processing quantity demanded for product p in 
period t.  

vpt = the capacity consumed for making a unit of product p 
in period t. 

stpt = the setup time for product p in period t.  
bt = available capacity for production in period t. 
muc = the utilization rate for bottleneck machine c. 
PTps = the processing time for the s-th re-entrant layer of 

product p. 
epsc = the matching constraints for re-entrant layers, 

products, and machines. If the s-th re-entrant layer of product 
p can be processed in machine c, epsc=1; and otherwise, 
epsc=0.  

TDps = the processing quantity demanded for the s-th 
re-entrant layer of product p.  



 
 

 

α = the penalty cost due to setup times, which is 
equivalent to the total machines allocated. 

β= the penalty cost due to the discrepancy between the 
processing quantity demanded and the allocated production 
amounts. 

 
Decision variables: 
Xpt = production amounts of product p in period t. 
Ipt = amounts of end of period inventory for product p in 

period t. 
Ypt = binary variable, Ypt=1, if product p is produced in 

period t ; Ypt=0, otherwise.  
Spt = binary variable, Spt=1, if a setup is performed for 

product p in period t ; Spt=0, otherwise. 
Apsc = the total production amounts in machine c for the 

s-th re-entrant layer of product p.  
Zpsc = binary variables, Zpsc=1, if the s-th re-entrant layer of 

product p is processed in machine c ; Zpsc=0, otherwise. 
Lc = capacity loading in machine c. Here 
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AQps = the total allocated production amounts for the s-th 
re-entrant layer of product p. That is,   
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VQps = the discrepancy between the processing quantity 
demanded and the allocated production amounts for the s-th 
re-entrant layer of product p. Here,  

spAQTDVQ pspsps ,,∀−= . 

After the declarations of indexes, parameters, and decision 
variables, the programming constraints for production 
planning in the TFT Array process are described as follows: 

In constraint (3) is shown the balance equations for the 
inventory of products.  

ptppttppt dunitydXII −××+= −1,  (3) 
 
Constraint (4) is the available capacity constraint for the 

production in every period t. Both setup time and process 
time consume the capacity. 

( ) tbSstXv t
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In constraint (5) is shown whether the plant makes product 

p in period t. The symbol, M, is defined as a big enough 
number larger than the maximum quantities of releasing the 
production in period t for product p. 

tpYMX ptpt ,∀×≤ , 

and M is a big enough number. 
(5) 
  

 
In constraint (6) is shown whether the plant has a setup for 

product p in period t. 
tpYYS tpptpt ,1, ∀−≥ −  (6) 

 
In constraint (7) the matching constraints for re-entrant 

layers, products, and machines are shown. 
cspeZ pscpsc ,,∀≤  (7) 

 

In constraint (8) is shown whether the re-entrant layer s for 
product p is processed in the bottleneck machine c. 

cspZMA pscpsc ,,∀×≤ , 

and M is a big enough number. 
(8) 
  

 
Constraint (9) is the capacity constraints for machine c. 

(assume: 24 working hours per day) 
cmuSPL cc ∀××≤ 24 , 

where ( )∑∑ ×=
p s

pspscc PTAL  

(9) 
  

 
In constraint (10) is shown the total allocated production 

amounts for the s-th re-entrant layer of product p, which 
equals the summation of the production amounts for the s-th 
re-entrant layer of product p in every machine c. 
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In constraint (11) is shown the discrepancy between the 

processing quantity demanded and the allocated production 
amounts for the s-th re-entrant layer of product p. Here, SP is 
defined as the planning horizon for pre-allocating the 
matching problems of the re-entrant layers, products, and 
machines. Moreover, we assume that every re-entrant layer 
of product p has the same processing quantity demanded. 

spAQTDVQ pspsps ,∀−= , 

where ∑
∈

=
SPt

ptps XTD  

(11)
  

 
Constraint (12)-(16) are the basic restrictions on the 

decision variables. 
tpIX ptpt ,0, ∀≥  (12)

cspApsc ,,0 ∀≥
 (13)

spVQAQ psps ,0, ∀≥
 (14)

{ } cspZ psc ,,1,0 ∀∈
 (15)

{ } tpSY ptpt ,1,0, ∀∈  (16)
 
The objective function [Eq.(17)] is for minimizing the total 

costs including inventory holding costs, setup costs, fixed 
charge production costs, the penalty cost due to changeover 
times among machines for the re-entrant layers of products, 
and the penalty cost due to the discrepancy between the 
processing quantity demanded and the allocated production 
amounts. 
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III. A VARIANT OF PSO 
The PSO algorithm has been successfully applied to many 

kinds of optimization problems. However, though the 
approach has shown some important advantages by 
providing high-speed convergence in specific problems, 
studies are shown that the algorithm has a propensity for 
obstruction near the optimal solution regions and find it 
difficult to improve solution quality by fine tuning. In 
addition, the original updating process of positions and 
velocities must be modified when engaging in the binary 
decision variables. Consequently, this paper proposes a new 
variation of the PSO model. It is a binary PSO with the 
adaptable inertia weight and mutation mechanism. 
Meanwhile, we have kept the inherent property of the PSO, 
that is, the advantage of fast convergence. 

With the introduction of the concept of inertia weight, the 
aim is to balance and adjust the global search and local search. 
Furthermore, better performance would be obtained if the 
inertia weight were chosen a time varying, linearly 
decreasing quantity, rather than being a constant value. 
Consequently, a higher inertia weight implies larger 
incremental changes in velocity per iteration, and thus the 
exploration of new search areas for better solution. However, 
a smaller inertia weight signifies less variation in velocity, 
providing slower change in terms of fine tuning a local search. 
Therefore, it would be better that the searching process 
should start with a high inertia weight for global exploration, 
with the inertia weight linearly decreasing to facilitate finer 
local explorations in later iterations. 

A novel nonlinear function which regulates the inertia 
weight with variation in time is proposed in this study. This 
PSO version with adaptable inertia weight, as well as the 
mutation mechanism, improves the efficiency of 
performance once applied to problems with binary variables. 
The proposed inertia weight w is given as follows: 
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where wmax is set as the maximum of inertia weight; wmin is 

set as the minimum of inertia weight; iter is the iteration 
number at the current time step; itermax is the maximum 
number of iterations in a given run; and α is the nonlinear 
adaptable coefficient during the iterations.  

With α=1, the changes become a special case of linearly 
regulative inertia weight with time, as proposed by Shi and 
Eberhart [14]. The searching process starts with a larger 
inertia weight (wmax), which facilitates aggressive exploration 
of new solution areas; this then gradually decreases 
according to Eq.(18). It will result in the different decreasing 
path for different values of α to reach wmin at the final 
iteration (itermax). After repetitive experiments, our model 
with α=1.5 has a higher value of w during the early iterations, 
which is more aggressive than Shi and Eberharts’ linear 
model (α=1). Also, in our model during the later iterations, w 
decreased more rapidly than the linear case, which is 
beneficial in accelerating the speed of convergence. However, 
if α is very large, then it may jump over the optimal areas 
during early iterations due to too large searching steps, and 

diverge or oscillate excessively during later iterations due to 
the rapid decrease in the value of w. 

Concerning the release production planning model in the 
TFT Array process as illustrated in Section 2, it is mainly to 
determine both binary decision variables, Ypt (whether 
product p is produced in period t.) and Zpsc (whether the s-th 
re-entrant layer of product p is processed in machine c). 
Therefore, this paper solves the problem by way of the binary 
PSO with the adaptable inertia weight and mutation 
mechanism, as well as techniques of constraints handling. Its 
steps are stated as follows: 

 
(1). Initialization 

The binary version of the PSO algorithm is employed in 
this study, so an initial population of particles is randomly 
constructed in that each particle’s position is either 0 or 1. 
Next, we set the maximum and minimum velocities of 
particles, which is limited to the boundary, V=[Vmin, 
Vmax]=[-4,4], and the initial velocity is generated by the 
following: 

V=Vmin + rand*(Vmax－Vmin), 
where rand means the random number. 

(19)

 
The fitness value is evaluated by both the objective and 

penalty functions due to violation of the constraints of the 
programming model.  

 
(2). Updating position and velocity 

During the repetitive iterations, the velocity of each 
particle is updated by Eq.(20), where c1 and c2 are social and 
cognitive parameters; rand1 and rand2 are random numbers 
between (0,1); pBest is the current best position of each 
particle in its own searching trajectory and gBest is the best 
value of the whole swarm. 
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Here, the inertia weight is nonlinearly regulated during 

iterations according to Eq.(21).  
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If the particle’s velocity exceeds the maximum, Vmax, it has 

to be replaced by Vmax. Similarly, if the particle’s velocity is 
smaller than the minimum, it also has to be replaced by Vmin. 
Additionally, the sigmoid function [Eq.(22)] is used to scale 
the velocities between 0 and 1 because the sigmoid function 
value advances to 1 when ε approaches the positive infinity 
and to 0 when ε approaches the negative infinity. 
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Finally, each particle’s position is updated according to 

Eq.(23). 
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(3). Updating particle best (pBset) 

The pBest is the best position of each particle in its own 
searching process. During the iterations, the particle’s fitness 
evaluation is compared with pBest. If the current value is 
better than pBest, then set pBest value equal to the current 
value. 

 
(4). Updating global best (gBest) 

Compare fitness evaluation with the population’s overall 
previous best, gBest. If the current value is better than gBest, 
then update the current particle’s value to gBest. 

 
(5). Mutation mechanism 

With the later iterations, the mutation mechanism is 
involved in the proposed PSO approach in order to avoid 
falling into the local optimal area. In this study, the mutation 
rate is set to 0.03. 

 
(6). Stopping criterion 

If the number of iteration exceeds the maximum number of 
iterations, then stop. 

 
The GA, which is similar to the PSO, is also an 

evolutionary population-based search method that provides 
optimal or near-optimal solutions for combinatorial 
optimization problems. In the literature, it has been 
successfully applied to a number of research fields. The main 
factors in developing a GA are chromosome representation, 
population initialization, evaluation measure, crossover, 
mutation, and selection strategy. The comparison between 
PSO and GA had been discussed in a previous investigation 
[15]. In our study, relative comparisons are illustrated in the 
following section 4. 

 

IV. AN ILLUSTRATED EXAMPLE 
We employed the proposed PSO approach to solve this 

problem. The unit cost of inventory for 19-inch XG01 and 
19-inch XG02 products for every period are $0.003 and 
$0.004, respectively. The setup costs for these two products 
are $0.02 and $0.03, respectively. The fixed charge for the 
array plant is $1 every time. The capacity constraint of the 
array plant is 30 lots per day.  

Generally speaking, every product in the TFT Array 
process needs re-entrant manufacturing processes five times, 
including the gate layer, an a-silicon layer, the source/drain 
layer, the back channel passivation layer, and the indium tin 
oxide layer. Photo masks and scanners are both indispensable 
in executing exposure operation during the photolithography 
stage. Nevertheless, a problem surfaced with the amount 
restriction in that even with adequate scanners, with 
insufficient or appropriate photo masks, the process cannot 
work. This is the reason why scanners and photo masks 
closely depend on each other. 

 

Table.1 The available processing machines (M) for products with different 
re-entrant layers. 

Product: 19 in. XG01 19 in. XG02 
Layer 1: Gate M1, M2 M1 
Layer 2: a-Silicon M1 M2, M3 
Layer 3: Source Drain M1, M3 M2 
Layer 4: Back Channel Passivation M3 M2, M3 
Layer 5: Indium Tin Oxide M2, M3 M1 

 
Table.1 shows the available processing machines for 

products with different re-entrant layers. For example, the 
first layer (gate layer) of the 19-inch XG01 product can be 
processed on the bottleneck machines M1 and M2. In 
contrast, the second layer (a-Silicon layer) of the 19-inch 
XG01 product can only be manufactured on machine M1. 
Meanwhile, the process time for making one unit of the 
product in different re-entrant layers is tabulated in Table.2. 

 
Table.2 The process time for making one unit of product in different 

re-entrant layers (unit: minute) 
 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Process time 0.50 0.65 0.85 0.9 0.55 

 
The minimum total cost solved by the branch and bound 

approach is 29.144; TABLE.3 displays the allocation results. 
 

Table.3 The allocation result: machines (M) vs. products for different 
re-entrant layers 
Product: 19 in. XG01 19 in. XG02 

Layer 1: Gate M1 M1 
Layer 2: a-Silicon M1 M3 
Layer 3: Source Drain M3 M2 
Layer 4: Back Channel Passivation M3 M2 
Layer 5: Indium Tin Oxide M2 M1 
 
Several researches have referred to the capacitated 

production lot-sizing allocation problems as NP-Hard. 
Clearly, with its practical characteristics and constraints in 
the TFT Array process, the capacitated production allocation 
is more difficult to solve. If these kinds of problems, when 
solved by optimization techniques, like the branch and bound 
approach, cost very efforts and time to acquire the optimal 
results. For this reason, we employed the proposed PSO to 
solve it and obtained the optimal total cost of 29.566. We 
likewise used the GA to solve the same problem; this resulted 
in the optimal total cost of 30.164.  

Based on the results of experiments, it is apparent that the 
proposed PSO is faster for convergence during the early 
iterations. Also done is a comparison between branch and 
bound (BB), the traditional PSO, GA, and the proposed PSO 
in terms of superiority of solution and percentage of 
discrepancy as opposed to the optimal value, as tabulated in 
TABLE.4. In addition, the CPU time required for the proposed 
PSO is only 36.69% of the GA’s solving time. Hence, it can 
be concluded that the proposed PSO is more effective than 
the other approaches from the perspective of the best 
solutions and the CPU time required. 

 
Table.4 The comparison of the three approaches  

 The optimal value f *

(Branch and Bound)
The traditional 

PSO GA The proposed 
PSO 

The best solution 29.144 30.697 30.164 29.566 
Discrepancy (%)  5.06% 3.38% 1.42% 



 
 

 

V. CONCLUSION 
Numerous researchers have referred to the capacitated 

production lot-sizing allocation problems as NP-Hard. 
Therefore, it is more difficult to solve the capacitated 
production allocation problem considering some practical 
characteristics, such as allocation problems among 
bottleneck machines, photo masks, and products with 
different re-entrant layers. This study proposed a novel 
variation of the PSO model, which is a binary PSO model 
with adaptable inertia weight and mutation mechanism. It can 
be converted to be able to solve the model of binary decision 
variables. Moreover, it improves some weaknesses as 
opposed to the original version of the PSO, including a 
propensity for obstruction near the optimal solution regions 
that hardly improve solution quality by fine tuning. 
Comparing effectiveness, the traditional PSO, genetic 
algorithm, and the proposed PSO in this paper are compared 
by the production planning problem in the TFT Array process. 
According to the results, it can be concluded that the 
proposed PSO is more effective than the other approaches in 
terms of superiority of solution and required CPU time.  
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