

Abstract— This article proposes a particle swarm

optimization (PSO) technique to address open-shop
scheduling problems with multiple objectives. Because PSO
was originally formulated to treat continuous optimization
problems, we modified the particle position representation,
particle velocity, and particle movement to consider the
essentially discrete nature of scheduling problems. The
modified PSO was tested using two benchmark problems to
evaluate its performance. The results demonstrated that the
algorithm performed better when only one swarm was used
for all three objectives compared to the case where the swarm
was divided into three sub-swarms for each objective.

Index Terms— Multi-objective, Open-shop, Particle Swarm
Optimization, Scheduling

I. INTRODUCTION

Shop scheduling problems, including flow-, job-, and
open-shop problems, have attracted the interest of many
researchers. Shop scheduling has become a significant factor
used by shops to maintain their competitive position in a
rapidly changing marketplace. Most previous research into
the open-shop scheduling problem has concentrated on
finding a single optimal solution (e.g., makespan). However,
in the real world, the multiple-objective requirements of shop
scheduling must be achieved simultaneously. Thus, the
academic study of open-shop scheduling has been extended
from a single objective to multiple objectives.

Because the open-shop scheduling problem is
non-deterministic polynomial-time hard (NP-hard) for more
than two machines (m > 2) [1], we cannot solve it exactly
using a reasonable amount of computation time. Most
published research has concentrated on developing heuristic
algorithms to search for the optimal makespan of open-shop
scheduling problems. A neighborhood search algorithm
based on the simulated annealing technique was proposed by
Liaw [2] to addresses the problem of scheduling a
non-preemptive open shop with the objective of minimizing
the makespan. An efficient local search algorithm based on
the tabu search technique was also proposed by Liaw [3] to

This work was supported by the grant of National Science Council of

Taiwan (NSC-96-2221-E-216-052MY3).
D.Y. Sha is with the Chung Hua University, Hsinchu, Taiwan, R.O.C. He

is now with the Department of Industrial Engineering and System
Management (e-mail: yjsha@chu.edu.tw).

Hsing-Hung Lin is with National Chiao Tung University, Hsinchu,
Taiwan, R.O.C. He is now with the Department of Industrial Engineering
and Management (phone: 886-937808216; e-mail: hsinhung@gmail.com).

C.-Y. Hsu is with the Bureau of Employment and Vocational Training of
Taiwan, R.O.C.

minimize the makespan.
Liaw [4] developed and applied a hybrid genetic algorithm

(HGA) to the open-shop scheduling problem. The hybrid
algorithm incorporated a local improvement procedure based
on the tabu search (TS) into the basic genetic algorithm (GA).
Blum [5] proposed the Beam-ACO technique to tackle
open-shop scheduling; this technique consisted of a
hybridized solution construction mechanism for ant colony
optimization (ACO) with a beam search. Several competitive
GAs have also been presented to detect global optimal values
disseminated among many quasi-optimal schedules of the
open-shop problem [6]. A heuristic technique for the
open-shop scheduling problem using the genetic algorithm to
minimize the makespan was developed by Senthilkumar and
Shahbudeen [7], and Tang and Bai [8] proposed a heuristic
algorithm, known as the shortest processing time block
(SPTB), to solve the open-shop problem by minimizing the
sum of the completion time.

Liaw [9] considered the problem of scheduling preemptive
open shops to minimize the total tardiness. He developed an
efficient constructive heuristic to solve large problems. To
solve medium-sized problems, he proposed a
branch-and-bound algorithm that incorporated a lower bound
scheme based on the solution of an assignment problem as
well as various dominance rules.

Blazewicz et al. [10] applied a non-classical performance
measure, the late work criterion, to scheduling problems.
They estimated the quality of the obtained solution with
regards to the duration of the late parts of the tasks, but did not
take into account the quality of these delays.

One of the latest evolutionary techniques, particle swarm
optimization (PSO), was recently proposed by Kennedy et
al. [11] for unconstrained continuous optimization problems.
The idea behind PSO is based on observations of the social
behavior of animals such as flocks of birds or schools of fish,
combined with swarm theory. PSO has been successfully
applied to different fields due to its easy implementation and
computational efficiency. Nevertheless, applications of PSO
to combinations of optimization problems are still scarce.

The aim of this paper is to explore the development of PSO
for elaborate multi-objective open-shop scheduling problems.
The original PSO was developed to solve continuous
optimization problems; therefore, we modified the particle
position representation, particle movement, and particle
velocity to accommodate the discrete solution spaces of
scheduling optimization problems.

The remainder of this paper is organized as follows.
Section 2 contains a formulation of the open-shop scheduling
problem with three objectives. Section 3 describes the
modified algorithm of the proposed PSO approach. Section 4
contains the simulated results of two benchmark problems.
Section 5 provides some conclusions and future directions.

A Modified Particle Swarm Optimization for
Multi-objective Open Shop Scheduling

D. Y. Sha, Hsing-Hung Lin, C.-Y. Hsu

II. OPEN SHOP SCHEDULING

A. Problem Statement

The common characteristics of shop scheduling problems
are as follows. A set of n jobs must be processed on a set of m
machines. Each job consists of m operations, each of which
must be processed on a different machine for a given process
time. At any time, at most one operation can be processed on
each machine, and at most one operation of each job can be
processed. Unlike flow-shop and job-shop scheduling
problems, the exceptional condition of the open-shop
scheduling problem is that the operations of each job can be
processed in any order.

B. Problem Objective

The aim of this study was to assign jobs to machines so that
the completion time, also called the makespan, total flow time,
and machine idle time are minimized simultaneously. To
minimize the makespan, we must minimize the maximum
total processing time on all machines. The total flow time
refers to the sum of the completion times of all jobs. The idle
times of each machine during the work cycle are summed to
obtain the total machine idle time.

III. PARTICLE SWARM OPTIMIZATION

PSO is based on observations of the social behavior of
animals, such as birds in flocks or fish in schools, as well as on
swarm theory. The population consisting of individuals or
particles is initialized randomly. Each particle is assigned
with a randomized velocity according to its own movement
experience and that of the rest of the population. The
relationship between the swarm and particles in PSO is
similar to the relationship between the population and
chromosomes in a GA.

In PSO, the problem solution space is formulated as a
search space. Each particle position in the search space is a
correlated solution to the problem. Particles cooperate to
determine the best position (solution) in the search space
(solution space).

Suppose that the search space is D-dimensional and there
are ρ particles in the swarm. Particle i is located at position
Xi={x1

i, x2
i, …, xD

i} and has velocity Vi={v1
i, v2

i, …, vD
i},

where i=1, 2, …,ρ. Based on the PSO algorithm, each particle
move towards its own best position (pbest), denoted as
Pbesti={pbest1

i, pbest2
i,…, pbestn

i}, and the best position of
the whole swarm (gbest) is denoted as Gbest={gbest1,
gbest2, …, gbestn} with each iteration. Each particle changes
their position according to its velocity, which is randomly
generated toward the pbest and gbest positions. For each
particle r and dimension s, the new velocity vs

r and position xs
r

of particles can be calculated by the following equations:

][

][
11

22

11
11

1

−−

−−−

−××

+−××+×=
ττ

ττττ

rss

rsrsrsrs

xgbestrandc

xpbestrandcvwv
 (1)

11 −− += τττ
rsrsrs vxx (2)

In Eqs. (1) and (2), τ is the iteration number. The inertial
weight w is used to control exploration and exploitation. A
large w value keeps the particles moving at high velocity and
prevents them from becoming trapped in local optima. A
small w value ensures a low particle velocity and encourages
particles to exploit the same search area. The constants c1 and
c2 are acceleration coefficients to determine whether particles
prefer to move closer to the pbest or gbest positions. The
rand1 and rand2 are two independent random numbers
uniformly distributed between 0 and 1. The termination
criterion of the PSO algorithm includes a maximum number
of generations, a designated value of pbest, and lack of further
improvement in pbest. The standard PSO process is outlined
as follows:

Step 1: Initialize a population of particles with random
positions and velocities in a D-dimensional search
space.

Step 2: Update the velocity of each particle using Eq. (1).
Step 3: Update the position of each particle using Eq. (2).
Step 4: Map the position of each particle into the solution

space and evaluate its fitness value according to the
desired optimization fitness function.
Simultaneously update the pbest and gbest
positions if necessary.

Step 5: Loop to Step 2 until the termination criterion is met,
usually after a sufficient good fitness or a
maximum number of iterations.

The original PSO was designed for a continuous solution
space. We must modify the PSO position representation,
particle velocity, and particle movement so they work better
with combinational optimization problems. These changes
are described in next section.

IV. METHODS

There are four types of feasible schedules in OSSPs,
including inadmissible, semi-active, active, and non-delay.
The optimal schedule is guaranteed to be an active schedule.
We can decode a particle position into an active schedule
employing Giffler and Thompson’s [12] heuristic. There are
two different representations of particle position associated
with a schedule. The results of Zhang et al.[13] demonstrated
that permutation-based position representation outperforms
priority-based representation. While choosing to implement
permutation-based position presentation, we must also adjust
the particle velocity and particle movement.

A. Particle Position Representation

In this study, we randomly generated a group of particles
(solutions) represented by a permutation sequence that is an
ordered list of operations. For an n-job m-machine problem,
the position of particle k can be represented by an m×n matrix,
i.e.,





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx

xxx

X

L

MMM

L

L

21

22221

11211

, where k
ijx denotes the priority

of operation ijo , which means the operation of job j that must

be processed on machine i.

The Giffler and Thompson (G&T) algorithm is briefly
described below.

Notation:

(i,j) is the operation of job j that must be processed on
machine i

S is the partial schedule that contains scheduled
operations

Ω is the set of operations that can be scheduled

s(i,j) is the earliest time at which operation (i,j) belonging
to Ω can be started.

p(i,j) is the processing time of operation (i,j).

f(i,j) is the earliest time at which operation (i,j) belonging
to Ω can be finished, f(i,j) = s(i,j) + p(i,j) .

G&T algorithm:

Step 1: Initialize φ=S ; Ω to contain all operations without

predecessors.

Step 2: Determine)},({min),(
* jiff ji Ω∈= and the machine

m* on which f* can be realized.

Step 3:

(1)Identify the operation set Ω∈′′),(ji such that

),(ji ′′ requires machine m*, and *),(fjiS <′′ .

(2) Choose (i, j) from the operation set identified in

Step 3(1) with the largest priority.

(3) Add (i, j) to S.

(4) Assign s(i,j) as the starting time of (i, j).

Step 4: If a complete schedule has been generated, stop.
Otherwise, delete (i, j) from Ω, include its immediate
successor in Ω, and then go to Step 2.

The movement of particles is modified in accordance with
the representation of particle position based on the insertion
operator.

B. Particle Velocity

The original PSO velocity concept is that each particle
moves according to the velocity determined by the distance
between the previous position of the particle and the gbest
(pbest) solution. The two major purposes of the particle
velocity are to move the particle toward the gbest and pbest
solutions, and to maintain the inertia to prevent particles from
becoming trapped in local optima.

In the proposed PSO, we concentrated on preventing
particles from becoming trapped in local optima rather than

moving them toward the gbest (pbest) solution. If the priority
value increases or decreases with the present velocity in this
iteration, we maintain the priority value increasing or
decreasing at the beginning of the next iteration with
probability w, which is the PSO inertial weight. The larger the
value of w is, the greater the number of iterations over which
the priority value keeps increasing or decreasing, and the
greater the difficulty the particle has returning to the current
position. For an n-job problem, the velocity of particle k can
be represented as





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

vvv

vvv

vvv

V

L

MLMM

L

L

21

22221

11211

, where k
ijv is the

velocity of the operation ijo of particle k, }1,0,1{−∈k
ijv .

The initial particle velocities are generated randomly.

Instead of considering the distance from kijx to

)(ij
k
ij gbestpbest , our PSO considers whether the value of k

ijx

is larger or smaller than)(ij
k
ij gbestpbest If k

ijx has

decreased in the present iteration, this means that

)(ij
k
ij gbestpbest is smaller than k

ijx , and k
ijx is set moving

toward)(ij
k
ij gbestpbest by letting k

ijv ← –1. Therefore, in

the next iteration, k
ijx is kept decreasing by one (i.e., k

ijx ←

k
ijx –1) with probability w. Conversely, if k

ijx has increased

in this iteration, this means that)(ij
k
ij gbestpbest is larger

than k
ijx , and k

ijx is set moving toward)(ij
k
ij gbestpbest by

letting k
ijv ←1. Therefore, in the next iteration, kijx is kept

increasing by one (i.e. kijx ← k
ijx + 1) with probability w.

The inertial weight w influences the velocity of particles in
PSO. We randomly update velocities at the beginning of each

iteration. For each particle k and operation ijo , if k
ijv is not

equal to 0, k
ijv is set to 0 with probability (1–w). This ensures

that k
ijx stops increasing or decreasing continuously in this

iteration with probability (1–w).

C. Particle Movement

In our PSO, the particle movement is based on the insert
operator proposed by Sha and Hsu [14]. We set

5.02 −+← randpxk
ij if we want to insert ijo into the pth

location in the permutation list. In addition, the location of
operation ijo in the operation sequence of kth pbest and gbest

solution are k
ijpbest and ijgbest . When particle k moves, for

all ijo , if k
ijv equals 0, the k

ijx will be set to

5.02 −+ randpbestkij with probability c1 and set to be

5.02 −+ randgbestij with probability c2, where rand2 is a

random variable between 0 and 1, and c1 and c2 are constants

between 0 and 1, and c1+c2≦1. For example, assume that V k,
Xk, pbestk, gbest, c1, and c2 are as follows:

1.0 ,7.0 ,
21

43

,
23

41
 ,

2.43.1

3.35.2
 ,

00

01

21 ==







=









=








=







−
=

ccgbest

pbestXV kkk

For o11:

 Because .5.1 is, that , ,0 1111111111 =+←≠ kkkkk xvxxv

For o12:

 Because .6.0 generaterandomly ,0 112 == randvk

 Because .3.0 generaterandomly , 211 =≤ randcrand

 Because thenand ,1set , 121212 ←≥ kkk vxpbest

 . 8.3 is, that ,5.0 1221212 =−+← kkk xrandpbestx

For o21:

 Because .9.0 generaterandomly ,0 121 == randvk

 Because .changed benot does , 21211
kxccrand +>

For o22:

 Because .75.0 generaterandomly ,0 122 == randvk

 Because .8.0 generate , 22111 =+≤< randccrandc

 Because thenand ,1set , 222221 −←< kkk vxgbest

 . 3.2 is, that ,5.0 2222222 =−+← kkk xrandgbestx

Finally, after the particle moved, the Vk and Xk are:

.
3.23.1

8.35.1
 and

10

11








=









−
−

= kk XV

D. Pareto Set

In real world, empirical scheduling decisions should not
only involve the deliberation of more than one objective at a
time, but also need to prevent the conflict of two or more
objectives. The solution set of multi-objective optimization
problem with conflicting objective function consisted with the
solutions that no other solution is better than all other
objective functions is called Pareto optimal. A
multi-objective minimization problem with m decision
variables and n objectives is given below to describe the
concept of Pareto optimality.

The non-dominated solution is defined as solutions which
dominate the others but do not dominate themselves. Solution
η is said a Pareto-optimal solution if there exist no other
solution ξ in the feasible space which could dominate η. The
set including all Pareto-optimal solutions is termed the
Pareto-optimal Set, or the efficient set. The graph plotted
using collected Pareto-optimal solutions in feasible space is
designated as Pareto front.

The external Pareto optimal set is employed to deposit a
limited size of non-dominated solutions. Maximum size of
archive set is specified in advance. This method is applied to
forbid missing fragment of non-dominated front during the
searching process. The Pareto-optimal front is getting formed
as archive updated iteratively. While the archive set is empty
enough and a new non-dominated solution is detected, the
new solution will enter the archive set. As the new solution

enters the archive set, any solution in the archive set
dominated by this solution will be withdrawn from the archive
set. In case the maximum archive size reaches its preset value,
the archive set have to decide which solution could be
replaced. In this study, we propose a novel Pareto archive set
updating process in order to preclude from losing
non-dominated solutions when the Pareto archive set is full.
When a new non-dominated solution is discovered, the
archive set would be updated when one of the following
situation occurs: (i) number of solutions in the archive set is
less than the maximum value; (ii) number of the solutions in
the archive set is equal to (or greater than) the maximum value,
then one of the solutions in the archive set that is most
dissimilar to the new solution will be replaced by the new
solution. We measure the dissimilarity by Euclidean distance.
A longer distance implies a higher dissimilarity. The
non-dominated solution in the Pareto archive set with the
longest distance to the new found solution will be replaced.

V. COMPUTATIONAL EXPERIMENTS

A. Experiment Condition

The proposed multi-objective PSO (MOPSO) algorithm
was tested on two benchmark problems obtained from Guéret
and Prins [15]. The program was coded in Visual C++, and
each problem was run 40 times on a Pentium 4 3.0-GHz
computer with 1 GB of RAM running Windows XP. During a
preliminary experiment, we used four swarm sizes (N = 30, 60,
80, and 100) to test the algorithm. The outcome of N = 80 was
best, so that value was used in all further tests. The
parameters c1 and c2 were tested at various values in the range
0.1–0.7 at increments of 0.2. The inertial weight w was
reduced from wmax to wmin during the iterations, where wmax
was set to 0.5, 0.7, and 0.9, and wmin was set to 0.1, 0.3, and
0.5. The combination of c1 = 0.7, c2 = 0.1, wmax = 0.7, and
wmin = 0.3 gave the best results. The maximum iteration limit
was set to 60, and the maximum archive size was set to 80.

B. Experiment Results

In the first experiment, we assigned the Pareto set to the
Pbest solutions and considered four different conditions (see
Table 1). In the first scenario, we took all three objectives
into consideration. Only two objectives, the makespan and
total flow time, were considered in the second scenario. The
third and fourth scenarios considered the makespan and
machine idle time, and the total flow time and machine idle
time, respectively. The results of the first experiment are
listed in Table 1.

In the second experiment, we divided the swarm into
sub-swarms to search for the solution. At first, we used three
groups (sub-swarms) for the three objectives (see (i) in
Table 2). In (ii), (iii), and (iv), only one particle swarm was
applied to search for a single objective. In the last part of this
experiment ((v), (vi), and (vii)), two sub-swarms were used to
search for the solution. In (v), one sub-swarm was used to
search for the makespan objective, while the other was used to
search for the total flow time objective. In (vi), the two
sub-swarms were used for the makespan and machine idle
time objectives, whereas in (vii), the two sub-swarms were

used for the object total flow time and machine idle time
objectives.

Table 1 Results of the first experiment

makespane total flow time

machine idle
time

Optimized
Objectives best Ave. best Ave. best Ave.
All 1092.4 1099.38 10575.1 10643.31 592.6 662.63
MS+TFT 1093.5 1098.98 10576.0 10639.25 631.6 697.62
MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.37
TFT+MIT 1097.0 1105.85 10564.5 10638.14 568.4 646.97

M: makespan, TFT: total flow time, MIT: machine idle time

Table 2 Results of the second experiment

 makespane total flow time machine idle time

Optimized
Objectives best Ave. best Ave. best Ave.
(i)All 1091.6 1099.08 10562.3 10633.97 567.6 648.77
(ii)MS 1091.0 1096.05 10620.8 10689.39 646.1 704.02
(iii)TFT 1097.1 1107.64 10584.9 10666.28 648.7 741.19
(iv)MIT 1099.1 1111.31 10672.4 10750.54 601.2 668.61
(v)MS+TFT 1091.2 1097.54 10554.5 10614.87 606.5 685.50
(vi)MS+MIT 1091.2 1098.85 10619.4 10690.49 571.7 643.89
(vii)TFT+MIT 1097.4 1107.26 10572.9 10659.34 579.7 665.68

VI. CONCLUSION

Although a large amount of research has addressed the
open-shop scheduling problem, most of this has focused on
minimizing the maximum completion time (i.e., makespan).
Other objectives exist in the real world, such as minimizing
the machine idle time, that might help improve efficiency and
reduce production costs. PSO, inspired by the behavior of
flocks of birds and schools of fish, has the advantages of a
simple structure, easy implementation, immediate
accessibility, short search time, and robustness. However,
few applications of PSO to multi-objective open-shop
scheduling problems can be found in the literature. Therefore,
we proposed a MOPSO algorithm to solve the open-shop
scheduling problem with multiple objectives, including
minimization of makespan, total flow time, and machine idle
time.

The original PSO was developed for continuous
optimization problems. To make it suitable for job-shop
scheduling (i.e., a combinational problem), we modified the
representation of particle position, particle movement, and
particle velocity. We also introduced a Pareto set and used a
diversification strategy.

The algorithm was tested to verify different scenarios,
using different Pareto sets with different combinations of
objectives. Different swarm sizes with varied objective
combinations were also evaluated. The results demonstrated
that the algorithm performed better when only one swarm was
used for all three objectives compared to the case where the
swarm was divided into three sub-swarms for each objective.

We will attempt to apply MOPSO to other shop scheduling
problems with multiple objectives in future research. Other
possible topics for further study include modification of the
particle position, particle movement, and particle velocity
representation. Issues related to Pareto optimization, such as
solution maintenance strategy and performance measurement,
also merit future investigation.

APPENDIX

A pseudo-code of the PSO for MO-OSSP is as follow.
Initialize a population of particles with random positions.

for each particle k do
 Evaluate Xk (the position of particle k)
 Save the pbestk to optimal solution set S

end for
Set gbest solution equals to the best pbestk

repeat
 Updates particles velocities
 for each particle k do
 Move particle k

Evaluate Xk
Update gbest, pbest and S

 end for
until maximum iteration limit is reached

REFERENCES

[1] Gonzalez T., Sahni S., “Open shop scheduling to minimize finish
time,” Journal of the ACM, Vol. 23, 1976, pp. 665–79.

[2] Liaw C.-F., “Applying simulated annealing to the open shop
scheduling problem,” IIE Transactions, Vol. 31, 1999, pp. 457–65.

[3] Liaw C.-F., “A tabu search algorithm for the open shop scheduling
problem,” Computers & Operations Research, Vol.26, 1999,
pp. 109–26.

[4] Liaw C.-F., “A hybrid genetic algorithm for the open shop scheduling
problem,” European Journal of Operational Research, Vol.124, 2000,
pp. 28–42.

[5] Blum C., “Beam-ACO—Hybridizing ant colony optimization with
beam search: an application to open shop scheduling,” Computers &
Operations Research, Vol. 32, 2005, pp. 1565–91.

[6] Prins C., “Competitive genetic algorithms for the open-shop
scheduling problem,” Mathematical Methods of Operations Research,
Vol. 52, 2000, pp. 389–411.

[7] Senthilkumar P., Shahbudeen P., “GA based heuristic for the open job
shop scheduling problem,” International Journal of Advanced
Manufacturing Technology, Vol. 30, 2006, pp. 297–301.

[8] Tang L., Bai D., “A new heuristic for open shop total completion time
problem,” Applied Mathematical Modeling, vol. 34 2010,
pp. 735–743.

[9] Liaw C.-F., “Scheduling preemptive open shops to minimize total
tardiness,” European Journal of Operational Research, Vol.162, 2005,
pp. 173–183.

[10] Bllzewicz J., Pesch E., Sterna M., Werner F., “Open shop scheduling
problems with late work criteria,” Discrete Applied Mathematics, Vol.
134, 2004, pp. 1–24.

[11] Kennedy J, Eberhart R.C., “Particle swarm optimization,” Proceedings
of the 1995 IEEE International Conference on Neural Networks. New
Jersey: IEEE Press; 1995, pp. 1942–8.

[12] Giffler J, Thompson G.L., “Algorithms for solving production
scheduling problems,” Operations Research, Vol. 8, 1960,
pp. 487–503.

[13] Zhang H., Li H., Tam C.M., “Particle swarm optimization for
resource-constrained project scheduling,” International Journal of
Project Management, Vol. 24, 2006, pp. 83–92.

[14] Sha D.Y., Hsu C.-Y., “A new particle swarm optimization for the open
shop scheduling problem,” Computers & Operations Research, Vol.
35, 2008, pp. 3243–3261.

[15] Guéret C., Prins C., “A new lower bound for the open-shop problem,”
Annals of Operations Research, vol. 92, 1999, pp. 165–183.

