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A Modified Particle Swarm Optimization for
Multi-objective Open Shop Scheduling
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minimize the makespan.

Abstract— This article proposes a particle swarm Liaw [4] developed and applied a hybrid genetioalym

optimization (PSO) technique
scheduling problems with multiple objectives. BezaPSO
was originally formulated to treat continuous optation

problems, we modified the particle position repreéaton,

particle velocity, and particle movement to considee

essentially discrete nature of scheduling probleniBhe

modified PSO was tested using two benchmark prabliem
evaluate its performance. The results demonstithigdthe

algorithm performed better when only one swarm used

for all three objectives compared to the case wherawarm
was divided into three sub-swarms for each objectiv

Index Terms— Multi-objective, Open-shop, Particle Swarm
Optimization, Scheduling

I. INTRODUCTION

to address open-shdplGA) to the open-shop scheduling problem. Theridyb

algorithm incorporated a local improvement procechaised
on the tabu search (TS) into the basic genetiaidfgo (GA).
Blum [5] proposed the Beam-ACO technique to tackle
open-shop scheduling; this technique consisted of a
hybridized solution construction mechanism for eokony
optimization (ACO) with a beam search. Several petitive
GAs have also been presented to detect global aptiatues
disseminated among many quasi-optimal scheduletheof
open-shop problem [6]. A heuristic technique fdme t
open-shop scheduling problem using the genetiaigthgo to
minimize the makespan was developed by Senthilkwemdr
Shahbudeen [7], and Tang and Bai [8] proposed &istieu
algorithm, known as the shortest processing timeckbl
(SPTB), to solve the open-shop problem by miningzine
sum of the completion time.

Liaw [9] considered the problem of scheduling prpéve

Shop scheduling problems, including flow-, job-,dan open shops to minimize the total tardiness. Held@ed an

open-shop problems, have attracted the interestanfiy
researchers. Shop scheduling has become a sagmifactor
used by shops to maintain their competitive positio a
rapidly changing marketplace. Most previous reseanto
the open-shop scheduling problem has concentrated
finding a single optimal solutiore(g, makespan). However,
in the real world, the multiple-objective requiremteeof shop
scheduling must be achieved simultaneously. T hius,
academic study of open-shop scheduling has beemded
from a single objective to multiple objectives.

Because the open-shop scheduling problem
non-deterministic polynomial-time hard (NP-hard) foore

efficient constructive heuristic to solve large lpisms. To
solve  medium-sized problems, he proposed
branch-and-bound algorithm that incorporated a fdveaind
scheme based on the solution of an assignmentgimobé
well as various dominance rules.

Blazewiczet al. [10] applied a non-classical performance
measure, the late work criterion, to schedulingbfmms.
They estimated the quality of the obtained solutwith
regards to the duration of the late parts of teksabut did not
take into account the quality of these delays.
is One of the latest evolutionary techniques, partssl@rm
optimization (PSO), was recently proposed by Kegned

than two machinesn(> 2) [1], we cannot solve it exactly al. [11] for unconstrained continuous optimizationgemns.

using a reasonable amount of computation time.
published research has concentrated on develogingstic
algorithms to search for the optimal makespan @&hneghop
scheduling problems. A neighborhood search algorit
based on the simulated annealing technique waopeapby
Liaw [2] to addresses the problem of scheduling
non-preemptive open shop with the objective of miring
the makespan. An efficient local search algorithesed on
the tabu search technique was also proposed by [3pto
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tMoshe idea behind PSO is based on observations datial

behavior of animals such as flocks of birds or sthof fish,
combined with swarm theory. PSO has been sucdlgssfu
applied to different fields due to its easy implenation and
computational efficiency. Nevertheless, applicagiof PSO
tp combinations of optimization problems are siilarce.

The aim of this paper is to explore the developréRSO
for elaborate multi-objective open-shop schedutirgplems.
The original PSO was developed to solve continuous
optimization problems; therefore, we modified thertjzle
position representation, particle movement, andtighar
velocity to accommodate the discrete solution spack
scheduling optimization problems.

The remainder of this paper is organized as follows
Section 2 contains a formulation of the open-stayeduling
problem with three objectives. Section 3 descrillles
modified algorithm of the proposed PSO approachti@e 4
contains the simulated results of two benchmarloleros.
Section 5 provides some conclusions and futurectiines.
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In Egs. (1) and (2) is the iteration number. The inertial

weightw is used to control exploration and exploitation. A
II.  OPENSHOP SCHEDULING largew value keeps the particles moving at high veloaitg
prevents them from becoming trapped in local optifya
smallw value ensures a low particle velocity and encoesag

The common characteristics of shop scheduling probl particles to exploit the same search area. Thetaoiss, and

are as follows. A set of jobs must be processed on a sehof ¢, are acceleration coefficients to determine wheplagticles
machines. Each job consistsmfoperations, each of which prefer to move closer to thgbestor gbestpositions. The
must be processed on a different machine for angivecess rand, and rand, are two independent random numbers
time. At any time, at most one operation can begssed on uniformly distributed between 0 and 1. The termiomat
each machine, and at most one operation of eachgolbe criterion of the PSO algorithm includes a maximunmber
processed. Unlike flow-shop and job-shop schedulirof generations, a designated valugloést and lack of further
problems, the exceptional condition of the operpshamprovement impbest The standard PSO process is outlined
scheduling problem is that the operations of eabhcgn be as follows:

A. Problem Statement

processed in any order. Step 1: Initialize a population of particles witandom
positions and velocities in@-dimensional search
B. Problem Objective space.

Step 2: Update the velocity of each particle uging(1).

Step 3: Update the position of each particle ukiqg(2).

Step 4: Map the position of each particle into sbiution
space and evaluate its fitness value accordirtggeto t
desired optimization fitness function.
Simultaneously update thepbest and gbest
positions if necessary.

Step 5: Loop to Step 2 until the termination citieris met,
usually after a sufficient good fithess or a
maximum number of iterations.

The original PSO was designed for a continuoustisoiu
space. We must modify the PSO position representati
PSO is based on observations of the social beha¥ior particle velocity, and particle movement so theyknoetter
animals, such as birds in flocks or fish in schpagswell as on with combinational optimization problems. These rujes

swarm theory. The population consisting of indidtuor are described in next section.

particles is initialized randomly. Each particle dssigned

with a randomized velocity according to its own rament

experience and that of the rest of the populatibhe IV. METHODS

relationship between the swarm and particles in RSO

similar to the relationship between the populatiand

chromosomes in a GA.

In PSO, the problem solution space is formulatedaas
search space. Each particle position in the sespabe is a
correlated solution to the problem. Particles coafee to
determine the best position (solution) in the deaspace
(solution space).

Suppose that the search spacB-dimensional and there

The aim of this study was to assign jobs to machauethat
the completion time, also called the makespan!| fiota time,
and machine idle time are minimized simultaneou3ly.
minimize the makespan, we must minimize the maximum
total processing time on all machines. The tdtakftime
refers to the sum of the completion times of diigo The idle
times of each machine during the work cycle aremsathto
obtain the total machine idle time.

Ill. PARTICLE SWARM OPTIMIZATION

There are four types of feasible schedules in OSSPs
including inadmissible, semi-active, active, anch-aelay.
The optimal schedule is guaranteed to be an astikedule.
We can decode a particle position into an activeedule
employing Giffler and Thompson'’s [12] heuristic.érb are
two different representations of particle positassociated
with a schedule. The results of Zhastgal[13] demonstrated
that permutation-based position representation evfgpms
y ) - ..~ priority-based representation. While choosing tplement
airep ri)artlicles n ;[he swarm. Parthles Ioc?tedi at p03|it|on permutation-based position presentation, we msst adijust
X={xl_, %, ..., %} and has veIOC|ty\/'={v1_, V2, - 0k, __the particle velocity and particle movement.
wherei=1, 2, ...p. Based on the PSO algorithm, each particle
move towards its own best positiopbgs), denoted as
Pbest{pbest, pbest,..., pbesf}, and the best position of A. Particle Position Representation
the whole swarm gbes} is denoted asGbest{gbest, In this study, we randomly generated a group ofiglas
gbes}, ..., gbes} with each iteration. Each particle changegsolutions) represented by a permutation sequérateis an
their position according to its velocity, which riandomly ordered list of operations. For afob m-machine problem,
generated toward thpbestand gbest positions. For each the position of particl&can be represented bymrn matrix,
particler and dimensios, the new velocitys and positiorxs  i.e.,
of particles can be calculated by the following &tipns:

Vis =Wxvi" +¢y xrandy X[ pbesfet - xig 7] +

-1 -1 (1)
c, xrand, x[gbesf ™ — x/
Xis = x5 vt )2
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X:Ii.(l sz an moving them toward thgbest(pbe;) solution. Ifthe priorﬁty
K K K value increases or decreases with the presentityelochis
xk=| X1 X2 v Xen ,wherexi'j‘denotes the priority iteration, we maintain the priority value increagiror
: : : decreasing at the beginning of the next iteratioith w
x,'%l x,'§12 x,'%n probabilityw, which is the PSO inertial weight. The larger the

value ofw is, the greater the number of iterations over thic
the priority value keeps increasing or decreasary] the
greater the difficulty the particle has returningthe current

of operatioro;; , which means the operation of jpthat must
be processed on machine

The Giffler and Thompson (G&T) algorithm is briefly position. For am-job problem, the velocity of particlecan
described below. be represented as
Notation: Vi VH e vy
k k k

(i,j) is the operation of jopthat must be processed on vi=[Var Va2 Vol hare v is the

machine R

Sis the partial schedule that contains scheduled m - VYm2 mn

operations

) ) velocity of the operatior; of particlek, vi'f 0{-101} .
Q is the set of operations that can be scheduled

s is the earliest time at which operatigj) belonging The initial particle velocities are generated ranfjo
to Q can be started. Instead of considering the distance fromi'j‘ to

Pg, is the processing time of operatify) . pbest-< (gbest ), our PSO considers whether the value@f
fq, is the earliest time at which operati@f) belonging is larger or smaller thanpbesf(gbesﬁ) If xX has

o i
to Q can be finishedy = s + P - decreased in the present iteration, this means that

G&T algorithm: pbesf (gbest) is smaller thanx, and x‘ is set moving
Step 1: InitializeS = ¢ ; Q to contain all operations without  5ward pbesf(gbesﬁ) by letting Vilj( < —_1. Therefore, in
predecessors.

the next iterationxi'j‘ is kept decreasing by one (i.eq'jf <~

Step 2: Determinef - =min jpo{ f (i, })} and the machine x; —1) with probabilityw. Conversely, ifx has increased

m on whichf can be realized.

Step 3:
. , L than xi'j‘, and xi'j‘ is set moving towarcpbes#(gbesﬁ) by
(1)Identify the operation sdt’, j') 0 Q such that
letting vi'j‘ <-1. Therefore, in the next iteratiorxi'j‘ is kept

in this iteration, this means thqibesf(gbesﬁ) is larger

(i’, j") requires machiner, and S(i', j) < f .
increasing by one (i.e(i'j‘ exi'j‘
The inertial weightv influences the velocity of particles in

PSO. We randomly update velocities at the beginafreach

(3)Add (,j)toS iteration. For each particle and operatioro; , if Vi is not

+ 1) with probabilityw.
(2) Choosei(j) from the operation set identified in

Step 3(1) with the largest priority.

(4) Assigns;) as the starting time of, (). equal to 0,v) is set to O with probability (1%). This ensures

Step 4: If a complete schedule has been genesttga,

Otherwise, delete,(j) from ©, include its immediate that x; stops increasing or decreasing continuously is thi

successor if2, and then go to Step 2. iteration with probability (1w).
The movement of particles is modified in accordanith
the representation of particle position based eririkertion C. Particle Movement
operator. In our PSO, the particle movement is based onnberi

operator proposed by Sha and Hsu [14]. We set

k _05; ; s
B. Particle Velocity Xj < p+rand, —05if we want to inserto; into the pth

The original PSO velocity concept is that each iplart
moves according to the velocity determined by tistadce
between the previous position of the particle dmeigbest sojution arepbesf andgbesj . When particlek moves, for
(pbes} solution. The two major purposes of the particle _ ‘ o
velocity are to move the particle toward tjigestandpbest @l 0 , if vj equals 0, thex; will be set to
solutlops, and to mf';untaln the !nertlato prevemtiples from pbesir +rand, — 05 with probability ¢, and set to be
becoming trapped in local optima.

In the proposed PSO, we concentrated on preventirgpes} +rand, — 05 with probability c,, whererand, is a

particles from becoming trapped in local optimaheatthan  random variable between 0 and 1, apdndc, are constants

location in the permutation list. In addition, tleeation of
operatiorp; in the operation sequence kth pbestandgbest
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between 0 and 1, amgh-c,=1. For example, assume thatt
X¥, pbest, gbest c,, andc; are as follows:

-1 0 25 33 1 4
vk = , XK= , pbest = ,
0 O 13 42 3 2
best= 3 4 =07,¢c,=01
g =11 o G =0r50C =0

For oy

Becausevj; # 0,xK < x + Vi, thatis, x = 15.
For o,

Becausev}, = 0, randomlygenerateand, = 06.

Becauserand, < ¢;, randomlygenerateand, = 0.3.

Becausepbesf, = x£,, setv), — 1, andthen

x5 — pbesf, +rand, - 05, thatis, xX, = 38.

Foro,::

Becausevk; = 0, randomlygenerateand, = 09.

Becauserand, >c, +¢c;,, x5, doesnotbechanged
Foro,s:

Becausevk, = 0, randomlygenerateand, = 075.
Becausec; <rand; < ¢, +c¢,, generateand, = 0.8.

Becausegbesk; < x%,, setvk, — -1, andthen

x5, — gbesf, +rand, - 05, thatis, x5, = 23.
Finally, after the particle moved, th& andXk are:

-1 1 15 38
vk = and XK = .
0o -1 13 23

D. Pareto Set

In real world, empirical scheduling decisions sldonbt
only involve the deliberation of more than one ahje at a
time, but also need to prevent the conflict of taromore
objectives. The solution set of multi-objective ioptzation
problem with conflicting objective function consstwith the
solutions that no other solution is better than ather
objective functions is called Pareto optimal.
multi-objective minimization problem with m decisio
variables and n objectives is given below to déscithe
concept of Pareto optimality.

The non-dominated solution is defined as solutiwhgh
dominate the others but do not dominate themseSastion
n is said a Pareto-optimal solution if there exist ather
solution ¢ in the feasible space which could dominat&he
set including all Pareto-optimal solutions is tedmthe
Pareto-optimal Set, or the efficient set. The grafdtted
using collected Pareto-optimal solutions in feasigpace is
designated as Pareto front.

The external Pareto optimal set is employed to sié@o
limited size of non-dominated solutions. Maximurzesif
archive set is specified in advance. This methapjdied to
forbid missing fragment of non-dominated front dgrithe
searching process. The Pareto-optimal front isrgeformed
as archive updated iteratively. While the archiekis empty
enough and a new non-dominated solution is detetied
new solution will enter the archive set. As the remlution

ISBN: 978-988-18210-5-8
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enters the archive set, any solution in the archées¢
dominated by this solution will be withdrawn frohetarchive
set. In case the maximum archive size reachesdtepvalue,
the archive set have to decide which solution cobodd
replaced. In this study, we propose a novel Parethive set
updating process in order to preclude from losing
non-dominated solutions when the Pareto archivésseil.
When a new non-dominated solution is discovere@, th
archive set would be updated when one of the fatigw
situation occurs: (i) number of solutions in thetave set is
less than the maximum value; (i) number of thaigohs in
the archive set is equal to (or greater than) theimum value,
then one of the solutions in the archive set tlsambst
dissimilar to the new solution will be replaced the new
solution. We measure the dissimilarity by Eucliddatance.

A longer distance implies a higher dissimilarityhel
non-dominated solution in the Pareto archive sé¢h whe
longest distance to the new found solution wilkeplaced.

V. COMPUTATIONAL EXPERIMENTS

A. Experiment Condition

The proposed multi-objective PSO (MOPSO) algorithm
was tested on two benchmark problems obtained Gogret
and Prins [15]. The program was coded in Visuat Gand
each problem was run 40 times on a Pentium 4 3.0-GH
computer with 1 GB of RAM running Windows XP. Dugia
preliminary experiment, we used four swarm si2és 80, 60,
80, and 100) to test the algorithm. The outconié 80 was
best, so that value was used in all further tesiBhe
parameters; andc, were tested at various values in the range
0.1-0.7 at increments of 0.2. The inertial weightvas
reduced fromwato Wi, during the iterations, wheng,,q,
was set to 0.5, 0.7, and 0.9, amg, was set to 0.1, 0.3, and
0.5. The combination o€;=0.7, ¢c;= 0.1, wya= 0.7, and
Wnin= 0.3 gave the best results. The maximum iterdiioih
was set to 60, and the maximum archive size wat® S4.

B. Experiment Results

A In the first experiment, we assigned the Paretadcséte

Pbestsolutions and considered four different conditi¢see
Table 1). In the first scenario, we took all thdgectives
into consideration. Only two objectives, the madess and
total flow time, were considered in the second aden The
third and fourth scenarios considered the makespah
machine idle time, and the total flow time and maelidle
time, respectively. The results of the first expent are
listed in Table 1.

In the second experiment, we divided the swarm into
sub-swarms to search for the solution. At firg, wged three
groups (sub-swarms) for the three objectives (Sedn(
Table 2). In (i), (i), and (iv), only one pacte swarm was
applied to search for a single objective. In tst part of this
experiment ((v), (vi), and (vii)), two sub-swarmeng used to
search for the solution. In (v), one sub-swarm wsad to
search for the makespan objective, while the otlzerused to
search for the total flow time objective. In (vihe two
sub-swarms were used for the makespan and madiime i
time objectives, whereas in (vii), the two sub-swsrwere
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APPENDIX

A pseudo-code of the PSO for MO-OSSP is as follow.

Initialize a population of particles with randomsgtmns.

Table 1 Results of the first experiment

for each particlé do

makespane ot fow e oine idle Evaluatex*(the position of particle k)
Optimized Save thepbes'f to optimal solution se$
Objectives best  Ave. best Ave.  bestAve. end for
All 10924 1099.38 10575.1 10643.31 5926 662.63  Setgbestsolution equals to the bepibes'f
MS+TFT 1093.5 1098.98 10576.0 10639.25 631.6 697.62 repeat
MS+MIT 1090.8 1098.96 10619.4 10695.07 585.2 651.37 . o
TET+MIT 1097.0  1105.85 10564.5 10638.14 568.4 646.97 Updates particles velocities

M: makespan, TFT: total flow time, MIT: machineadime

Table 2 Results of the second experiment

makespane total flow time machine idle time

Optimized

Objectives best Ave. best Ave. best Ave.

Al 1091.6 1099.08 10562.3 10633.97 567.6 648.77

(iyMS 1091.0 1096.05 10620.8 10689.39 646.1 704.02

>i)TFT 1097.1 1107.64 10584.9 10666.28 648.7 741.19

>iv)MIT 1099.1 1111.31 10672.4 10750.54 601.2 668.61

(VMS+TFT 1091.2 1097.54 10554.5 10614.87 606.5 685.50 [1]

(Vi)MS+MIT 1091.2 1098.85 10619.4 10690.49 571.7 643.89

(VIi)TFT+MIT 1097.4 1107.26 10572.9 10659.34 579.7 665.68 [2]
[3]

VI. CONCLUSION

Although a large amount of research has addressed
open-shop scheduling problem, most of this hassiedwon
minimizing the maximum completion timég,, makespan). [s5]
Other objectives exist in the real world, such asimrizing
the machine idle time, that might help improveaiéfincy and

reduce production costs. PSO, inspired by the \behaf (6]
flocks of birds and schools of fish, has the adages of a
simple structure, easy implementation, immediatE]

accessibility, short search time, and robustnedswever,
few applications of PSO to multi-objective open1$ho[8]
scheduling problems can be found in the literatdreerefore,
we proposed a MOPSO algorithm to solve the opep-sho

scheduling problem with multiple objectives, indhg [©]

minimization of makespan, total flow time, and maehidle

time. [10]
The original PSO was developed for continuous

optimization problems. To make it suitable for jsitep
scheduling i(e., a combinational problem), we modified theltH
representation of particle position, particle moeetm and
particle velocity. We also introduced a Paretoaset used a [12]
diversification strategy.

The algorithm was tested to verify different scérsr
using different Pareto sets with different combimad of
objectives. Different swarm sizes with varied alije
combinations were also evaluated. The results detrated
that the algorithm performed better when only omarsn was
used for all three objectives compared to the vdwre the
swarm was divided into three sub-swarms for eaghatilie.

We will attempt to apply MOPSO to other shop sctiedu
problems with multiple objectives in future resdardOther
possible topics for further study include modifioat of the
particle position, particle movement, and partietdocity
representation. Issues related to Pareto optimizauch as
solution maintenance strategy and performance measunt,
also merit future investigation.

[13]

[14]

[15]

ISBN: 978-988-18210-5-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

for each particld do
Move particlek
Evaluatex*
Updategbest pbestandS
end for

until maximum iteration limit is reached
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