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Abstract— This paper proposes a new location
problem of competitive facilities, e.g. shops and
stores, with uncertainty and vagueness including de-
mands for the facilities in a plain. By representing the
demands for facilities as fuzzy random variables, the
location problem can be formulated as a fuzzy random
programming problem. For solving the fuzzy random
programming problem, first the α-level sets for fuzzy
numbers are used for transforming it to a stochastic
programming problem, and secondly, by using their
expectations and variances, it can be reformulated to
a deterministic programming problem. After show-
ing that one of their optimal solutions can be found
by solving 0-1 programming problems, their solution
method is proposed by improving the tabu search al-
gorithm with strategic oscillation. The efficiency of
the solution method is shown by applying it to nu-
merical examples of the facility location problems.
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dom variables, tabu search, strategic oscillation.

1 Introduction

Competitive facility location problem (CFLP) is one of
optimal location problems for commercial facilities, e.g.
shops and stores, and the objective of a decision maker
(DM) for the CFLP is mainly to obtain as many demands
for her/his facilities as possible. Mathematical studies on
CFLPs are originated by Hotelling [9]. He considered the
CFLP under the conditions that (i) customers are uni-
formly distributed on a line segment, (ii) each of DMs can
locate and move her/his own facility at any times, and
(iii) all customers only use the nearest facility. CFLPs
on the plain were studied by Okabe and Suzuki [17], etc.
As an extension of Hotelling’s CFLP, Wendell and McK-
elvey [26] assumed that there exist customers on a finite
number of points, called demand points (DPs), and they
considered the CFLP on a network whose nodes are DPs.
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Based upon the CFLP proposed by Wendell and McK-
elvey, Hakimi [7] considered CFLPs under the condi-
tions that the DM locates her/his facilities on a network
that other competitive facilities were already located.
Drezner [4] extended Hakimi’s CFLPs to the CFLP on
the plain that there are DPs and competitive facilities.
As extension of their CFLPs, CFLPs with quality or size
of facilities are considered by Fernández et al. [5], Uno
et al. [22, 23], Bruno and Improta [3], and Zhang and
Rushton [27], and CFLPs based on maximal covering are
considered by Plastria and Vanhaverbeke [18].

In the above studies of CFLPs, the demands of cus-
tomers for facilities are represented as definite values.
Wagnera et al. [24] considered facility location mod-
els with random demands in a noncompetitive environ-
ment. For the details of location models with random
demands, the reader can refer to the study of Berman
and Krass [2]. Uno et al. [23] considered CFLPs with
random demands. The above CFLPs represent some un-
certainty including demands for facilities as randomness.
However, the demands generally include not only uncer-
tainty but also vagueness, which is often represented as
fuzziness. Moreno Pérez et al. [15] considered a facil-
ity location problem with fuzziness in a noncompetitive
environment. For variables with both uncertainty and
vagueness, Kwakernaak [14] proposed the fuzzy random
variable representing both fuzziness and randomness. For
the details of fuzzy random variable, the reader can re-
fer to the book of Kruse and Meyer [13]. Wang and
Qiao [19, 25] considered fuzzy random programming and
its distribution problem. For the recent studies of fuzzy
random programming problems, Katagiri et al. [11] con-
sidered multiobjective fuzzy random linear programming,
and Ammar [1] considered fuzzy random multiobjective
quadratic programming.

In this paper, we proposes a new CFLP with uncertainty
and vagueness by extending the CFLP proposed by Uno
et al. [23]. By representing the demands for facilities
as fuzzy random variables, the CFLP can be formulated
as a fuzzy random programming problem. For solving
the fuzzy random programming problem, first the α-level
sets for fuzzy numbers are used for transforming it to a
stochastic programming problem, and secondly, by using
their expectations and variances, it can be reformulated
to a deterministic programming problem.



The formulated CFLP cannot be solved directly because
of its nonconvexity and nonlinearity. Then, we first con-
sider an integer programming problem to obtain one of
optimal solutions to the CFLP. Since the reformulated
problem is NP-hard, we need to propose an efficient so-
lution method for the problem. For discrete optimiza-
tion problems, the tabu search algorithm, proposed by
Grover [6], is one of the efficient solution algorithms; for
the details of the tabu search algorithm, the reader can
refer to the book of Reeves [20]. Hanafi and Freville [8]
proposed an efficient tabu search approach for the 0-1
multidimensional knapsack problem, which is designed
based on a strategic oscillation. For CFLPs with ran-
dom demand, Uno et al. [23] proposed an efficient solu-
tion method improving their tabu search approach. Their
method utilizes the characteristic that the DM can im-
prove her/his objective function value if she/he locates
her/his facilities so that the facilities obtain demands
from as many DPs as possible. Unfortunately, the prob-
lem does not have the above characteristic because in-
creasing the number of DPs whose demands are obtained
by the locating facilities may make the variance of ob-
taining demands worse. Then, we propose a new tabu
search algorithm with strategic oscillation for solving the
CFLP. We apply it to numerical examples of the CFLPs
with fuzzy random demands, and show its efficiency by
comparing to other solution algorithms.

The remaining structure of this article is organized as fol-
lows. The next section devotes to introducing the defini-
tion of fuzzy random variables. In Section 3, we formulate
the CFLP with fuzzy random demand as a fuzzy random
programming problem, and by using the α-level sets, ex-
pectation and variance, we reformulated the problem to
a deterministic programming problem. Since it is diffi-
cult to solve the formulated problem directly, we show
that one of its optimal solutions can be found by solving
a 0-1 programming problem in Section 4. In Section 5,
we propose its solution method based upon tabu search
algorithms with strategic oscillation. We show the effi-
ciency of the solution method by applying to numerical
examples of the CFLPs with fuzzy random demands in
Section 6. Finally, in Section 7, concluding comments
and future extensions are summarized.

2 Fuzzy random variable

Let Ã be fuzzy number and µÃ : R → [0, 1] be member-

ship function of Ã, where R is the set of real numbers.
For α ∈ (0, 1], the α-level set of Ã is represented as the
following equation:

Ãα ≡ {x| µÃ(x) ≥ α} (1)

In this paper, we use the following definition of fuzzy
random variable, suggested by Kruse and Meyer [13]:

Definition 1 Let (Ω, B, P ) be a probability space, F(R)

the set of fuzzy numbers with compact supports, and X
a measurable mapping Ω → F(R). Then X is a fuzzy
random variable if and only if given ω set membership,
variant Ω, Xα(ω) is a random interval for any α ∈ (0, 1].

3 Formulation of CFLP with fuzzy ran-
dom demands

In the proposed CFLPs, we assume that all customers
only exist on DPs in plain R2. For convenience sake, by
aggregating all customers on the same DP, we regard one
DP as one customer.

There are n DPs in R2, and let D = {1, . . . , n} be the
set of indices of the DPs. Let m be the number of new
facilities that the DM locates, and k be the number of
competitive facilities which have been already located in
R2. The sets of indices of the new facilities and the
competitive facilities are denoted by F = {1, . . . ,m} and
FC = {m+ 1, . . . ,m+ k}, respectively.

Let ui ∈ R2 be the site of DP i ∈ D, and xj ∈ R2 and
qj > 0 be the site and quality of facility j ∈ F ∪ FC ,
respectively. Then, attractive power of facility j for DP
i is represented as the following function introduced by
Huff [10]:

ai(xj , qj) ≡


qj

||ui − xj ||2
, if ||ui − xj || > ε,

qj
ε2

, if ||ui − xj || ≤ ε,
(2)

where ε > 0 is an upper limit of the distance that cus-
tomers can move without any trouble. It is assumed that
all customers only use one facility with the largest at-
tractive power, and if the two or more attractive powers
are the same, they use the facility in reverse numerical
order of the indices of facilities; that is, in the order of
competitive facilities and new facilities.

Let x = (x1, . . . ,xm) be the location of the new facilities.
Then we use the following 0-1 variable for representing
whether DP i uses new facility j ∈ F :

φj
i (x) =

{
1, if DP i uses the new facility j,
0, otherwise.

(3)

Let ˜̄Wi be the L − R fuzzy random variable meaning
the buying power (BP) of DP i. New facility j ∈ F

can obtain the BP ˜̄Wi if φj
i (x) = 1. The objective of

the DM is maximizing the sum of BP that all the new
facilities obtain. Then, the CFLP with random demand
is formulated as the following fuzzy random programming
problem:

maximize ˜̄f(x) =
n∑

i=1

m∑
j=1

˜̄Wiφ
j
i (x)

subject to x ∈ R2m.

 (4)



For solving (4), we first transform (4) to the following
stochastic programming problem by using the α-level sets

of ˜̄f(x) with a given value α ∈ (0, 1]. For given α ∈ [0, 1],
we assume that the DM can decide the variable in each of
α-level sets for maximizing the objective function value
of (4). Then, (4) can be transformed as follows:

maximize f̄α(x) =
n∑

i=1

m∑
j=1

W̄iφ
j
i (x)

subject to W̄i ∈ ( ˜̄Wi)α, ∀i ∈ D,
x ∈ R2m.

 (5)

Next, by using the expectations and variances of random
numbers, we reformulate (5) to a deterministic program-
ming problem. For random variable W̄ , let E[W̄ ] and
V ar[W̄ ] be the expectation and variance of W̄ . For given
positive parameter σ, let

Wα
i ≡ sup

W̄∈( ˜̄Wi)α

{E[W̄ ]− σ · V ar[W̄ ]}. (6)

Then, (5) can be reformulated as follows:

maximize fα(x) =
n∑

i=1

m∑
j=1

Wα
i φ

j
i (x)

subject to x ∈ R2m

 (7)

Problem (7) is a nonconvex nonlinear programming prob-
lem. Besides, (7) has the characteristic that for dis-
tinct x1 and x2 ( ̸= x1), fα(x

1) = fα(x
2) if the or-

der of attractive power and dominating relation for x1

is the very same as those for x2. This means that (7)
cannot be solved by directly applying general analytic
solution methods with differential of the objective func-
tion, Kuhn-Tucker conditions, etc., since fα(x) is a step-
formed function. Moreover, the above characteristic also
causes an adverse effect for applying heuristic solution
methods for nonlinear programming problems, because
we cannot utilize any information of the neighborhood of
current solutions for finding their improving directions.
Uno et al. [22] showed that their CFLPs, which is easier
to solve than (7), cannot be also solved by directly apply-
ing heuristic solution methods for nonlinear programming
problems, e.g. genetic algorithm for numerical optimiza-
tion for constrained problem (GENOCOP) [12]. In the
next section, we show that one of the optimal solutions of
(7) can be found by solving a 0-1 programming problem.

4 Reformulation to 0-1 programming
problem

In the location model in the previous section, if the new
facilities are located, the values of (3) for all facilities and
DPs are given, and then objective function value of (7)
can be computed. On the other hand, we propose the
following solution method:

1. Decide the set of DPs that the DM wants to obtain
their BPs preferentially by giving the values of (3)
for all facilities and DPs, and

2. Find the location of the new facilities such that the
value of (3) for each facility and DP is equal to or
more than the given value.

For DP i ∈ D, the largest attractive power among all
competitive facilities is denoted by aCi . From (2), the set
of DPs that new facility j ∈ F cannot obtain their BPs
wherever it is located can be represented as follows:

D△
j = {i ∈ D |

√
qj/aCi ≤ ε}. (8)

Then, the set of DPs that there is at least one location
of new facility j which can obtain their BPs is denoted
by Dj = D\D△

j . For new facility j, let D̄j ⊆ Dj be the
set of DPs that the DM wants to obtain their BPs by
locating it preferentially. Let

lij =

{
1, if i ∈ D̄j ,
0, otherwise.

(9)

Then, D̄j can be represented as 0-1 vector lj =
(l1j , . . . , lnj)

T . For new facility j and vector lj given
by the DM, we consider the following problem with an
auxiliary variable rj ≥ 0:

minimize r2j
subject to ||xj − ui||2 ≤ qj

aCi
· rj ,

∀i ∈ {̄i|l̄ij = 1},
xj ∈ R2, rj ≥ 0.

 (10)

Let (x
lj
j , r

lj
j ) be an optimal solution of (10). Then, the

following theorem plays an important role to find an op-
timal location.

Theorem 2 For new facility j ∈ F , let D̄j be the set of
DPs given by the DM and lj be the 0-1 vector correspond-

ing to D̄j. Then, if r
lj
j < 1, the new facility j can obtain

all DPs in D̄j by locating it at x
lj
j .

Proof: For the constraint of (10) and r
lj
j < 1, ||xlj

j −
ui||2 < qj/a

C
i is satisfied for all DPs in D̄j. Then, aCi <

qj/||x
lj
j −ui||2 is satisfied. From (2), this equation means

that the attractive power of new facility j is more than

that of competitive facilities if the site of facility j is x
lj
l .

�

Since (10) is a convex programming problem, (10) can be
solved by using the solution algorithms for convex pro-
gramming problems, such as sequential quadratic pro-
gramming (SQP) method; for the details of the SQP
method, the reader can refer to the book of Nocedal and
Wright [16].



Theorem 3 Let L = (l1, . . . , lm) ∈ {0, 1}nm and xL =
(xl1

1 , . . . ,xlm
m ). Then, there exists L such that xL is an

optimal solution of (7).

Proof: Let x∗ be an optimal solution of (7). We define
the 0-1 matrix L̄ = (l̄1, . . . , l̄m) ∈ {0, 1}nm, each of whose
element for i ∈ D and j ∈ F is that l̄ij = φj

i (x
∗). Then,

from Theorem 2, xL̄ is also an optimal solution of (7)

because φj
i (x

L̄) = φj
i (x

∗) for all i, j and r
l̄j
j < 1 for all j.

This means that L̄ is one of the matrices satisfying the
condition of the theorem. �

Let rLmax ≡ max{rl11 , . . . , rlmm }. From Theorem 3, find-
ing an optimal solution of (7) can be formulated as the
following 0-1 programming problem:

maximize fα(x
L)

subject to rLmax < 1,
L ∈ {0, 1}nm

 (11)

Problem (11) is NP-hard because finding an optimal so-
lution of (11) strictly needs to solve (10) at 2nm times. In
the next section, we propose an efficient solution method
for (11).

5 Tabu search algorithm with strategic
oscillation

Problem (11) is a 0-1 programming problem, one of whose
approximate solution methods is the tabu search algo-
rithm with strategic oscillation, proposed by Hanafi and
Freville [8]. Uno et al. [23] proposed an efficient solu-
tion algorithm based upon the tabu search algorithm with
strategic oscillation for the 0-1 programming problem re-
formulated from the CFLP with random demands. In
this section, we propose a new efficient solution algorithm
based upon the tabu search algorithm with strategic os-
cillation for (11).

The tabu search is one of the local search methods. In our
solution method, we define moves from a current solution,
denoted by Lnow, as the increase or decrease of its one
element. The neighborhood of a current solution of (11)
is represented as a set of all solutions that can transfer
by only one move from the solution. In the tabu search
including our solution method, the next searching solu-
tion from Lnow, denoted by Lnext, is basically chosen to
the best solution for given criteria, e.g. objective function
value, in the neighborhood of Lnow. However, if we use
such a search without modification, a circulation of cer-
tain chosen moves occurs on the way of search, and then
it can only find one local optimal solution. For prevent-
ing such a circulation, if a move is chosen in the search,
the tabu constraint for its opposite move is activated for
given tenure, called the tabu tenure and denoted by T1.

Then the activated moves are forbidden to choose in T1

tenure, called tabu, even if the moves make the objective
function value of (11) best in all solutions in a neighbor-
hood. Such tabu moves are memorized in the tabu list
for the search.

Although the tabu search method has advantage for
searching in local areas, the feasible set of (11) is gen-
erally wide and there are many local optimal solutions
in the feasible set. Then, we introduce the strategic os-
cillation to the tabu search for searching various local
optimal solutions efficiently. Because of (10), there is a
connection between increasing the value of rL

now

max and in-
creasing the number of obtaining DPs. This means that
(11) has the tendency that while the expectation for Lnow

improves by increasing rL
now

max , the variance for Lnow im-
proves by decreasing rL

now

max . Then, we can find various
types of solutions of (11) by using the strategic oscilla-
tion: the iterations of increasing and decreasing of rL

now

max .
Therefore, our proposing solution method is described as
follows.

Tabu search algorithm with strategic oscilla-
tion for CFLPs

Step 0: Generate the initial searching solution Lnow,
and initialize the tabu list and other variables. If
rL

now

max < 1, then go to Step 4.

Step 1: Move Lnow to Lnext by decreasing an element of
Lnow with the purpose of decreasing rL

next

max as much
as possible. This step is repeated until it is satisfied
rL

next

max < 1.

Step 2: Move Lnow to Lnext with the purpose of improv-
ing the objective function value of (11). This step is
repeated until there is no non-tabu and improved
moves from Lnow in its feasible set.

Step 3: Move Lnow to Lnext with the purpose of im-
proving the objective function value of (11). This
step is repeated at a given certain tenure, denoted
by T2 > 0.

Step 4: Move Lnow to Lnext by decreasing an element of
Lnow with the purpose of decreasing rL

next

max as much

as possible. This step is repeated until rL
next

max is less
than a certain value, denoted by rlow.

Step 5: Do the same operations as Step 2.

Step 6: Do the same operations as Step 3.

Step 7: Move Lnow to Lnext with the purpose of improv-
ing the objective function value of (11) without con-
sidering the feasibility of (11). This step is repeated

until rL
next

max is more than a certain value, denoted by
rupp.



Step 8: If the given terminal conditions are satisfied,
then terminate the algorithm. Otherwise, return to
Step 1.

Note that the tabu search algorithm with strategic os-
cillation for CFLPs with random demands, proposed by
Uno et al. [23], is utilized the characteristic that the DM
can improve her/his objective function value if she/he
locates her/his facilities so that the facilities obtain de-
mands from as many DPs as possible. Unfortunately,
the problem does not have the above characteristic be-
cause increasing the number of DPs whose demands are
obtained by the locating facilities may make the variance
of obtaining demands worse. Then, we improve the al-
gorithm to the CFLPs with fuzzy random demands by
adding Step 2 and changing Step 5 to search moves of
not only increase but also decrease.

6 Numerical experiments

In this section, we show the efficiency of the solution al-
gorithm in the previous section by applying to three ex-
amples of the CFLPs. In these examples, the numbers
of DPs are n = 30, 40, 50. The sites of DPs u1, . . . ,un

are given in [0, 100] × [0, 100] randomly, and their BPs
˜̄W1, . . . ,

˜̄Wn are represented as fuzzy random variables;
each of which have three scenarios whose probabilities are
0.5, 0.3, and 0.2, and BPs of each DP for each scenario are
given from the set of fuzzy numbers whose membership
functions are given by

µW̃ (x) =

{
1− (c− x)/β ∨ 0, x ≤ c,
1− (x− c)/γ ∨ 0, x ≥ c,

(12)

where ∨ means that a ∨ b = max(a, b), and for each DP
and scenario, c, β, and γ are randomly given in [5, 10],
[1, 4], and [1, 6], respectively. We give five competitive
facilities, that is k = 5, and for each competitive facility
j ∈ FC , its site xj are given on DPs chosen randomly,
and its quality qj is randomly given in {1, . . . , 5}. In
this plain, the decision maker locates one facility, that is
m = 1, whose quality is that q1 = 3. We give the α-level
set with α = 0.7. For (6), we give σ = 3.

Next, we give parameters about our solution method; for
the meanings of parameters of tabu searches, the reader
can refer to the book of Reeves [20]. We set the tabu
tenure T1 = n/2 − 10. The terminal condition in Step 7
is that the iteration of the tabu search algorithm is false
until 10 times. At Step 3, let T2 = 10. At Steps 4 and 7,
let rlow = 0.3 and rupp = 3.

For showing the efficiency of our solution method, we
compare its computational results to that of the genetic
algorithm; for details of the genetic algorithms, the read-
ers can refer to the studies of Sakawa et al. [21]. We
set generation gap G = 0.9, population size NGA = 150,
and terminal generation TGA = 2000. Probabilities of

crossover, mutation, and inversion are pC = 0.9, pM =
0.01, and pI = 0.03, respectively.

We apply the tabu search and the genetic algorithm to
three examples of the CFLPs, where each of these al-
gorithms is implemented 10 times for each example by
using the PC (Intel Celeron(R) CPU 2.93 GHz, 992 MB
RAM). The computational results of solving the CFLPs
are shown in Tables 1-2. From Tables 1-2, the tabu search
can obtain better solutions for (11) than those of the ge-
netic algorithm with shorter computational times. This
means that our solution method is efficient for the CFLPs
with fuzzy random demands.

Table 1: Computational results by the tabu search algo-
rithm with the strategic oscillation for (11)

n 30 40 50
Best 49.34 57.30 68.56
Mean 49.34 57.15 68.56
Worst 49.34 56.57 68.56

CPU times (sec) 43.23 62.92 98.27

Table 2: Computational results by the genetic algorithm
for (11)

n 30 40 50
Best 49.34 57.30 68.56
Mean 49.27 56.79 63.50
Worst 48.63 56.57 56.67

CPU times (sec) 336.1 395.9 410.7

7 Conclusions and future researches

In this paper, we have proposed a new CFLP on the
plain with fuzzy random demands. We have formulated
the CFLP as a fuzzy random programming problem, and
reformulated to a deterministic programming problem for
finding an optimal solution of the problem. Because the
problem is difficult to solve directly, we have shown that
the problem can be reformulated as a 0-1 programming
problem. Since the 0-1 programming problem is NP-hard,
we have proposed an efficient solution method based upon
the tabu search algorithm with strategic oscillation by
utilizing characteristics of the CFLPs. The efficiency of
the solution method is shown by applying to several ex-
amples of the CFLPs.

We considered the uncertainty and vagueness including
demands in this paper. For the CFLPs, we think that
the distance between customer and facility also include
some uncertainty and vagueness; for the reasons that cus-
tomers may go to the facilities by utilizing various means
of transportation, that customers may come by facilities
on the way to another destination, etc. Then, we can
consider other CFLPs with uncertainty and vagueness,
which are interesting future studies.
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