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Abstract—In this paper we propose an appealing in-
exact proximal alternating directions method (abbre-
viated as In-PADM) for solving a class of monotone
variational inequalities with certain special structure,
and this structure under consideration is common in
practice. We prove convergence of In-PADM method
while the inexact term is arbitrary but satisfied some
suitable conditions. For solving the variational in-
equalities with the special structure under considera-
tion, we prove the proximal point term in one of the
variational inequalities can be taken out, while con-
vergence of the proposed method is preserved. And
to do in this way, some advantages are provided in
the implementation of In-PADM method. Numerical
tests on Compressed Sensor problem show applicabil-
ity and availability of In-PADM method.
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1 Introduction

In this paper, we consider the following problem:

minimize θ1(x) + θ2(y),
subject to Ax− y = 0.

(1)

Where x ∈ X , y ∈ Y, X and Y are closed convex subset
of Rn and Rm, respectively. A ∈ Rm×n is a given con-
stant matrix. The functions θ1 and θ2 are closed proper
convex functions on X and Y respectively. We assume
the subgradient information of θ1 and θ2 is available.

There is a wide range of applications of Problem (1).
For example, the following problem which is referred to
as Compressed Sensor problem, is one of the research
hotspot in image processing (for examples, see [7, 12],
ect.)

min ‖Dx− b‖22 + µ‖x‖1, (2)

where x ∈ Rn, D ∈ Rm×n, b ∈ Rm, µ > 0, m < n.
Problem (2) can be reformulated to the following separa-
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ble form:

min 1
2‖Dx− b‖22 + µ‖y‖1,

s.t. x− y = 0,
(3)

where x, y ∈ Rn, D ∈ Rm×n, b ∈ Rm, µ > 0. It is
obvious that Problem (3) is a special case of Problem

(1), with θ1(x) =
1
2
‖Dx − b‖22, θ2(y) = µ‖y‖1, A = I,

and X = Y = Rn.

Let f(x) = ∂θ1(x) and g(y) = ∂θ2(y) be the sub-gradient
of θ1(x) and θ2(x) respectively. By convexity of θ1 and
θ2, we know that f and g are monotone with respect to
X and Y, respectively. Then Problem (1) is equivalent to
the following monotone structured variational inequality

find (x, y) ∈ Ω,

{
(x′ − x)T f(x) ≥ 0,

(y′ − y)T g(y) ≥ 0,
∀(x′, y′) ∈ Ω,

(4)
where

Ω = {(x, y)|x ∈ X , y ∈ Y : Ax− y = 0}. (5)

Chen and Teboulle [6] investigated Problem (1) and pro-
posed a proximal-based decomposition method for solv-
ing it. Tseng [10] interpreted Chen&Teboulles’ approach
as an alternating version of the proximal point method
and the extragradient method.

There are many methods to deal with the equivalent ver-
sion (4–5) of Problem (1). Proximal point method and
alternating directions method are two of the power tools
for this problem. For examples, see [1, 2, 3, 5, 9, 11].

By attaching a Lagrangian multiplier λ ∈ Rm to the lin-
ear constraint Ax − y = 0, Problem (4–5) can be refor-
mulated into the following equivalent form:

w ∈ W,





(x′ − x)T [f(x)−AT λ] ≥ 0,
(y′ − y)T [g(y) + λ] ≥ 0,
(λ′ − λ)T (Ax− y) ≥ 0.

∀w′ ∈ W (6)

where w = (x, y, λ) and W = X × Y ×Rm.

We make some standard assumptions on Problem (6):
Assumption A. The functions f(x) and g(y) are mono-
tone with respect to X and Y respectively.



Assumption B. The solution set of Problem (6), de-
noted by W∗, is nonempty.

From a given triplet wk = (xk, yk, λk), the primary prox-
imal alternating directions method uses the following
procedure to carry out the new iterate triplet wk+1 =
(xk+1, yk+1, λk+1) at each iteration:
1). Find x̂k by solving variational inequality:

(x′−x̂)T
{

f(x̂)−AT [λk−βk(Ax̂−yk)]+rk(x̂−xk)
}
≥ 0. (7)

2). Find ŷk by solving variational inequality:

(y′− ŷ)T {g(ŷ)+[λk−βk(Ax̂k− ŷ)]+sk(ŷ−yk)} ≥ 0. (8)

3). Update λ̂k via

λ̂k = λk − βk(Ax̂k − ŷk). (9)

Where βk is a given penalty parameter of the linear con-
straint Ax − y = 0. The coefficients rk > 0 in formulas
(7) and sk > 0 in (8) are referred to as proximal param-
eters. The method is convergent by setting wk+1 = ŵk

(for a proof see [1]).

But to solve subproblems (7) and (8) exactly is not an
easy task, since each of them requires an implicit pro-
jection. He and Liao et al [2] suggested a method for
solving subproblems (7) and (8) inexactly. This method
is referred to as alternating projection based prediction-
correction methods (abbreviated as APBPCM ).

Essentially, to solve the following structured variational
inequality

w ∈ W,





(x′ − x)T [f(x)−AT λ] ≥ 0,
(y′ − y)T [g(y)−BT λ] ≥ 0,
Ax + By = b,

∀w′ ∈ W, (10)

from a given triplet wk = (xk, yk, λk), the APBPCM
method carries out the new iterate triplet wk+1 =
(xk+1, yk+1, λk+1) via the following two phases.
Prediction phase: Let H be a given positive matrix.
The predictor ŵk = (x̂k, ŷk, λ̂k) is generated by the fol-
lowing procedure:
1). Set

x̂k = PX
{

xk− 1

rk

(
f(xk)−AT [λk−H(Axk+Byk−b)]

)}
, (11)

where rk > 0 is a chosen parameter such that

‖ξk
x‖ ≤ νrk‖xk − x̂k‖, ξk

x := f(xk)− f(x̂k) + AT HA(xk − x̂k).
(12)

2). Set

ŷk = PY
{

yk− 1

sk

(
g(yk)−BT [λk−H(Ax̂k+Byk−b)]

)}
, (13)

where sk > 0 is a chosen parameter such that

‖ξk
y‖ ≤ νsk‖yk − ŷk‖, ξk

y := g(xk)− g(x̂k) + BT HB(yk − ŷk).
(14)

3). Update λ̂k via

λ̂k = λk −H(Ax̂k + Bŷk − b). (15)

Denote Rk = rkI and Sk = skI, set

Mk = Sk + BT HB, (16)

Gk =




Rk 0 0
0 Mk 0
0 0 H−1


 , ξk =




ξk
x

ξk
y

0


 , (17)

and let

d(wk, w̃k, ξk) := (wk − ŵk)−G−1
k ξk. (18)

Correction phase: The new iterate triplet wk+1 =
(xk+1, yk+1, λk+1) is accepted by using one of the fol-
lowing two strategies:

I). wk+1
I = wk − αkd(wk, w̃k, ξk), (19)

II). wk+1
II = PW,Gk

{wk − αkG−1
k q(wk, ŵk)}, (20)

where

q(wk, ŵk) = Q(ŵk) + (A,B, 0)T HB(yk − ŷk), (21)

Q(w) =




f(x)−AT λ
g(y)−BT λ
Ax + By − b


 . (22)

Both correction strategies have the same step-size:

αk = γα∗k, (23)

where γ ∈ (0, 2), and

α∗k =
(λk − λ̂k)T B(yk − ŷk) + (wk − ŵk)Gkd(wk, w̃k, ξk)

‖d(wk, w̃k, ξk)‖2 .

(24)

The problem under consideration in this paper is a spe-
cial case of Problem (10) obviously. We have B = −I and
b = 0 in Problem (1). And this case is common in prac-
tice. The condition B = −I provides some advantages for
solving this problem, which is the proximal parameter sk

in (8) can be equal to zero and convergence of the pro-
posed method is preserved. But in the previous works,
for examples, [1], [2], [12] and [10], the authors have not
made use of this condition. We also prove theoretically
that, for any inexact term ξk, under suitable conditions
we have convergence of the proposed method. This is a
converse result of that one in [2].

This paper is organized as follows: In Section 2, we de-
scribe the proposed method and give some useful nota-
tions. In Section 3, we provide two descent directions
and prove some contractive properties of the proposed
method. In Section 4, we prove convergence of the pro-
posed method under suitable assumptions. In Section 5,
we give the details of the implementation of the proposed
method. Numerical tests on the compressed sensor prob-
lem show its effectiveness. Finally, some conclusions are
made in Section 6.



2 The proposed method

We describe the proposed method, and give some use-
ful notations in this section. To solve Problem (6), the
inexact proximal alternating directions method is as the
following:
The proposed method (In-PADM)
For a given triplet wk = (xk, yk, λk), the In-PADM car-
ries the new triplet wk+1 = (xk+1, yk+1, λk+1) via the
following procedures:
1). Find x̂k by solving variational inequality:

(x′−x)T
{

f(x)−AT [λk−βk(Ax−yk)]+rk(x−xk)+ξk
x

}
≥ 0.

(25)
2). Find ŷk by solving variational inequality:

(y′ − y)T
{

g(y) + [λk − βk(Ax̂k − y)] + ξk
y

}
≥ 0. (26)

Remark: Here the proximal parameter sk vanishes
(Comparing with (13)).
3). Update λ̂k by the following formula:

λ̂k = λk − βk(Ax̂k − ŷk). (27)

4). Compute step-size αk > 0 and update wk+1 via

wk+1 = Cor
(
wk, αk, d(wk, ŵk, ξk)

)
. (28)

In this proposed method, the unknown direction vector
d(wk, w̃k, ξk) and step-size αk, and the unknown function
Cor

(
wk, αk, d(wk, w̃k, ξk)

)
in (28) will be defined later.

Denote ŵk = (x̂k, ŷk, λ̂k), we define the direction vectors
as the following:

d1(wk, ŵk, ξk) =




rk(xk − x̂k)− ξk
x

βk(yk − ŷk)− ξk
y

1
βk

(λk − λ̂k)


 , (29)

and

d2(w
k, ŵk) =




f(x̂k)−AT λ̂k − βkAT (yk − ŷk)

g(ŷk) + λ̂k + βk(yk − ŷk)

Ax̂k − ŷk


 . (30)

Combine (25–27) and rewrite it in a compact form:

(w′ − ŵk)T [d2(wk, ŵk)− d1(wk, ŵk, ξk)] ≥ 0. (31)

Here we give some useful notations:

M =




rI 0 0
0 βI 0
0 0 1

β I


 , ξ =




ξx

ξy

0




and

F (w) =




f(x)−AT λ
g(y) + λ
Ax− y


 , η(β, w, ŵ) =




βAT (y − ŷ)
−β(y − ŷ)

0


 .

Then we get

d1(wk, ŵk, ξk) = Mk(wk − ŵk)− ξk. (32)

and
d2(wk, ŵk) = F (ŵk)− η(βk, wk, ŵk). (33)

We define a key function ϕ(wk, ŵk) in the following:

ϕ(wk, ŵk) = (λ̂k−λk)T (yk−ŷk)+(wk−ŵk)T d1(wk, ŵk, ξk).
(34)

This function ϕ(wk, ŵk) plays a crucial role in proof of
convergence of the proposed method.

3 The descent directions of unknown
function ‖w − w∗‖2

For convenience of the analysis in this section, we ignore
the index k of all of the matrices, vectors and scalars.

For any w∗ ∈ W∗, G(w − w∗) is the gradient of the
unknown distance function 1

2‖w − w∗‖2G at the point w
with a proper positive definite matrix G. The vector d is
called the descent direction of ‖w − w∗‖2G if and only if
[G(w−w∗)]T d < 0. In this section, under suitable condi-
tions, we will show that both −d1(w, ŵ, ξ) and −d2(w, ŵ)
[see (32) and (33) respectively] are the descent directions
of ‖w − w∗‖2, while w ∈ W \W∗.

Lemma 3.1 Let ϕ(w, ŵ) be defined by (34), where
ŵ = (x̂, ŷ, λ̂) is generated by (25–27) from a given
w = (x, y, λ). Assume that the following conditions hold,

‖ξx‖ ≤ νr‖x− x̂‖, (35)

‖ξy‖ ≤ νβ

2
√

2
‖y − ŷ‖, (36)

where ν ∈ (0, 1). Then we have

ϕ(w, ŵ) >
β

2
‖Ax̂− y‖2 +

τ

2
‖d1(w, ŵ, ξ)‖2, (37)

where τ = min {1
r
,

1
2β

, β} > 0.

Proof: By a manipulation, we get

ϕ(w, ŵ)

= (λ̂− λ)T (y − ŷ) + (w − ŵ)T [M(w − ŵ)− ξ]

= (λ̂− λ)T (y − ŷ) + ‖w − ŵ‖2M − (w − ŵ)T ξ

= (λ̂− λ)T (y − ŷ) + r‖x− x̂‖2 + β‖y − ŷ‖2

+
1
β
‖λ− λ̂‖2 − (x− x̂)T ξx − (y − ŷ)T ξy

=
[
(λ̂− λ)T (y − ŷ) +

1
2
β‖y − ŷ‖2 +

1
2β
‖λ− λ̂‖2

+
1
2β
‖λ− λ̂‖2

]
(38)

+r‖x− x̂‖2 − (x− x̂)T ξx (39)

+
1
2
β‖y − ŷ‖2 − (y − ŷ)T ξy. (40)



Using λ̂− λ = −β(Ax̂− ŷ), we get

(λ̂− λ)T (y − ŷ) +
1
2
β‖y − ŷ‖2 +

1
2β
‖λ− λ̂‖2

=
1
2
β

[−2(Ax̂− ŷ)T (y − ŷ) + ‖y − ŷ‖2 + ‖Ax̂− ŷ‖2]

=
1
2
β‖Ax̂− y‖2 (41)

By (35) and note ν ∈ (0, 1), we get

r‖x− x̂‖2 − (x− x̂)T ξx

=
1
2
r‖x− x̂‖2 − (x− x̂)T ξx +

1
2
r‖x− x̂‖2

=
1
2r

[
r2‖x− x̂‖2 − 2r(x− x̂)T ξx + r2‖x− x̂‖2]

>
1
2r

[
r2‖x− x̂‖2 − 2r(x− x̂)T ξx + ‖ξx‖2

]

=
1
2r
‖r(x− x̂)− ξx‖2. (42)

Similarly, we have

1
2
β‖y − ŷ‖2 − (y − ŷ)T ξy

=
1
4
β‖y − ŷ‖2 − (y − ŷ)T ξy +

1
4
β‖y − ŷ‖2.

=
1
β

[
‖1
2
β(y − ŷ)‖2 − 1

2
β(y − ŷ)T ξy + ‖1

2
ξy‖2

+
1
4
β2‖y − ŷ‖2 − ‖1

2
ξy‖2 − 1

2
β(y − ŷ)T ξy

]

=
1
4β
‖β(y − ŷ)− ξy‖2

+
1
β

[
1
4
β2‖y − ŷ‖2 − ‖1

2
ξy‖2 − 1

2
β(y − ŷ)T ξy

]

By Cauchy-Schwarz inequality and condition (36), we
have

β

2
(y − ŷ)T ξy ≤ β

2
‖y − ŷ‖ · ‖ξy‖ ≤ β2

4
√

2
‖y − ŷ‖2

Using condition (36) again, we get

1
β

[
1
4
β2‖y − ŷ‖2 − ‖1

2
ξy‖2 − 1

2
β(y − ŷ)T ξy

]

≥ β

4
7
√

2− 8
8
√

2
‖y − ŷ‖2 ≥ 0.

Thus

1
2
β‖y − ŷ‖2 − (y − ŷ)T ξy ≥ 1

4β
‖β(y − ŷ)− ξy‖2 (43)

Substituting (41–43) into (40–42), we have

ϕ(w, ŵ) >
1
2
β‖Ax̂− y‖2 +

1
2r
‖r(x− x̂)− ξx‖2

+
1
4β
‖β(y − ŷ)− ξy‖2 +

1
2β
‖λ− λ̂‖2.(44)

Let
τ = min{1

r
,

1
2β

, β} (45)

we obtain

ϕ(w, ŵ) >
1
2
β‖Ax̂− y‖2 +

τ

2
‖d1(w, ŵ, ξ)‖2,

which is (37). This completes the proof.

Lemma 3.2 Let ϕ(w, ŵ) be defined by (34), and ŵ =
(x̂, ŷ, λ̂) is generated by (25–27) from given w = (x, y, λ),
and the conditions (35) and (36) hold, then we have

ϕ(w, ŵ) ≥ (1−ν)r‖x−x̂‖2+1

2
(1−

√
2

2
ν)β‖y−ŷ‖2+ 1

2β
‖λ−λ̂‖2.

(46)

Proof: By Cauchy-Schwarz inequality, we get

(x− x̂)T ξx ≤ ‖x− x̂‖ · ‖ξx‖,

(y − ŷ)T ξy ≤ ‖y − ŷ‖ · ‖ξy‖,
and β > 0,

1
2

(
β‖y − ŷ‖2 +

1
β
‖λ− λ̂‖2

)

≥
√

1
β
‖λ− λ̂‖ ·

√
β‖y − ŷ‖

≥ (λ− λ̂)T (y − ŷ).

Then by using the previous three inequalities and the
conditions (35–36) and the definitions (29, 34), we get

ϕ(w, ŵ)

= (λ̂− λ)T (y − ŷ) + (w − ŵ)T [M(w − ŵ)− ξ]

= (λ̂− λ)T (y − ŷ) + (x− x̂)T r(x− x̂)− (x− x̂)T ξx

+(y − ŷ)T β(y − ŷ)− (y − ŷ)T ξy + (λ− λ̂)T 1

β
(λ− λ̂)

≥ (1− ν)r‖x− x̂‖2 + (1− ν

2
√

2
)β‖y − ŷ‖2

+
1

β
‖λ− λ̂‖2 − (λ− λ̂)T (y − ŷ)

≥ (1− ν)r‖x− x̂‖2 +
1

2
(1−

√
2

2
ν)β‖y − ŷ‖2 +

1

2β
‖λ− λ̂‖2.

This is (46).

Lemma 3.3 Let ϕ(w, ŵ) be defined by (34) and
d1(w, ŵ, ξ), d2(w, ŵ) be defined by (29-30)(or more com-
pactly, (32–33) ) respectively. Let ŵ = (x̂, ŷ, λ̂) be gener-
ated by (25–27) from given w = (x, y, λ). Then we have

(ŵ−w∗)T d2(w, ŵ) ≥ ϕ(w, ŵ)−(w−ŵ)T d1(w, ŵ, ξ). (47)

Proof: Since f(x) and g(x) are monotone with respect
to X and Y, respectively, it follows that F (w) is a mono-
tone operator with respect to W. Then we get

(ŵ − w∗)T [F (ŵ)− F (w∗)] ≥ 0,



and consequently,

(ŵ − w∗)T F (ŵ) ≥ (ŵ − w∗)T F (w∗). (48)

Note that w∗ is a solution of (6), this provides that (ŵ−
w∗)T F (w∗) ≥ 0 for ŵ ∈ W. Thus

(ŵ − w∗)T F (ŵ) ≥ 0. (49)

Therefore, we have

(ŵ − w∗)T d2(w, ŵ)
= (ŵ − w∗)T F (ŵ)− (ŵ − w∗)T η(βk, wk, ŵk)
≥ −(ŵ − w∗)T η(βk, wk, ŵk)
= −β(Ax̂−Ax∗)T (y − ŷ) + (ŷ − y∗)T β(y − ŷ)
= (y − ŷ)T β(ŷ −Ax̂)

= (y − ŷ)T (λ̂− λ). (50)

Recalling the definition of ϕ(w, ŵ) (see (34)), the inequal-
ity (47) follows from (50) directly.

Theorem 3.1 Let ŵ = (x̂, ŷ, λ̂) be generated by (25–27)
from given w = (x, y, λ) and w∗ ∈ W∗. Then we have

(w − w∗)T d1(w, ŵ, ξ) ≥ ϕ(w, ŵ, ξ), (51)

and

(w − w∗)T d2(w, ŵ) ≥ ϕ(w, ŵ, ξ), ∀w ∈ W. (52)

Proof: By using (31), we get (by letting w′ = w∗),

(ŵ − w∗)T d1(w, ŵ, ξ) ≥ (ŵ − w∗)T d2(w, ŵ). (53)

Combining (53) with (47), we have

(ŵ−w∗)T d1(w, ŵ, ξ) ≥ ϕ(w, ŵ)− (w− ŵ)T d1(w, ŵ, ξ). (54)

Following from (54), we obtain (51) directly. Adding (47)
and (31), we get

(w′ − w∗)T d2(w, ŵ)
≥ ϕ(w, ŵ, ξ)− (w − w′)T d1(w, ŵ, ξ),
∀w′ ∈ W, w∗ ∈ W∗. (55)

Assertion (52) follows from (55) by letting w′ = w.

4 Convergence of the proposed method

In this section, we define the “cor” function in (28) in the
first of the section, and prove some contractive properties
(with the given “cor” function) of the proposed method.
Then we prove convergence of the proposed method. Be
lighted by the papers [2, 3] and others, we give two “cor”
functions and prove convergence of the proposed method
provided with each of them.

The first strategy is setting the “cor” function as follows:

wk+1
I = cor1

(
wk, αk, d(wk, w̃k, ξk)

)

= wk − αkd1(wk, w̃k, ξk). (56)

Lemma 4.1 Let wk+1 = wk+1
I be generated by (25–28),

then we have

‖wk − w∗‖2 − ‖wk+1 − w∗‖2
≥ 2αkϕ(wk, w̃k, ξk)− α2

k‖d1(wk, w̃k, ξk)‖2. (57)

Proof: By a straightforward computation, and using
Theorem 3.1 (51), we get

‖wk − w∗‖2 − ‖wk+1 − w∗‖2
= ‖wk − w∗‖2 − ‖wk − αkd(wk, ŵk, ξk)− w∗‖2
= 2αk(wk − w∗)T d1(wk, ŵk, ξk)− α2

k‖d1(wk, ŵk, ξk)‖2
≥ 2αkϕ(wk, ŵk)− α2

k‖d1(wk, ŵk, ξk)‖2.

We then deal with the second strategy by defining the
“cor” function as follows:

wk+1
II = cor2

(
wk, αk, d(wk, ŵk, ξk)

)

= PW
{
wk − αkd2(wk, ŵk)

}
. (58)

Corresponding to the Lemma 4.1, by using the second
strategy, we have the same contractive property.
Lemma 4.2 Let wk+1 = wk+1

II be generated by (25–28),
then we have

‖wk − w∗‖2 − ‖wk+1 − w∗‖2
≥ 2αkϕ(wk, w̃k, ξk)− α2

k‖d1(wk, w̃k, ξk)‖2. (59)

Proof: It’s well known (by using the property of pro-
jection) that ∀v ∈ Rn ×Rm ×Rm,

‖u− PW(v)‖2 ≤ ‖v − u‖2 − ‖v − PW(v)‖2,∀u ∈ W.

Using the previous inequality, we get

‖wk − w∗‖2 − ‖wk+1 − w∗‖2
≥ ‖wk − w∗‖2 −

(
‖wk − w∗ − αkd2(w

k, ŵk)‖2

−‖wk − wk+1 − αkd2(w
k, ŵk)‖

)

= ‖wk − wk+1‖2 + 2αk(wk+1 − w∗)T d2(w
k, ŵk).(60)

By (50), we get

(wk+1 − w∗)T d2(w
k, ŵk)

= (wk+1 − ŵk)T d2(w
k, ŵk) + (ŵk − w∗)T d2(w

k, ŵk)

≥ (wk+1 − ŵk)T d2(w
k, ŵk) + (yk − ŷk)T (λ̂k − λk).(61)

On the other hand, since ŵk solves the variational in-
equality (31), and wk+1 ∈ W, it follows that

(wk+1−ŵk)T d2(w
k, ŵk) ≥ (wk+1−ŵk)T d1(w

k, ŵk, ξk). (62)

Since αk > 0, by adding (61) and (62), we get

2αk(wk+1 − w∗)T d2(wk, ŵk)
≥ 2αk

[
(wk+1 − ŵk)T d1(wk, ŵk, ξk)

+(yk − ŷk)T (λ̂k − λk)
]
. (63)



Substituting (63) into (60), we have

‖wk − w∗‖2 − ‖wk+1 − w∗‖2
≥ ‖wk − wk+1‖2 + 2αk[(wk+1 − ŵk)T d1(wk, ŵk, ξk)

+(yk − ŷk)T (λ̂k − λk)]
= ‖wk+1 − wk − αkd1(wk, ŵk, ξk)‖2
−α2

k‖d1(wk, ŵk, ξk)‖2
+2αk[(wk − ŵk)T d1(wk, ŵk, ξk)

+(yk − ŷk)T (λ̂k − λk)]. (64)

Recall the definition of ϕ(wk, ŵk) (see (34)), we obtain
(59) from (64) immediately.

From Lemma 4.1 and Lemma 4.2, we know that no mat-
ter which direction d1(wk, ŵk, ξk) is used or the direction
d2(wk, ŵk), we have the same conclusion:

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 + α2
k‖d1(wk, ŵk, ξk)‖2

−2αkϕ(wk, ŵk).

From the above inequality, we can get the maximal drop-
out value at each iteration by maximizing the following
function

∆k(α) = −α2‖d1(wk, ŵk, ξk)‖2 + 2αϕ(wk, ŵk). (65)

This quadratic function ∆k(α) reaches its maximum at
the point

α∗k =
ϕ(wk, ŵk, ξk)

‖d1(wk, ŵk, ξk)‖2 , (66)

with its value

∆k(α∗k) = α∗kϕ(wk, w̃k, ξk). (67)

Then by using Lemma 3.1, we have:
Corollary 4.1 If the constant sequences {rk}, {βk} are
nonnegative and bounded above for any k, then we have

α∗k >
τ

2
. (68)

We will show in the next section that the conditions of
Corollary 4.1 is satisfied in practice.

The numerical experiments [3] suggest that for fast con-
vergence one can use a relaxation factor γ ∈ [1, 2) and let
αk = γα∗k at each iteration. When we do so, we get

∆k(γα∗k) = γ(2− γ)∆k(α∗k). (69)

By using (57) or (59), we then get

‖wk+1−w∗‖ ≤ ‖wk −w∗‖− γ(2− γ)α∗kϕ(wk, ŵk). (70)

Furthermore, using Corollary 4.1, and letting

τ = min
k

min{ 1
rk

,
1

2βk
, βk}, (71)

we have

‖wk+1 − w∗‖ ≤ ‖wk − w∗‖ − τ

2
γ(2− γ)ϕ(wk, ŵk). (72)

This inequality (72) plays an important role in proving
convergence of the proposed method. Let

N =




2(1− ν)rI 0 0
0 (1−

√
2

2 ν)βI 0
0 0 1

β I


 , (73)

then by using Lemma 3.2 and this notation, we get a
compact form of (46),

ϕ(w, ŵ) ≥ 1
2
‖w − ŵ‖2N . (74)

Theorem 4.1 Let the sequence {wk} be generated by
the proposed method In-PADM (25–28). The conditions
(35–36) hold and the conditions of Corollary 4.1 holds.
Then the sequence {wk} converges to w∞, which is a
solution of SVI (6).
Proof: By using (72) and (74), we get

‖wk+1 −w∗‖2 ≤ ‖wk −w∗‖2 − τγ(2− γ)

2
‖wk − ŵk‖2N . (75)

Consequently,

‖wk+1 − w∗‖2 ≤ ‖w0 − w∗‖2, ∀k. (76)

It follows that the sequence {wk} is bounded. Moreover,
we get

τγ(2− γ)
2

∞∑

k=0

‖wk − ŵk‖2N ≤ ‖w0 − w∗‖, (77)

which follows that

lim
k→∞

‖wk − ŵk‖2N = 0. (78)

Thus {ŵk} is also bounded and it has at least one cluster
point. Let w∞ be a cluster point of {ŵk}, let the sub-
sequence {ŵkj} converges to w∞. It follows from (78)
that

lim
k→∞

‖xk−x̂k‖ = 0, lim
k→∞

‖yk−ŷk‖ = 0, lim
k→∞

‖λk−λ̂k‖ = 0,

and consequently (by using conditions (35) and (36)),

lim
k→∞

‖ξk
x‖ = 0, lim

k→∞
‖ξk

y‖ = 0. (79)

Then by (25–27), we get,

ŵk ∈ W,





lim
k→∞

(x′ − x̂k)T {f(x̂k)−AT λ̂k} ≥ 0,

lim
k→∞

(y′ − ŷk)T {g(ŷk) + λ̂k} ≥ 0,

lim
k→∞

(Ax̂k − ŷk) = 0,

(80)



and

ŵkj ∈ W,





lim
kj→∞

(x′ − x̂kj )T {f(x̂kj )−AT λ̂kj} ≥ 0,

lim
kj→∞

(y′ − ŷkj )T {g(ŷkj ) + λ̂kj} ≥ 0,

lim
kj→∞

(Ax̂kj − ŷkj ) = 0.

(81)

Ineq. (81) implies that

w∞ ∈ W,





(x′ − x∞)T {f(x∞)−AT λ∞} ≥ 0,
(y′ − y∞)T {g(y∞) + λ∞} ≥ 0,
(Ax∞ − y∞) = 0.

(82)

Thus w∞ solves the variational inequalities (6) (or
equally (10)). Since {ŵkj} → w∞, by (78), for any given
ε > 0, there exists an integer l > 0 such that

‖wkl − ŵkl‖N <
ε

2
, ‖ŵkl − w∞‖N <

ε

2
. (83)

Therefore, for any k ≥ kl, by (75) and (83), we have

‖wk − w∞‖N ≤ ‖wkl − w∞‖N

≤ ‖wkl − ŵkl‖N + ‖ŵkl − w∞‖ < ε,

which implies the sequence {wk} converges to w∞— a
solution of variational inequalities (6).

5 Practical implementation and numeri-
cal results

We have to give the proximal parameter rk and penalty
parameter βk in the practical implementation of the pro-
posed In-PADM method.

From (45) and (71), we know if the sequences {rk}, {βk}
are positive and bounded, then τ is well defined and τ >
0, and the condition of Corollary 4.1 holds.

On the penalty parameter sequence {βk}, He and Yang,
et al [4] proposed a method that adjusts the penalty pa-
rameter per iteration based on the iterate message, which
is referred to as self-adaptive penalty parameters method,
and showed that the sequence {βk} generated by this
method is both bounded above and bounded below and
away from zero. In the proposed method of this pa-
per, we use this self-adaptive penalty parameters method
(Method 3, Strategy S3 in [4]) directly and set

0 < βl ≤ βk ≤ βh < +∞, ∀k. (84)

Next we consider the proximal parameters rk. For any
ν ∈ (0, 1), the variational inequality (26) is equivalent to

y ∈ Y, (y′−y)T 1
βk

{
g(y) + [λk − βk(Ax̂k − y)] + ξk

y

} ≥ 0,

(85)
and furthermore it is equivalent to the following projec-
tion equation

y = PY
{

y− 1
βk
{g(y) + [λk − βk(Ax̂k − y)] + ξk

y}
}

. (86)

Then due to the variational inequality (26), we have the
following Lemma.
Lemma 5.1 Let g be monotone and one of the following
conditions is satisfied:

‖g(yk)− g(ŷk)‖ ≤
(

νβk

2
√

2

)
‖yk − ŷk‖. (87)

Let
ξk
y = g(yk)− g(ŷk). (88)

Then the condition (36) holds, and the subproblem (26)
(correspondingly (85) ) is monotone and tractable.
Proof: It’s obvious and we omit it here.

We finally focus on the proximal parameter sequence
{rk}. Note that the variational inequality (25) is equiva-
lent to the following projection equation

x = PX
{

x− 1

rk

[
f(x)−AT (λk−βk(Ax−yk))+rk(x−xk)+ξk

x

]}

(89)
By manipulation, we get

x = PX
{

xk− 1

rk

[
f(x)+βkAT Ax+ ξk

x − (AT λk +βkAT yk)
]}

(90)

Lemma 5.2 If f is monotone and Lipschitz continuous
with constant Lf , i.e.,

‖f(x)− f(x̂)‖ ≤ Lf‖x− x̂‖, ∀x, x̂ ∈ X . (91)

Let
ξk
x = f(xk)− f(x) + βkAT A(xk − x), (92)

and

rk ≥ Lf + βk‖AT A‖
ν

. (93)

Then the condition (35) is satisfied and the variational
inequality (25) is monotone and tractable.
Proof: By computing directly and using (91), (93), we
get

‖ξk
x‖ = ‖f(xk)− f(x) + βkAT A(xk − x)‖

≤ ‖f(xk)− f(x)‖+ ‖βkAT A(xk − x)‖
≤ Lf‖xk − x‖+ βk‖AT A‖‖xk − x‖
≤ νrk‖xk − x‖. (94)

This is (36). Substituting (92) into (90), we have

x = PX
{

xk − 1

rk

[
f(xk) + βkAT Axk − (AT λk + βkAT yk)

]}
.

(95)

The right-hand of (95) is an explicit projection and is
tractable. The monotonicity of (25) is obvious under the
conditions.

From the previous discussions, we know that the param-
eter sequences {rk}, {βk} is positive and bounded such
that τ in (71) is well defined which guarantees conver-
gence of the proposed method.

Finally in this section, we present some numerical results
on the described problems. We deal with Problem (3)



by using the proposed method, on a portable computer
with: 166GHz CPU, 2.5GB RAM, Matlab 6.5.

The data of Problem (3) is generated by the following
way: D ∈ Rm×n is a random matrix with Dij ∈ (1, 2)
according to uniform distribution, b ∈ Rm is a given sig-
nal vector with a random noise. µ = 0.01 ∗ ‖AT b‖∞.
The parameters of the implementation of the proposed
method are given in the following: ν = 0.95, r0 =
0.51 ∗ max(σ(AAT )) (where σ(AAT ) denotes the eigen-
value of AAT ), β0 = 1.35, x0 = 0n×1, y0 = 1n×1,
λ0 = 1n×1, γ = 1.2. We restrict the terminate error
ε < 10−3. The experimental results are stated in table
5.1. The notations in table 5.1 is as the following: m,n
and t denotes cputime; sp denotes the required sparse
degree, iter. is the number of iterations, feval. is the
number of computation of product on matrix and vector
(which is the main cost of the proposed method), r is the
ultimate proximal parameter.

Table 5.1 Numerical results
m n sp iter. feval. t(s) r

1024 4096 160/4096 172 520 7.78 2.240
1600 8192 320/8192 218 658 25.34 2.092
2048 12000 400/12000 248 746 58.83 2.006
3052 16348 512/16348 276 830 121.62 2.051

According to table 5.1, we can see that the proposed
method (i.e., In-PADM) is applicable for Compressed
Sensor problems.

6 Conclusions

In this paper, we present an inexact proximal alternating
directions method (In-PADM) for solving a class of mono-
tone structured variational inequalities. This method
make full use of the special structure of the described
problem. The problem with this special structure is com-
mon in practice. The research of this paper is a continu-
ation and development of previous works. In this paper,
we prove theoretically that for any inexact term ξk under
suitable conditions we have convergence of the proposed
method. By using the special structure of the described
problem, i.e., B = −I, we confirm that, without using the
proximal point term in the second variational inequality,
convergence of the proposed method is preserved. And to
do in this way provides some advantages for tractability
of the implementation. Numerical experiments show the
proposed method is applicable and valid.

Acknowledgement: I am grateful to Professor He
Bingsheng, for his enlightening of the idea of this paper,
and much useful advices to improve its quality.
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