
 
 

 

  
Abstract— This article proposes a particle swarm 

optimization (PSO) technique to address open-shop 
scheduling problems with multiple objectives.  Because PSO 
was originally formulated to treat continuous optimization 
problems, we modified the particle position representation, 
particle velocity, and particle movement to consider the 
essentially discrete nature of scheduling problems.  The 
modified PSO was tested using two benchmark problems to 
evaluate its performance.  The results demonstrated that the 
algorithm performed better when only one swarm was used 
for all three objectives compared to the case where the swarm 
was divided into three sub-swarms for each objective. 
 

Index Terms— Multi-objective, Open-shop, Particle Swarm 
Optimization, Scheduling  
 

I. INTRODUCTION 

Shop scheduling problems, including flow-, job-, and 
open-shop problems, have attracted the interest of many 
researchers.  Shop scheduling has become a significant factor 
used by shops to maintain their competitive position in a 
rapidly changing marketplace.  Most previous research into 
the open-shop scheduling problem has concentrated on 
finding a single optimal solution (e.g., makespan).  However, 
in the real world, the multiple-objective requirements of shop 
scheduling must be achieved simultaneously.  Thus, the 
academic study of open-shop scheduling has been extended 
from a single objective to multiple objectives. 

Because the open-shop scheduling problem is 
non-deterministic polynomial-time hard (NP-hard) for more 
than two machines (m > 2) [1], we cannot solve it exactly 
using a reasonable amount of computation time.  Most 
published research has concentrated on developing heuristic 
algorithms to search for the optimal makespan of open-shop 
scheduling problems.  A neighborhood search algorithm 
based on the simulated annealing technique was proposed by 
Liaw [2] to addresses the problem of scheduling a 
non-preemptive open shop with the objective of minimizing 
the makespan.  An efficient local search algorithm based on 
the tabu search technique was also proposed by Liaw [3] to 
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minimize the makespan. 
Liaw [4] developed and applied a hybrid genetic algorithm 

(HGA) to the open-shop scheduling problem.  The hybrid 
algorithm incorporated a local improvement procedure based 
on the tabu search (TS) into the basic genetic algorithm (GA).  
Blum [5] proposed the Beam-ACO technique to tackle 
open-shop scheduling; this technique consisted of a 
hybridized solution construction mechanism for ant colony 
optimization (ACO) with a beam search.  Several competitive 
GAs have also been presented to detect global optimal values 
disseminated among many quasi-optimal schedules of the 
open-shop problem [6].  A heuristic technique for the 
open-shop scheduling problem using the genetic algorithm to 
minimize the makespan was developed by Senthilkumar and 
Shahbudeen [7], and Tang and Bai [8] proposed a heuristic 
algorithm, known as the shortest processing time block 
(SPTB), to solve the open-shop problem by minimizing the 
sum of the completion time. 

Liaw [9] considered the problem of scheduling preemptive 
open shops to minimize the total tardiness.  He developed an 
efficient constructive heuristic to solve large problems.  To 
solve medium-sized problems, he proposed a 
branch-and-bound algorithm that incorporated a lower bound 
scheme based on the solution of an assignment problem as 
well as various dominance rules. 

Blazewicz et al. [10] applied a non-classical performance 
measure, the late work criterion, to scheduling problems.  
They estimated the quality of the obtained solution with 
regards to the duration of the late parts of the tasks, but did not 
take into account the quality of these delays. 

One of the latest evolutionary techniques, particle swarm 
optimization (PSO), was recently proposed by Kennedy et 
al. [11] for unconstrained continuous optimization problems.  
The idea behind PSO is based on observations of the social 
behavior of animals such as flocks of birds or schools of fish, 
combined with swarm theory.  PSO has been successfully 
applied to different fields due to its easy implementation and 
computational efficiency.  Nevertheless, applications of PSO 
to combinations of optimization problems are still scarce. 

The aim of this paper is to explore the development of PSO 
for elaborate multi-objective open-shop scheduling problems.  
The original PSO was developed to solve continuous 
optimization problems; therefore, we modified the particle 
position representation, particle movement, and particle 
velocity to accommodate the discrete solution spaces of 
scheduling optimization problems.  

The remainder of this paper is organized as follows. 
Section 2 contains a formulation of the open-shop scheduling 
problem with three objectives. Section 3 describes the 
modified algorithm of the proposed PSO approach. Section 4 
contains the simulated results of two benchmark problems. 
Section 5 provides some conclusions and future directions. 
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II.   OPEN SHOP SCHEDULING 

A. Problem Statement 

The common characteristics of shop scheduling problems 
are as follows. A set of n jobs must be processed on a set of m 
machines.  Each job consists of m operations, each of which 
must be processed on a different machine for a given process 
time. At any time, at most one operation can be processed on 
each machine, and at most one operation of each job can be 
processed.  Unlike flow-shop and job-shop scheduling 
problems, the exceptional condition of the open-shop 
scheduling problem is that the operations of each job can be 
processed in any order. 

 

B. Problem Objective  

The aim of this study was to assign jobs to machines so that 
the completion time, also called the makespan, total flow time, 
and machine idle time are minimized simultaneously. To 
minimize the makespan, we must minimize the maximum 
total processing time on all machines.  The total flow time 
refers to the sum of the completion times of all jobs.  The idle 
times of each machine during the work cycle are summed to 
obtain the total machine idle time. 
 

III.  PARTICLE SWARM OPTIMIZATION  

PSO is based on observations of the social behavior of 
animals, such as birds in flocks or fish in schools, as well as on 
swarm theory. The population consisting of individuals or 
particles is initialized randomly. Each particle is assigned 
with a randomized velocity according to its own movement 
experience and that of the rest of the population. The 
relationship between the swarm and particles in PSO is 
similar to the relationship between the population and 
chromosomes in a GA.  

In PSO, the problem solution space is formulated as a 
search space. Each particle position in the search space is a 
correlated solution to the problem. Particles cooperate to 
determine the best position (solution) in the search space 
(solution space).  

Suppose that the search space is D-dimensional and there 
are ρ particles in the swarm. Particle i is located at position 
Xi={x1

i, x2
i, …, xD

i} and has velocity Vi={v1
i, v2

i, …, vD
i}, 

where i=1, 2, …,ρ. Based on the PSO algorithm, each particle 
move towards its own best position (pbest), denoted as 
Pbesti={pbest1

i, pbest2
i,…, pbestn

i}, and the best position of 
the whole swarm (gbest) is denoted as Gbest={gbest1, 
gbest2, …, gbestn} with each iteration. Each particle changes 
their position according to its velocity, which is randomly 
generated toward the pbest and gbest positions. For each 
particle r and dimension s, the new velocity vs

r and position xs
r 

of particles can be calculated by the following equations:  
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In Eqs. (1) and (2), τ is the iteration number. The inertial 
weight w is used to control exploration and exploitation. A 
large w value keeps the particles moving at high velocity and 
prevents them from becoming trapped in local optima. A 
small w value ensures a low particle velocity and encourages 
particles to exploit the same search area. The constants c1 and 
c2 are acceleration coefficients to determine whether particles 
prefer to move closer to the pbest or gbest positions. The 
rand1 and rand2 are two independent random numbers 
uniformly distributed between 0 and 1. The termination 
criterion of the PSO algorithm includes a maximum number 
of generations, a designated value of pbest, and lack of further 
improvement in pbest. The standard PSO process is outlined 
as follows:  

Step 1: Initialize a population of particles with random 
positions and velocities in a D-dimensional search 
space.  

Step 2: Update the velocity of each particle using Eq. (1).  
Step 3: Update the position of each particle using Eq. (2).  
Step 4: Map the position of each particle into the solution 

space and evaluate its fitness value according to the 
desired optimization fitness function. 
Simultaneously update the pbest and gbest 
positions if necessary.  

Step 5: Loop to Step 2 until the termination criterion is met, 
usually after a sufficient good fitness or a 
maximum number of iterations.  

The original PSO was designed for a continuous solution 
space. We must modify the PSO position representation, 
particle velocity, and particle movement so they work better 
with combinational optimization problems. These changes 
are described in next section. 
 

IV.  METHODS 

There are four types of feasible schedules in OSSPs, 
including inadmissible, semi-active, active, and non-delay. 
The optimal schedule is guaranteed to be an active schedule. 
We can decode a particle position into an active schedule 
employing Giffler and Thompson’s [12] heuristic. There are 
two different representations of particle position associated 
with a schedule. The results of Zhang et al.[13] demonstrated 
that permutation-based position representation outperforms 
priority-based representation. While choosing to implement 
permutation-based position presentation, we must also adjust 
the particle velocity and particle movement. 

 

A. Particle Position Representation 

In this study, we randomly generated a group of particles 
(solutions) represented by a permutation sequence that is an 
ordered list of operations. For an n-job m-machine problem, 
the position of particle k can be represented by an m×n matrix, 
i.e., 
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, where k
ijx denotes the priority 

of operation ijo , which means the operation of job j that must 

be processed on machine i.  

The Giffler and Thompson (G&T) algorithm is briefly 
described below. 

Notation: 

(i,j) is the operation of job j that must be processed on 
machine i 

S is the partial schedule that contains scheduled 
operations 

Ω is the set of operations that can be scheduled 

s(i,j) is the earliest time at which operation (i,j) belonging 
to Ω can be started. 

p(i,j) is the processing time of operation (i,j). 

f(i,j) is the earliest time at which operation (i,j) belonging 
to Ω can be finished, f(i,j) = s(i,j) + p(i,j) . 

G&T algorithm: 

Step 1: Initialize φ=S ; Ω to contain all operations without 

predecessors. 

Step 2: Determine )},({min ),(
* jiff ji Ω∈= and the machine 

m* on which f* can be realized. 

Step 3:  

(1)Identify the operation set Ω∈′′ ),( ji such that 

),( ji ′′ requires machine m*, and *),( fjiS <′′ . 

(2) Choose (i, j) from the operation set identified in 

Step 3(1) with the largest priority. 

(3) Add (i, j) to S. 

(4) Assign s(i,j) as the starting time of (i, j). 

Step 4: If a complete schedule has been generated, stop. 
Otherwise, delete (i, j) from Ω, include its immediate 
successor in Ω, and then go to Step 2. 

The movement of particles is modified in accordance with 
the representation of particle position based on the insertion 
operator. 

 

B. Particle Velocity 

The original PSO velocity concept is that each particle 
moves according to the velocity determined by the distance 
between the previous position of the particle and the gbest 
(pbest) solution. The two major purposes of the particle 
velocity are to move the particle toward the gbest and pbest 
solutions, and to maintain the inertia to prevent particles from 
becoming trapped in local optima. 

In the proposed PSO, we concentrated on preventing 
particles from becoming trapped in local optima rather than 

moving them toward the gbest (pbest) solution. If the priority 
value increases or decreases with the present velocity in this 
iteration, we maintain the priority value increasing or 
decreasing at the beginning of the next iteration with 
probability w, which is the PSO inertial weight. The larger the 
value of w is, the greater the number of iterations over which 
the priority value keeps increasing or decreasing, and the 
greater the difficulty the particle has returning to the current 
position. For an n-job problem, the velocity of particle k can 
be represented as 
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, where k
ijv is the 

velocity of the operation ijo of particle k, }1,0,1{−∈k
ijv . 

The initial particle velocities are generated randomly. 

Instead of considering the distance from kijx  to 

)( ij
k
ij gbestpbest , our PSO considers whether the value of k

ijx  

is larger or smaller than )( ij
k
ij gbestpbest  If k

ijx  has 

decreased in the present iteration, this means that 

)( ij
k
ij gbestpbest  is smaller than k

ijx , and k
ijx  is set moving 

toward )( ij
k
ij gbestpbest  by letting k

ijv ← –1. Therefore, in 

the next iteration, k
ijx  is kept decreasing by one (i.e., k

ijx ← 

k
ijx  –1) with probability w. Conversely, if k

ijx  has increased 

in this iteration, this means that )( ij
k
ij gbestpbest  is larger 

than k
ijx , and k

ijx  is set moving toward )( ij
k
ij gbestpbest  by 

letting k
ijv ←1. Therefore, in the next iteration, kijx  is kept 

increasing by one (i.e. kijx ← k
ijx  + 1) with probability w. 

The inertial weight w influences the velocity of particles in 
PSO. We randomly update velocities at the beginning of each 

iteration. For each particle k and operation ijo , if k
ijv  is not 

equal to 0, k
ijv  is set to 0 with probability (1–w). This ensures 

that k
ijx  stops increasing or decreasing continuously in this 

iteration with probability (1–w). 
 

C. Particle Movement 

In our PSO, the particle movement is based on the insert 
operator proposed by Sha and Hsu [14]. We set 

5.02 −+← randpxk
ij if we want to insert ijo into the pth 

location in the permutation list. In addition, the location of 
operation ijo in the operation sequence of kth pbest and gbest 

solution are k
ijpbest and ijgbest . When particle k moves, for 

all ijo , if k
ijv equals 0, the k

ijx will be set to 

5.02 −+ randpbestkij with probability c1 and set to be 

5.02 −+ randgbestij  with probability c2, where rand2 is a 

random variable between 0 and 1, and c1 and c2 are constants 



 
 

 

between 0 and 1, and c1+c2≦1. For example, assume that V k, 
Xk, pbestk, gbest, c1, and c2 are as follows: 
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For o11: 

 Because .5.1  is,  that , ,0 1111111111 =+←≠ kkkkk xvxxv  

For o12: 

 Because .6.0 generaterandomly   ,0 112 == randvk  

 Because .3.0 generaterandomly   , 211 =≤ randcrand  

 Because  thenand  ,1set   , 121212 ←≥ kkk vxpbest  

  . 8.3  is,  that ,5.0 1221212 =−+← kkk xrandpbestx  

For o21: 

 Because .9.0 generaterandomly   ,0 121 == randvk  

 Because .changed benot  does   , 21211
kxccrand +>  

For o22: 

 Because .75.0 generaterandomly   ,0 122 == randvk  

 Because .8.0 generate  , 22111 =+≤< randccrandc  

 Because  thenand  ,1set   , 222221 −←< kkk vxgbest  
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Finally, after the particle moved, the Vk and Xk are: 
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D. Pareto Set 

In real world, empirical scheduling decisions should not 
only involve the deliberation of more than one objective at a 
time, but also need to prevent the conflict of two or more 
objectives. The solution set of multi-objective optimization 
problem with conflicting objective function consisted with the 
solutions that no other solution is better than all other 
objective functions is called Pareto optimal. A 
multi-objective minimization problem with m decision 
variables and n objectives is given below to describe the 
concept of Pareto optimality. 

The non-dominated solution is defined as solutions which 
dominate the others but do not dominate themselves. Solution 
η is said a Pareto-optimal solution if there exist no other 
solution ξ in the feasible space which could dominate η. The 
set including all Pareto-optimal solutions is termed the 
Pareto-optimal Set, or the efficient set. The graph plotted 
using collected Pareto-optimal solutions in feasible space is 
designated as Pareto front.  

The external Pareto optimal set is employed to deposit a 
limited size of non-dominated solutions. Maximum size of 
archive set is specified in advance. This method is applied to 
forbid missing fragment of non-dominated front during the 
searching process. The Pareto-optimal front is getting formed 
as archive updated iteratively. While the archive set is empty 
enough and a new non-dominated solution is detected, the 
new solution will enter the archive set. As the new solution 

enters the archive set, any solution in the archive set 
dominated by this solution will be withdrawn from the archive 
set. In case the maximum archive size reaches its preset value, 
the archive set have to decide which solution could be 
replaced. In this study, we propose a novel Pareto archive set 
updating process in order to preclude from losing 
non-dominated solutions when the Pareto archive set is full. 
When a new non-dominated solution is discovered, the 
archive set would be updated when one of the following 
situation occurs: (i) number of solutions in the archive set is 
less than the maximum value; (ii) number of the solutions in 
the archive set is equal to (or greater than) the maximum value, 
then one of the solutions in the archive set that is most 
dissimilar to the new solution will be replaced by the new 
solution. We measure the dissimilarity by Euclidean distance. 
A longer distance implies a higher dissimilarity. The 
non-dominated solution in the Pareto archive set with the 
longest distance to the new found solution will be replaced. 

 

V. COMPUTATIONAL EXPERIMENTS 

A. Experiment Condition 

The proposed multi-objective PSO (MOPSO) algorithm 
was tested on two benchmark problems obtained from Guéret 
and Prins [15].  The program was coded in Visual C++, and 
each problem was run 40 times on a Pentium 4 3.0-GHz 
computer with 1 GB of RAM running Windows XP.  During a 
preliminary experiment, we used four swarm sizes (N = 30, 60, 
80, and 100) to test the algorithm.  The outcome of N = 80 was 
best, so that value was used in all further tests.  The 
parameters c1 and c2 were tested at various values in the range 
0.1–0.7 at increments of 0.2.  The inertial weight w was 
reduced from wmax to wmin during the iterations, where wmax 
was set to 0.5, 0.7, and 0.9, and wmin was set to 0.1, 0.3, and 
0.5. The combination of c1 = 0.7, c2 = 0.1, wmax = 0.7, and 
wmin = 0.3 gave the best results.  The maximum iteration limit 
was set to 60, and the maximum archive size was set to 80. 

 

B. Experiment Results 

In the first experiment, we assigned the Pareto set to the 
Pbest solutions and considered four different conditions (see 
Table 1).  In the first scenario, we took all three objectives 
into consideration.  Only two objectives, the makespan and 
total flow time, were considered in the second scenario.  The 
third and fourth scenarios considered the makespan and 
machine idle time, and the total flow time and machine idle 
time, respectively.  The results of the first experiment are 
listed in Table 1.  

In the second experiment, we divided the swarm into 
sub-swarms to search for the solution.  At first, we used three 
groups (sub-swarms) for the three objectives (see (i) in 
Table 2).  In (ii), (iii), and (iv), only one particle swarm was 
applied to search for a single objective.  In the last part of this 
experiment ((v), (vi), and (vii)), two sub-swarms were used to 
search for the solution.  In (v), one sub-swarm was used to 
search for the makespan objective, while the other was used to 
search for the total flow time objective.  In (vi), the two 
sub-swarms were used for the makespan and machine idle 
time objectives, whereas in (vii), the two sub-swarms were 



 
 

 

used for the object total flow time and machine idle time 
objectives. 

 
Table 1 Results of the first experiment 

 
makespane total flow time 

machine idle 
time 

Optimized 
Objectives best Ave. best Ave. best Ave. 
All 1092.4 1099.38 10575.1 10643.31 592.6 662.63 
MS+TFT 1093.5 1098.98 10576.0 10639.25 631.6 697.62 
MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.37 
TFT+MIT 1097.0 1105.85 10564.5 10638.14 568.4 646.97 

M: makespan, TFT: total flow time, MIT: machine idle time 

 
Table 2 Results of the second experiment 

 makespane total flow time machine idle time 

Optimized 
Objectives best Ave. best Ave. best Ave. 
(i)All 1091.6 1099.08 10562.3 10633.97 567.6 648.77 
(ii)MS 1091.0 1096.05 10620.8 10689.39 646.1 704.02 
(iii)TFT 1097.1 1107.64 10584.9 10666.28 648.7 741.19 
(iv)MIT 1099.1 1111.31 10672.4 10750.54 601.2 668.61 
(v)MS+TFT 1091.2 1097.54 10554.5 10614.87 606.5 685.50 
(vi)MS+MIT 1091.2 1098.85 10619.4 10690.49 571.7 643.89 
(vii)TFT+MIT  1097.4 1107.26 10572.9 10659.34 579.7 665.68 

 

VI.  CONCLUSION 

Although a large amount of research has addressed the 
open-shop scheduling problem, most of this has focused on 
minimizing the maximum completion time (i.e., makespan).  
Other objectives exist in the real world, such as minimizing 
the machine idle time, that might help improve efficiency and 
reduce production costs.  PSO, inspired by the behavior of 
flocks of birds and schools of fish, has the advantages of a 
simple structure, easy implementation, immediate 
accessibility, short search time, and robustness.  However, 
few applications of PSO to multi-objective open-shop 
scheduling problems can be found in the literature.  Therefore, 
we proposed a MOPSO algorithm to solve the open-shop 
scheduling problem with multiple objectives, including 
minimization of makespan, total flow time, and machine idle 
time. 

The original PSO was developed for continuous 
optimization problems. To make it suitable for job-shop 
scheduling (i.e., a combinational problem), we modified the 
representation of particle position, particle movement, and 
particle velocity. We also introduced a Pareto set and used a 
diversification strategy.  

The algorithm was tested to verify different scenarios, 
using different Pareto sets with different combinations of 
objectives.  Different swarm sizes with varied objective 
combinations were also evaluated.  The results demonstrated 
that the algorithm performed better when only one swarm was 
used for all three objectives compared to the case where the 
swarm was divided into three sub-swarms for each objective. 

We will attempt to apply MOPSO to other shop scheduling 
problems with multiple objectives in future research.  Other 
possible topics for further study include modification of the 
particle position, particle movement, and particle velocity 
representation.  Issues related to Pareto optimization, such as 
solution maintenance strategy and performance measurement, 
also merit future investigation. 

 

APPENDIX 

A pseudo-code of the PSO for MO-OSSP is as follow. 
Initialize a population of particles with random positions. 

for each particle k do  
 Evaluate Xk (the position of particle k) 
 Save the pbestk to optimal solution set S 

end for 
Set gbest solution equals to the best pbestk 

repeat 
 Updates particles velocities 
 for each particle k do  
  Move particle k 

Evaluate Xk 
Update gbest, pbest and S 

 end for 
until maximum iteration limit is reached 
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