
 
 

 

 
   Abstract- This paper investigates self-maps 

XX:T   which satisfy a distance constraint in a 
metric space which mixed eventually 
point-dependent non-expansive properties, or in 
particular contractive ones, and potentially 
expansive properties related to some distance 
threshold. The above mentioned distance constraint 
is feasible in certain real -world problems by 
representing, for instance, either parametrical 
uncertainties or perturbations. 
 
   Index terms- contractive maps, non-expansive 
maps, metric space, fixed points. 
 

  
I. INTRODUCTION 

   Fixed point theory and related techniques are of increasing 
interest for solving a wide class of mathematical problems 
where convergence of a trajectory or sequence to some 
equilibrium set is essential. Recently, the subsequent  set of 
more sophisticated related problems are under strong 
research  activity: 
 
1) In  the,  so-called,   p-cyclic non-expansive or contractive 
self-maps map each element of a subset iA  of  an either  

metric or Banach space  B to an element of  the next subset 

1iA  in a strictly ordered chain of p subsets of B  such that 

11 AA p  .  If the subsets do not intersect then fixed points  

 
do not exist and their potential relevance in Analysis is 
played by best proximity points, [1-2]. Best proximity points 
are also of interest in hyperconvex metric spaces, [3-4].  
2) The so-called Kannan maps are also being intensively 
investigated in the last years as well as their relationships 
with contractive maps. See, for instance, [5-6], [11].   
3)  Although there is an increasing number of theorems about 
fixed points in Banach or metric spaces, new related recent 
results have been proven. Some of those novel results are, for 
instance, the generalization in [7]of  Edelstein´s fixed point 
theorem for metric spaces by proving a new theorem. Also, 
an iterative algorithm for searching a fixed  point in a closed 
convex subset of a Banach space has been proposed in [8]. 
On the other hand, an estimation of the size of an attraction 
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ball to a fixed point has been provided in [9] for nonlinear 
differentiable maps. 
4) Fixed point theory can be also used  successfully to find 
oscillations of solutions of differential or difference 
equations  which can be themselves characterized as fixed 
points. See, for instance, [9-10], [13- 14]. 
 
   This manuscript is devoted to investigate  self-maps 

XX:T   in a metric space  d,X  which satisfy the 

constraint       My,xdKy,xdyT,xTd  ;  for  

some real constants 0K , 0M . It is direct to see that 

   y,xdyT,xTd  ; i.e. XX:T   is non-expansive,  if 

  K/My,xd  . Also,  

 
                   K/My,xd   

      K/MMy,xdKyT,xTd  1  

                                              ; Xy,x                  (1.1) 

 
Then,  the self- map XX:T   exhibits the following 

constraint under (1.1) provided that it is continuous:  

zyx AA:T   where XA yx  is the open circle of 

center Xc yx  of radius K/M:R   for each given 

yxAy,x  and XA z  is an open circle of center at some 

Xc z   also of radius R.  Note that yxA can be distinct 

from zA  . However, if XX:T   is not continuous then 

the existence of the above circles is not ensured but only that 
(1.1) holds. Note that (1.1) does not guarantee that, contrarily 
to the case of large distances fulfilling   K/My,xd  , the 

self-map XX:T   cannot be guaranteed to be 

non-expansive, while it can be eventually expansive, for 
small distances fulfilling   K/My,xd  ; Xy,x  . The 

objective of this paper is the investigation of self-maps 
XX:T   which such mixed properties related to some 

distance threshold. 
 

II. DISTANCE PROPERTYAND EXAMPLE 
  
  Let   d,X  be a metric space and T a  self-map from X to 

X. Such a self-map is uncertain in the sense that the distance 
is subject to the following constraint:  
 

      My,xdKy,xdyT,xTd    

; Xy,x   , some real constants 0K , 0M     (2.1) 

   In order to discuss the feasibility of (2.1), note the 
following: 
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1) If 0M  and  10 ,K  then (2.1) is the usual  

contractive constraint of Banach  contraction principle and 
XX:T   is strictly contractive . If 0 MK  then 

XX:T   is non-expansive. If 0M , 1K  and the 

inequality in (2.1) is strict for   Xxy,x   then 

XX:T   is weakly contractive.  

 
2)  If K=1 then   MyT,xTd  ;  Xy,x  . Since T is a 

self-map on X, the validity of the constraint (2.1) is limited to 
the set family: 
 

     TjjiiiT ÂAsome;AATMAdiam:XA:Â 

  

of bounded subsets of X. In this case,    MyT,xTd jj  ; 

 Zj provided that TÂAy,x    and T maps X to 

some member iA  of TÂ  for each given Xy,x  . In other 

words, the image of T is restricted  as iAXX:T |  (for 

some Ti ÂA   which depends, in general, on x and y ) so 

that   MyT,xTd   in order to (2.1) to be feasible,  i.e. 

yT,xT are in some set of the family TÂ  if the pair  x, y in X 

is such that   My,xd  . Note that XX:T   is not 

necessarily a retraction from X to some element of TÂ  since 

  ji AAT   for   Tiji ÂAA,A  . Note that  

iAXX:T |  can possess a fixed point  if K=1 and ((2.1) 

holds. 
 
3) If 1K  then   MyT,xTd   if  yx  ; Xy,x  , and  

       y,xd
K

M
y,xdyT,xTd)K(/My,xd 




1
01

 if   Xxy,x   

Then if Xy,x   exist such that   










1
0

K

M
,y,xd  then  

(2.1) is impossible for any self-map T on X  since it would 
imply   0yT,xTd . For yx  , (2.1) holds for self-maps 

T on X such that   MyT,xTd  .  Fixed points can exist 

only in trivial  cases  as, for instance ,  
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M
y,xd:x:X
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is a set of isolated points with a minimum pair-wise distance 
threshold so that XX:T   is such that   XxyT   ; 

Xy   . 

 
4) The case of  interest discussed through  this paper for (2.1) 
is when 0M  and  10 ,K .  It is  shown that the 

self-map XX:T   exhibits contractive properties for 

sufficiently large distances which exceed a minimum  real 
threshold while it might possibly be  expansive for  distances 
under such a threshold. A related motivating example 
follows.  

 
Example 2.1:  Note that (2.1) is equivalent to : 

               My,xdKyT,xTd  1  

 ; Xy,x  , for  some 0M                                  (2.2) 

   Eq. 2.1 is relevant, for instance, in the following important  
problem. Let a linear time-invariant n-th order dynamic 
system  be: 
 
     ttxAtx x                                             (2.3) 

 

with  nnA R  being a stability matrix whose fundamental 

matrix satisfies ttA eKe 0
0

 ; 0 t  for some 

positive  real constants 0K  (being norm- dependent)  and 

0 and   nX,: R 0  being an unknown uniformly 

bounded  perturbation  of essential  supremum  bound  
satisfying   


0

0
Mtsupess x

t
; Xx . The 

unique solution of (2.3) for   00 xx   is: 

 

        
 dexetx x

t tAtA
00                 (2.4) 

 
   Direct calculation with (2.4)  for the norm –induced 
distance  
 
  yx:y,xd   ; Xy,x  yields: 

         000
0 yxeKtytxty,txd t    

                   





yxsup
K

00

0  

                      My,xdK  001  ;  

K

K
ln:ht




1

1 0

0
0                                            (2.5) 

 

with 
0

002




MK
M ,  101 00

0 ,eK:K h   .  

Now, let  nX R  the state space of (2.1), generated by 

(2.4)  , subject to Xx 0  and  d,X is a complete metric 

space. Define the state  transformation 

    



  hkxhkxT h 1  on X which generates  the 

sequence  of states    
0


k

hkx  being in X if Xx 0  with 

h being any  real constant  which satisfies  0hh  . Then, the 

self-map XX:T h   satisfies (2.1).   Note that the system 

(2.3) is always globally Lyapunov stable for any bounded 
initial conditions in view of (2.5). If the perturbation is 
identically zero then the origin is globally asymptotically 
Lyapunov stable since A is a stability matrix. This follows 
also from (2.5) since the self-map hT  on X is a contraction 

which has zero as its unique fixed and equilibrium point so 

that     0  hkxehkx A   as k ;  h,0  

; 0hh  . Thus,      0tx   as t  . However, in the 

presence of the perturbation, the origin is not globally 
asymptotically stable (although the system is globally stable) 
and it exhibits ultimate boundedness since for sufficiently 



 
 

 

large distances     
K

M
hkyT,hkxTd hh   (respectively, 

    
K

M
hky,hkxd  ),  the self-map is non-expansive 

(respectively, contractive). Then,    
         hky,hkxdhkyT,hkxTd hh 0 respectively, 

         hky,hkxdhkyT,hkxTd hh   ). But such 

properties are not guaranteed if      
K

M
hky,hkxd    

which can  lead to XX:T h   being  expansive.          

   
   Example 2.1 emphasizes the fact  that  some real-world 
problems exist where certain self-maps T from X to X are 
neither contractive nor expansive everywhere in X while 
such a map is guaranteed to be contractive for sufficiently 
large distances between any two points in X exceeding a 
known real threshold. For small distances, the self-map could 
be potentially expansive, or, as in the dynamic system of  
Example 2.1, unclassified as expansive, non-expansive or 
contractive. In Example 2.1, this last situation is due to the 
presence of unknown perturbations of known prescribed 
upper-bound. Note that in Example 2.1, the self-map X on X 
is guaranteed to be point-wise contractive or potentially 
expansive for each given  pair in X accordingly to the 
distance between them.   
 

III. RESULTS 
 

This section is devoted to formalize the general context of the 
described problem to the light of Fixed Point Theory. A first 
main result follows: 
 
Theorem  3.1.  Assume that  10 ,K  and consider any 

bounded set XX 0  with   RXdiam 0 . 

 
(i)  Assume that K/MR  . Then, the restricted map T 0X|  

of T from 0X to X is non-expansive (i.e. 

   y,xdyT,xTd   ) for any pair 0Xy,x   such 

that   K/My,xd   and weakly contractive (i.e. 

   y,xdyT,xTd   )  for any pair 0Xy,x   such that 

  K/My,xd  .  

 

(ii)  The distance between the iterates xT j and yT j  is 

uniformly bounded ; 0Xy,x  ,  Zj  and there 

exists a bounded subset 1X  of X fulfilling 

101 XXX  such that xT j , yT j
1X ;  Zj . 

 

 (iii)  If Property (ii) holds then all iterate  xT j  enters a 

compact convex subset  X of X ; 0Xx ; 

0jj  and some finite integer 0j ; i.e. the sequence 

xT j  is permanent;  0Xx  . Also, any two pairs of 

iterates yT,xT jj  enter within a compact subset of X of  

prescribed diameter 
K

M
; 0Xy,x   , 0jj  and 

some finite integer 0j .     

    
Proof: (i)  It follows by direct inspection from (2.2). 
 (ii) Direct recursive calculation with (2.2) for Zj  and 

any bounded XX 0  with   RXdiam 0 yields: 

        ijj

i

jjj KMy,xdKyT,xTd 


  11

0
11   

                                                                                (3.1) 

               y,xdK
K

M
y,xdK jj  111  

                    
K

M
R

K

M
 ;  Zj          (3.2) 

: Xy,x  since  10 ,K . 

 
(iii)  From  the first inequality of (3.2), 

     
 K

M
K

K

M
yT,xTdsuplim jjj

j
11 ; 

Xy,x                                                              (3.3) 

 
so that for any given real constant  0 , it exists a positive  

integer   1010 jj  such that  from (3.2) 
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 ; 10jj   ; Xy,x                                        (3.4) 

 

provided that   
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j 101 , or equivalently, 

Kln
K/MR

lnj 
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1

. Now, assume that 

K

M

K
R 





1

. Then, from (3.3) and the definition of 

limit superior, there exists  a finite  positive integer  
 R,jj  2020  for any arbitrary given  positive real 

constant   such that   
K

M
yT,xTd jj ; ´jj 20 .    

Then, choose 
K




1
 for the given  . Thus, (3.4) holds 

; ´jj:jj 201020  . Finally, assume that  

K

M
R 0 . Then, from (3.3), it exists   3030 jj  such 

that   
K

M
yT,xTd jj ; 30jj  . As a result,  for 

any bounded  set XX 0 with   RXdiam 0 , it exists a 

finite positive integer  R,jj  00  such that 

  
K

M
yT,xTd jj ; 0Xy,x  , 0jj  ,  for 

some finite integer 0j .  Thus, for each given  real 0 ,  



 
 

 

there is a compact convex subset 0XX    of X  where all 

the iterates  xT j  enter ; 0jj  , for some finite integer 

0j  .  Furthermore, any two iterates yT,xT jj  are within 

a compact convex subset of X  of prescribed diameter 


K

M
; 0Xy,x   , 0jj  .                                   

 
Remark 3.2. Note that Theorem 3.1 (i) does not conclude that 
the self-map 00 XX:T   is expansive for some pair 

0Xy,x   (i.e.     y,xdTy,Txd  ) if   K/My,xd   

but only that the upper-bound     My,xdK 1  of 

 Ty,Txd  is upper-bounded by  y,xd . Thus, 

  K/My,xd   for some pair 0Xy,x  is a necessary 

(but not sufficient) condition for 00 XX:T   to be 

expansive for that pair.                                                     
 
Remark 3.3. Note  that 0X  in Theorem 3.1  is not required 

to be convex.  Theorem  3.1 (ii)  guarantees that xT j , 

yT j
01 XX   although eventually it  may not  belong to 

0X .                                                                                 

   It is now of interest to  characterize in some sense a subset  

eX  of X such that  the restricted map eXT |  is  a self-map 

from eX  to eX  and which satisfies the constraints:  

 
   yT,xTdy,xdK 1  

                      y,xdK,My,xdKmin 21   

                                                      ; XXy,x e     (3.5) 

 
for  some real constants  10 ,K  0M , 

 011 ,KmaxK    , 12 KK   . This will allow later on  

the definition of  subsets of X where the self-map T is 
contractive , expansive or non-expansive. It would be proven 
later on (see Corollary 3.5) that (3.5) is impossible 
everywhere in X if 11 K . 

 
Theorem 3.4.  Assume that  10 ,K . Then, there is a 

family of nonempty bounded subsets of X for which (3.5) 
holds and, then trivially,  a  subfamily of nonempty bounded 
convex  subsets  of X with the same property.  
 
Proof: The constraints (3.5) are guaranteed under two 
possibilities for  each   XxXy,x e  where 

   holds(3.5):Xy:xX e   is a point-dependent 

subset of X, namely:       
                                                                                                                              

         y,xdKMy,xdKyT,xTdy,xdK 21 1 

;   XxXy,x e   , some 0M                         (3.6) 

 
which implies: 
 

          My,xdKy,xdKyT,xTdy,xdK  121

 ;   XxXy,x e                                             (3.7 ) 

 

   The constraint (3.6) is subject to the necessary conditions: 
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             ;  xXy,x e                                      (3.8) 
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;  xXy,x e                                                     (3.9) 

 
   Since T is a self- map on X , any pair y,x  xX e  has 

to satisfy simultaneously (3.8)-(3.9) so that  
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12

1
11

K,min
KK

M
,

KK

M
y,xd 










  

 ;  xXy,x e                                                  (3.10) 

 
under the constraint (3.6). Since 12 KK  ,  the constraint  

(3.7) requires 
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   The last inequality of (3.11) follows directly if KK 11  

since  KKK  112  implies that  
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                                                                                  (3.12) 
 
   Combining (3.11)-(3.12), one gets that (3.7) holds if  

   2
2

1
1

0 K,min
KK

M
,y,xd 










  

 ;  xXy,x e                                                     (3.13) 

 
   Thus, it is clear the existence of a  countable family of 
nonempty bounded subsets   xX ie  of  xX e ; 

Xx   defined by  

     









 1

1
1

1
K,min

KK

M
y,xd:Xy:xX ie

                    XxX e  Xx;                           (3.14) 

 
since      xX:Xy:xX iee  holds(3.5) ; Xx  . 

From the above developments, it turns out that there exists a 
convex  subset  in the family   xX ie  which is convex 



 
 

 

and then a subfamily of the set  ieX  which  possess such a 

property.                                                                                             
                                       
   Theorems 3.1 and 3.4 lead to the following important 
conclusion. 
 
Corollary 3.5.  Assume that  10 ,K . Then, the following 

properties hold if (3.5) holds: 
 
 (i) If   101 21  KK,Kmax  then  XX:T  is 

non-expansive. 
 
(ii) If   101 21  KK,Kmax  then  XX:T  is 

(strictly) contractive and then it has a fixed point. (iii) If 

 101 ,K   and 12 K then the restriction of T to  xX̂ ,  

    XxX̂X:T:xX̂T   |  | , Xx , is 

non-expansive where 

    Xx;X
K

M
y,xd:Xy:xX̂ 







  but 

 xX̂T ie | is weakly contractive for all sets  xX ie  

defined in (3.14) resulting to be 

   











11KK

M
y,xd:Xy:xX ie  since 

11 K ; Xx . As a result XX:T   is neither 

contractive nor expansive on  X. 
 
(iiii) If 112  KK then XX:T   is not contractive , 

and 
        My,xdKyT,xTdy,xdK  11  

     










11

1
2 KK

MK
,y,xdKmax ; Xy,x    

                                                                           (3.15) 
   If 11 K then neither (3.6) nor (3.7)  is feasible for any 

Xy,x  and (3.5) is not  feasible either ; Xy,x  . 

 
Proof: Properties (i) –(ii) follow rom Theorem 3.1. Property 
(iii) follows from Theorem 3.4 since: 
 

  11 11 KK/MK/MK

     xXxX̂ ie ; Xx   

   Then , for any Xy,x  , if  xX̂y  then  xX̂y ie  

and conversely. The constraints (3.15) follow directly from 

(3.5) and its necessary condition  
11 


KK

M
y,xd ; 

Xy,x  . It is now proven by contradiction that neither 

(3.6) nor (3.7) is feasible for all given pair x, y in X 
if 11 K . A necessary condition for (3.6) to hold for each  

Xy,x   is that   










1KK

M
,

1KK

M
y,xd

12

.    

  
  Thus, XX:T   is not expansive which contradicts 

     yT,xTdy,xdKy,xd  1  ;   Xxy,x  if 

11 K . Also, if (3.7) holds; Xy,x   then 

 
1KK

M
y,xd

2 
  which leads to the same above 

contradiction if 11 K . On the other hand, a necessary 

condition for (3.5) to hold is that  
 

       My,xdKy,xdK 11

  



1KK

M
y,xd

1

 ; Xy,x   

 
which contradicts 11 K . Property (iii) has been proven.   

Property (iv) follows from (3.6) and Property (iii)  for 
112  KK .                                                        
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