
  

  

Abstract— In this paper we present an application of robust 
optimization to capacity planning problems under uncertainty. 
We present the framework to handle uncertainty and discuss 
the computational complexity of capacity planning problems 
under this framework.  We show that the formulation is not 
only intuitive but the computational complexity of a large 
variety of problems is the same as linear (in general convex) 
programming. 

I. INTRODUCTION 
supply chain is a network of suppliers, production 
facilities, warehouses and end markets. Capacity 

planning decisions involve decisions concerning the design 
and the configuration of this network. The decisions are 
made on two levels: strategic and tactical. Strategic 
decisions include decisions such as where and how many 
facilities should be built and what their capacity should be. 
Tactical decisions include where to procure the raw-
materials from and in what quantity and how to distribute 
finished products. These decisions are long range decisions 
and a static model for the supply chain that takes into 
account aggregated demands, supplies, capacities and costs 
over a long period of time (such as a year) will work. The 
challenge is to make these decisions under uncertainty.  
 
To deal with uncertainty, extensive research has been 
carried out in both Probabilistic (Stochastic) Optimization 
and Robust Optimization (constraints) frameworks. 
However, these techniques face difficulties in conveniently 
estimating the data that they require. For new products, such 
data may not even exist. We have proposed an extension of 
robust optimization to solve this problem intuitively and 
meaningfully in our earlier work [5], [6], [7], [8]. 
 
Below, in Section II we give an overview of the problem. 
Section III gives a mathematical formulation of the problem, 
and characterizes the properties of the solution under linear 
metrics. Section IV gives a simple example of our ideas. 
Section V gives results on a wide variety of examples, 
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including those with nonlinear costs with breakpoints. 
Section VI concludes. 

II. OVERVIEW 
Our framework is characterized by intuitive specification of 
uncertainty and its quantification. Classical robust 
optimization approaches are seen to be too conservative. To 
make the solutions more attractive, Bertsimas, Sim, Theile 
[2], [3], [4] have proposed an approach where the level of 
conservatism or the budget of uncertainty, for each 
constraint can be controlled based on probabilistic bounds of 
constraint violation. An advantage of their approach is that 
the robust counterpart of a linear programming problem is 
also a linear, thus maintaining computational tractability. 
But their model specifies uncertainty as a symmetric 
variation around a nominal point, which may not reflect 
economically meaningful information.  

STRENGTHS OF OUR FORMULATION 

In contrast to this, we represent uncertainty in a constraint 
based framework naturally derived from basic economic 
principles. Instead of specifying the data directly, we specify 
bounds on linear (& quadratic) combinations of the data, 
incorporating correlations amongst the data elements. The 
uncertainty sets (constraint sets) form a convex polytope,  
built  from  simple  and  intuitive  linear  constraints  (simple  
sums  and  differences  of  supplies,  demands  etc)  those  
are  derivable  from  historical  time series data, which are 
meaningful  in  terms of  macro-economic behavior. 
Specifically, substitutive effects bound the sum of different 
demands, complementary effects bound differences, revenue 
constraints bound weighted sums, etc. The budget of 
uncertainty does not adequately reflect these underlying 
physical realities.  
 
With our specification, many kinds of future uncertainty can 
be specified. Not only does this specification avoid ad-hoc 
gravity models and their variants, as well as ad-hoc 
probability distributions, but it is also simple and intuitive. 
Answers are globally valid over the entire range of 
parameter variation.  
 
In addition, we have a unique ability to quantify information 
content in the polytope using Shannon’s information 
theoretic concepts, based on which we can quantitatively 
compare different scenario sets for the future [7]. This is 
done as follows. 
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 Assuming that in the lack of information, the parameters 
vary with equal probability in a large region R (taken to be 
of finite volume for simplicity initially), of volume Vmax. 
Then the constraints specifying the convex polyhedron CP 
specify a subset of the region R, of volume VCP. The amount 
of information provided by the constraints specifying the 
convex polyhedron can be equated to: 

                      maxlog 2
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It can be easily seen that (1) reduces to the Shannon 
surprisal [9] of getting a set of parameters satisfying the 
constraints, assuming that the parameters are equiprobable 
in the large region R. While the estimation of polyhedral 
volume is a difficult problem and initial results with 
polyhedra obtained by practical constraints are promising. 
 
The identification of polyhedral volume with information 
content yields several powerful methods of data analysis. 
For example, we can construct new constraint sets 
equivalent in information content to an original set, by using 
orthogonal transformations, on the original set.  
 
The formulation of uncertainty is clearly very powerful. 
Simultaneously, however, it does not substantially increase 
the computational complexity of the optimization problems, 
and we shall show a few important cases in this paper.  
 
In general, with linear constraints, it is easy to model most 
optimization problems as linear programs. However, in 
practice a number of non-convex constraints like cost/price 
breakpoints and binary  0/1 facility location decisions 
change the problem from a standard LP to an non-convex 
ILP problem, and heuristics are necessary for obtaining the 
solution even with state-of-the-art programs like CPLEX. 
While such optimizations are very difficult, it is possible to 
bound the performance of the optimal solution reasonably 
simply. We show below that Linear Programming allows us 
to determine bounds on performance of any metric given one 
or more solutions. These solutions may have been obtained 
by ad-hoc or other heuristics. An ensemble of such solutions 
enables us to find tight bounds for the metrics encountered 
in various classes of optimization problems. Many classical 
problems can be generalized and solved using such a 
representation of uncertainty. 
 
Although getting the optimal answers is difficult but note 
that even bounds for the optimal solution are very useful 
information in the complex supply chain framework. Given 
this, the advantages of our approach are that bounds can be 
quickly given on any candidate solution using LP/ILP, since 
the equations are then linear/quasi-linear in the 
demands/supplies/other parameters, which are linearly 
constrained (or using Quadratic programming with quadratic 
constraints). The best case, best decision and worst case, 
worst decision are clearly global bounds, solved directly by 

LP/ILP. Details are skipped for brevity (see [10]). 
 

III. THE CAPACITY PLANNING PROBLEM 
From a theoretical viewpoint, the classical multi-commodity 
flow model [1] is the natural formulation for capacity 
planning. In the static multi-commodity flow model (at a 
single time instant) for each commodity, inflows Фij are 
equal to outflows Фik at a node j. In addition, the flows Фij 
are bounded. If we need to minimize cost we get the 
optimization (written for a single commodity): 
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Here i varies over all predecessors of j, and k varies over all 
successors of j, and dj is the amount of sourced/sinked flow 
at node j. The optimization task is to decide the flows in 
order to minimize the cost. A variety of optimizations result, 
based on auxiliary assumptions, and these are detailed 
below. We show that while these optimizations are NP-
hard/non-convex, heuristic techniques exist which give 
solutions within 10-20% of optimal. 
  
A general supply chain is given in Fig. 1, connecting 
suppliers to factories and markets. Capacity planning 
problem on such a chain would mean finding the optimum 
set of factory locations (suppliers and demands are taken as 
given), capacities and distribution policy for a given 
demand, including in general some uncertainty.  
 

Fig. 1: A general supply chain 

 
This problem can be formulated in various flavors, with a 
variety of assumptions on demands being fixed or variable, 
locations of factories being fixed / variable, costs being 
linear/piecewise linear, variables having integrality 
constraints etc. The computational complexity of these 
problems varies – we illustrate this by looking at problems 
at two extremes of the spectrum (Section V has more 
details). 
 
At one extreme is a problem with fixed demands, locations, 
and linear costs. This is directly solvable using linear 
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programming, as shown below. At the other extreme are 
problems with variable demands, locations, and nonlinear 
costs. This problem is computationally difficult, but we 
present a heuristic which comes to within 10-20% of optimal 
below. 
 

A. Fixed demands and fixed locations with linear costs 
If the demands and the locations are known exactly, then a 
variety of optimizations can be formulated, and we mention 
two examples below. The problem of finding the minimum 
cost flow can be formulated as the following linear program. 

0                 
  Subject to
    Minimize
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                          (3)  

Here, C is the vector of linear costs, Ф is the vector of flows, 
d is the demand vector and A is the incidence matrix 
defining the supply chain network. The solution to this LP is 
easily obtained. The maximum cost flow problem can be 
similarly solved. 
 
In order to find the maximum flow on any link satisfying the 
demand, the problem can be specified as follows. 
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This is also a linear program and hence easily solved. 
 

B. Variable polyhedral demand and fixed locations with 
linear costs 
If the locations are fixed but the demands are variable but 
constrained within a convex polyhedral set ( edCP ≤)(  ), 
the problem becomes more complex. The uncertainty 
manifested in the demand is classically tackled using 
recourse- adjustment of the solution after the demand has 
materialized. We note that another, static solution where all 
decisions are made before the demand has materialized can 
also be considered, but will be skipped for brevity.    

 
The optimization using recourse, takes an optimal decision, 
after the demand has materialized. To evaluate its 
performance, we have to determine the demand for which 
the optimal routing is most expensive. This is formulated as 
follows: 
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The maximization is over the demand variables dij’s, and 
the flow Φ for each set of demands is optimally chosen. As 

written, this problem is not an LP, since it is a max-min. 
However, utilizing the theory of duality, we can transform 
this to a tractable optimization. 
 
Assuming strong duality with respect to the flow variables 
Φ, with dual variables ν, the above problem can be 
formulated as follows 
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This is a quadratic program and generally difficult to solve 
optimally, with the solution being possibly at an interior 
point. Also, the metric is not positive semi-definite (it has a 
saddle point at (d, ν) = (0, 0)). However, we can 
considerably simplify the solution using the following 
lemma. 
 
Lemma: The optimal value of d and v are at the vertices of 
the polytopes defined by 0Tc A ν+ ≥ and edCP ≤)( . 
Proof:  Note that  

• For a fixed d the metric Td ν is linear in ν and vice 
versa. 

• The constraints on d and ν are decoupled. 
 

The metric dTν is linear in d for a fixed ν and vice versa. 
If the optimal point is denoted as (d*, ν*) d* has to be at a 
vertex of the d polytope ( edCP ≤)( ). Similarly the ν* is 

at a vertex of the polytope 0Tc A ν+ ≥ . Hence the 
optimal point (d*, v*) is found amongst the vertices of the 
polyhedron specified by ( 0 ,)( ≥+≤ νTACedCP ). Since, 
the number of vertices is exponential in the number of 
constraints and variables, an exhaustive search is 
computationally infeasible. At this point of time we do 
not have a fast polynomial method for this optimization, 
and we propose a heuristic based on Lemma 1 
 
Heuristic-DV:  Heuristic-DV alternates between the d and 
ν spaces. An initial candidate solution satisfying the 
uncertainty constraints (CP)d <= e, is found in the d-



  

space, and the vertex in the ν-space which optimizes the 
metric is determined using an LP. Then this vertex in the 
ν-space is kept fixed, and the best vertex in the d-space 
which optimizes the metric is determined using an LP. 
The process is continued till convergence is attained. 
Unfortunately, this search can get stuck in local optima, as 
the following example with 2 demands shows. Consider 
the vertices in the d = [d1, d2] space as [1, 1] and [2, 1/2]; 
and in the ν = [ν1, ν2] space as [1, 1] and [0, 4.5], then 
looking at Fig. 5 it can easily be verified that if we start at 
d = [2, 0.5], then we get stuck at the local optimum -2.25 
when clearly the global optimum is -2. 
 
Heuristic-DV is then enhanced using simulated annealing, 
where we perturb the solution obtained, and repeat the 
process. Fig. 3 demonstrates the heuristic. 
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Fig. 2: Heuristic-DV example 

 

 

Fig. 3: Heuristic-DV 

C. Variable polyhedral demand and variable locations with 
linear costs 
In this case, the problem becomes an ILP as the locations are 
now variable so we need a location variable xi for each 
potential location i ( { }1,0∈ix ). 
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The problem with recourse becomes: 
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Taking the dual, the resultant problem becomes a MIQP 
problem (details omitted for brevity). The problem is NP-
hard in this case and cutting plane, branch and bound and 
similar techniques are required. 
 

D. Variable polyhedral demand and variable locations 
with breakpoints and multiple fixed and variable costs 
In practice, there are seldom any costs that are without 
breakpoints. A generic cost function with breakpoints is 
shown in Fig. 4.   
 

 
Fig. 4: Generic cost function with breakpoints 

 
The general cost function can be written using indicator 
variables as follows (this is a standard ILP technique):  
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                   Where 0int 1 =−Breakpo  
                         And Ζ∈iI  
It is clear that the problem is highly non-convex in this case, 
and heuristics are in general required (Section V has some 
results). However, this computational difficulty is intrinsic 
to the cost function, and not a result of our uncertainty 
formulation.  

IV. SIMPLE EXAMPLE 
The following simple illustrative example demonstrates all 
the aspects of the proposed formulation. It shows how 
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uncertainty can be specified and how capacity bounds are 
derived for varying assumptions. 

 
Fig. 5: Simple supply chain 

The single-commodity supply chain in Fig. 5 consists of 2 
suppliers, 2 plants, 2 warehouses and 2 market locations. We 
want to minimize/maximize the total cost of the supply chain 
while satisfying the demand for the product at the markets.  
To evaluate the performance of our solution, we calculate 
the absolute bounds on cost – the minimum cost under the 
best decision for the best demand (min-min), and the 
maximum cost (max-max) assuming the worst possible 
decision for the worst case demand. Both are directly 
obtained using LPs, and serve as bounds for the 
performance of heuristic DV.. If the costs are linear and the 
locations are fixed, we can use heuristic-DV to find the 
solution. 
 
In this example, the direct edges are low cost, 10 units/unit 
of flow, and the cross edges are 15 units/unit of flow. 
 
An example of a constraint set ((CP)d ≤ e) for the uncertain 
demand derived from historical data is below: 

 
These have an economic interpretation - the first two bound 
the sum of the first and second demand, a substitutive effect. 
The next two put bounds on differences, a complimentarity 
effect. 
Assuming linear costs and fixed locations, the min-min 
solution to the problem is given by Fig. 6 and the max-max 
solution is given in Fig. 7, where dark edges carry flow and 
light edges do not carry any flow. The min-min solution has 
low demand (as low as permissible under the constraints). It 
carries flow only on the least cost edges (each costing 10 
units per unit of flow), and the max-max pushes all the flow 
to the cross edges, each costing 15 units per unit of flow 
 

 
Fig. 6: Optimal routing for the min demand with fixed locations and linear 

costs (lower bound on cost) 

 
Fig. 7: Worst routing for the max demand with fixed locations and linear 

costs (upper bound on cost) 

 
The min-min cost for operation was 6400.00 units. The 
max-max cost for this problem was 18000.00 units. We note 
that these are absolute bounds – with maximum optimism 
and pessimism about the demand and decision both. In 
practice, these will not be used for operational decision, but 
furnish performance limits.  
 
Given these bounds, we are interested in finding the cost of 
optimal routing with worst case demands (a max-min) and 
for that we can use Heuristic-DV.  
We first take an initial random vertex in the demand space 
(satisfying constraints 1.1) as follows 

[ ] [ ]9011021 ==
→

ddD  
 
We maximize with respect to the dual variables (of the flow) 
and get an objective function value of 7350. We now find 

the values of dual variables ν
→

and fixing those, we maximize 
with respect to the demand variables and get an objective 
function value of 9450. Then we repeat the process. Table 1 
summarizes the result of this exercise.  
 
The cost for the random demand vertex was 7350. In the 
next step, maximizing with respect to demand variables 
keeping dual variables fixed, the cost was 9450. The new 
demand vertex is now [210 190]. We maximize with respect 
to dual variables and get a solution of 14850, fix the dual 
variables and maximize with respect to the demand 
variables. At this point we come back to the previous 
demand vertex [210 190]. It could be a local optimum and 
so we perturb the demand vector and choose another random 
point [150 130]. The steps of the heuristic are summarized 
in Table 2. The heuristic again converges to the same 
solution. 
 

TABLE 1 
 HEURISTIC-DV FOR SMALL EXAMPLE WITH INITIAL RANDOM 

DEMAND VECTOR = [110 90] 

Demand vertex Objective function 
value with D fixed 

Objective function 
value with V fixed 

[110 90] 6400 12800 
[210 190] 12800 12800 
[210 190] 12800 12800 

 
 

 
 
 

dem_M0_p0 + dem_M1_p0 >= 200 
dem_M0_p0 + dem_M1_p0 <= 400 
dem_M0_p0 - dem_M1_p0 <= 20  (1.1)
dem M0 p0 - dem M1 p0 >= -20



  

TABLE 2 
 HEURISTIC-DV FOR SMALL EXAMPLE WITH INITIAL RANDOM 

DEMAND VECTOR = [150 130] 

Demand vertex Objective function 
value with D fixed 

Objective function 
value with V fixed 

[150 130] 8960 12800 
[210 190] 12800 12800 
[210 190] 12800 12800 

 
The maximum value for the objective function that we 
obtained was 12800.00. The min-min solution for this 
example was 6400.00 and the absolute maximum was 
18000.00. Thus the answer obtained by Heuristic-DV is 
within 29% of the upper bound on the cost, and reflects the 
improvement obtained by making optimal decisions, once 
the demand has materialized.  
 

V. RESULTS 
In this section we present some results from our simulations. 
All of our results were produced on an Intel Celeron 1.60 
GHz processor, with a 512 MB RAM. 
 
First, we illustrate Heuristic-DV with a larger example. We 
consider a supply chain with 5 suppliers, 5 factories, 5 
warehouses and 5 markets. There is only 1 product demand 
for which the supply chain services hence there are 5 
demand variables (one for each market). The demands are 
constrained as follows: 
 
dem_1 + dem_2 + dem_3 + dem_4 + dem_5 >= 200 
dem_1 + dem_2 + dem_3 + dem_4 + dem_5 <= 700 
dem_1 - dem_2 <= 100 
dem_1 - dem_2 >= -100 
dem_4 - dem_3 <= 80 
dem_4 - dem_3 >= 20 
dem_5 - dem_3 - dem_1 >= 10 
dem_5 - dem_3 - dem_1 <= 130 
 
Given per unit transportation costs through all the links in 
the supply chain, we want to find the demand for which the 
optimal routing is most expensive. This is the robust optimal 
solution. We formulate the problem as given by (10) and 
taking the dual, we get (11). We now apply Heuristic-DV. 
We first take a random vertex in the demand space as 
follows 
 

[ ] [ ]34.1334.8334.3100054321 ==
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We maximize with respect to the dual variables and get an 
objective function value of 7000.00. We now find the values 

of dual variables 
→
V and fixing those, we maximize with 

respect to the demand variables and repeat the process. 
Table 3 summarizes the result of this exercise.  
 
 
 

TABLE 3 
 HEURISTIC-DV EXAMPLE 

Demand vertex 

Objective 
function 

value with D 
fixed 

Objective 
function 

value with 
V fixed 

[0 100 3.34 83.34 13.34] 7000 24500 
[216.67 116.67 0 20 346.67] 24500 24500 
[216.67 116.67 0 20 346.67] 24500 24500 

 
The cost for the random demand vertex was 7000.00. In the 
next step, maximizing with respect to demand variables, the 
cost was 24500.00. From here we came to the demand 
vertex [216.67 116.67 0 20 346.67]. We fix the demand 
vertex, maximize with respect to the dual variables, fix the 
dual variables and get the same demand vertex back. If the 
heuristic proceeds further, it will keep cycling through this 
demand vertex. The maximum value for the objective 
function that we obtained was 24500.00. The absolute 
minimum cost for this example was 6000.00 and the 
absolute maximum was 31500.00. Thus the answer obtained 
by Heuristic-DV tightens the upper bound on cost by 22%. 
This could be a local optimum and we can apply a simulated 
annealing step here to come out of it. 
 
Table 4 compares the time taken to find the absolute bounds 
on cost to the time taken to run Heuristic-DV for the present 
example as well as for the example in section IV.  
 

TABLE 4 
TIME TAKEN TO SOLVE HEURISTIC-DV EXAMPLES OF SECTIONS 

IV AND V 

 
 
We have solved larger problems of different classes. The 
example given in Fig. 8 shows a medium sized supply chain 
with 40 nodes and 3 products. There is one breakpoint in the 
costs, and the locations are also variable. If all demands 
range between a minimum of 100 units and a maximum of 
5000 units, then the optimal routing for the minimum 
demand as found using ILOG CPLEX solver is shown in 
Fig. 9.  
 
 

Nodes Problem Variables Time taken in 
seconds 

Time for LP 
relaxation in 

seconds 
8 Min-Min 16 0.14 0.06 

8 Max-Max 16 0.16 0.05 

8 Heuristic-
DV 8 0.4 0.25 

20 Min-Min 80 0.13 0.05 

20 Min-Max 80 0.17 0.05 

20 Heuristic-
DV 20 1.44 0.81 



  

 
Fig. 8: A medium sized supply chain example 

 

 
Fig. 9: Solution for the min-min problem for supply chain in Fig. 9 

 
 
TABLE 5 summarizes the statistics for some other min-min 
problems solved by our formulation using simulation. Most 
problems have costs with breakpoints, integer variables for 
locations and thousands of variables. Even then time taken 
to solve most of them is quite reasonable. The 70 node 
example in the second last row could not terminate and had 
to be aborted at an integrality gap of 4%. However, the 
initial solution obtained after LP-relaxation was within 
0.02% of the solution finally obtained.  
 

TABLE 5 
STATISTICS OF PROBLEMS SOLVED USING OUR FORMULATION 

 

VI. CONCLUSION 
We have shown a technique for solving capacity planning 
problems under our intuitive uncertainty formulation, which 
is tractable. Examining a wide variety of capacity planning 
problems, we focused the problem with recourse in detail, 
showing that it is a quadratic program, under the 
assumptions of linear costs and fixed locations. We 
presented a primal-dual heuristic - DV which comes to 
within 10-20% of optimal. Realistic costs with breakpoints 
lead to integrality constraints, which increase the 
computational difficulty, but initial results from our 
heuristics are promising. As we have noted in section V, a 
large number of medium scale problems with tens of 
thousands of variables are solvable in minutes on typical 
laptops. This approach presents a promising generalization 
of the range constraints of Bertsimas, Sim, Theile [2], [3], 
[4]. 
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