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Abstract–The present study discusses the retailer’s
optimal replenishment policy for products with a sea-
sonal demand pattern. The demand of seasonal mer-
chandise such as clothes, sporting goods, children’s
toys and electrical home appearances tends to de-
crease with time up to the end of the selling season.
In this study, we focus on “Special Display Goods”,
which are heaped up in end displays or special areas
at retail store. They are sold at a fast velocity when
their quantity displayed is large, but are sold at a low
velocity if the quantity becomes small. We develop
the model with a finite time horizon (period of a sea-
son) to determine the optimal replenishment policy,
which maximizes the retailer’s total profit. Numeri-
cal examples are presented to illustrate the theoretical
underpinnings of the proposed model.
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1 Introduction

The demand of seasonal merchandise such as clothes,
sporting goods, children’s toys and electrical home ap-
pearances tends to decrease with time up to the end of
the selling season. Inventory models with a finite plan-
ning horizon and time-varying demand patterns have ex-
tensively been studied in the inventory literature[1-7].
Resh et al.[1] and Donaldson[2] established an algorithm
to determine the optimal number of replenishment cy-
cles and the optimal replenishment time for a linearly in-
creasing demand pattern. Barbosa and Friedman[3] and
Henery[4] respectively extended the demand pattern to a
power demand form and a log-concave function. Hariga
and Goyal[5] and Teng[6] extended Donaldson’s work by
considering various types of shortages. For deteriorating
items such as medicine, volatile liquids and blood banks,
Dye[7] developed the inventory model under the circum-
stances where shortages are allowed and backlogging rate
linearly depends on the total number of customers in
the waiting line during the shortage period. However,
there still remain many problems associated with replen-
ishment policies for retailers that should theoretically be
solved to provide them with effective indices. We focus
on a case where special display goods[8, 9, 10] are dealt
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in. The special display goods are heaped up in the end
displays or special areas at retail store. Retailers deal
in such special display goods with a view to introduc-
ing and/or exposing new products or for the purpose of
sales promotions in many cases. They are sold at a fast
velocity when their quantity displayed is large, but are
sold at a low velocity when their quantity becomes small.
Baker[11] and Baker and Urban[12] dealt with a similar
problem, but they expressed the demand rate simply as
a function of a polynomial form without any practical
meaning.

Traditional retailers of seasonal merchandise have to com-
mit themselves to a single order to purchase before the
beginning of the season since the most of seasonal prod-
ucts have a relatively long ordering lead-time[13, 14]. The
retailers who deal with the seasonal merchandise have re-
cently been able to reorder the products during the sea-
son since Quick Response (QR) system has widely been
used by manufacturing industries. Quick Response is a
vertical strategy where the manufacturer strives to pro-
vide products and services to its retail customers in ex-
act quantities on a continuous basis with minimum lead
times[15].

In this study, we develop an inventory model with a sea-
sonal demand pattern over a finite time horizon (period
of a season) to determine the optimal replenishment pol-
icy, which maximizes the retailer’s total profit. Numer-
ical examples are presented to illustrate the theoretical
underpinnings of the proposed model.

2 Notation and Assumptions

The main notations used in this paper are listed be-
low:
H: planning horizon.
n: the number of replenishment cycles during the plan-

ning horizon.
QU : maximum inventory level.
Qj, qj: the order-up-to level and the re-order point,

respectively, in the jth replenishment cycle(q0 = 0,
0 ≤ qj < Qj ≤ QU , j = 1, 2, · · · , n).

tj: the time of the jth replenishment (tj−1 < tj , t0 = 0,
tn = H).

p: selling price per item.
c: acquisition cost per item.



Figure 1: Transition of inventory level (n = 3)

h: inventory holding cost per item and unit of time.
K: ordering cost per lot.
θ: salvage value, per item, of unsold inventory at the

end of the planning horizon.
g(t): coefficient of the demand rate, at time t, which
depends on the quantity displayed (

R
g(t)dt = G(t) +

C).
μ(t): demand rate, at time t, which is independent of

the quantity displayed.

The assumptions in this study are as follows:

(i) The finite planning horizon H is divided into n re-
plenishment cycles.

(ii) Both the coefficient, g(t), of inventory-level-
dependent demand rate and the demand rate, μ(t),
which is independent of the quantity displayed are
non-increasing in time t, i.e., we assume that g0(t) ≤
0 and μ0(t) ≤ 0 (0 ≤ t ≤ H).

(iii) The demand rate is deterministic and significantly
depends on the quantity displayed: the items sell
well if their quantity displayed is large, but do not
when their quantity displayed becomes small. We
express such a behavior of special display goods in
terms of the following differential equation:

d

dt
mj(t) = g(t) [Qj−1 −mj(t)] + μ(t) (1)

where mj(t) denotes the cumulative quantity of the
objective product sold during [tj−1, t] (t < tj+1) and
Qj−1 signifies the order-up-to level at the beginning
of the jth replenishment cycle. A mathematically
identical equation has been used to express the be-
havior of deteriorating items and their optimal or-
dering policy has been obtained by Abad[16]. Under
the model proposed in this study, the demand de-
pends on the quantity heaped and thus depends on
time.

(iv) The rate of replenishment is infinite and the delivery
is instantaneous.

(v) Backlogging and shortage are not allowed.

(vi) The retailer orders (Qj − qj) units when her/his
inventory level reaches qj . Figure 1 shows the tran-
sition of inventory level in the case of n = 3.

(vii) v(t) = (p− c)g(t)− h > 0.

3 Total Profit

By solving the differential equation in Eq. (1) with the
boundary condition mj(tj−1) = 0, the cumulative quan-
tity, mj(t), of demand for the product at time t(≥ tj−1)
is given by

mj(t) = Qj−1
n
1− e−[G(t)−G(tj−1)]

o
+e−G(t)

Z t

tj−1

eG(u)μ(u)du. (2)

Since we have I(tj) = qj , the inventory level of the prod-
uct at time t becomes

I(t) = Qj−1 −mj(t)

= e−G(t)
·
qje

G(tj) +

Z tj

t

eG(u)μ(u)du

¸
. (3)

Therefore, the initial inventory level in jth replenishment
cycle is given by

Qj−1 = I(tj−1)

= e−G(tj−1)

×

"
qje

G(tj) +

Z tj

tj−1

eG(u)μ(u)du

#
. (4)

By letting Qj−1 = I(tj−1) in Eq. (2), the cumulative
quantity of demand during [tj−1, tj) becomes

m(tj−1, tj) = qj

h
eG(tj)−G(tj−1) − 1

i
+e−G(tj−1)

Z tj

tj−1

eG(u)μ(u)du. (5)

There obviously exists a time t = tUj (> tj−1) when the
inventory level reaches zero, where tUj is unique positive
solution to

e−G(tj−1)
Z t

tj−1

eG(u)μ(u)du = Qj−1. (6)

The left-hand-side of Eq. (6) indicates that the cumula-
tive demand of the product in jth replenishment cycle
when the re-order point qj is zero. The maximum value
of tj can therefore be given by t

U
j .

On the other hand, the cumulative inventory,
A(tj−1, tj), held during [tj−1, tj) (tj ≤ tUj ) is expressed



by

A(tj−1, tj) =

Z tj

tj−1

I(t)dt

=

Z tj

tj−1

μ(u)eG(u)

ÃZ u

tj−1

e−G(t)dt

!
du

+qje
G(tj)

Z tj

tj−1

e−G(t)dt. (7)

Hence, the total profit is given by

Pn =

nX
j=1

·
p ·m(tj−1, tj)− c · (Qj−1 − qj−1)

−h ·A(tj−1, tj)

¸
+ θqn − nK

= (θ − c)qn − nK

+(p− c)
nX
j=1

½
qj

h
eG(tj)−G(tj−1) − 1

i
+e−G(tj−1)

Z tj

tj−1

eG(u)μ(u)du

¾
−h

nX
j=1

½
qje

G(tj)

Z tj

tj−1

e−G(t)dt

+

Z tj

tj−1

eG(u)μ(u)

ÃZ u

tj−1

e−G(t)dt

!
du

¾
. (8)

4 Optimal Policy

This section analyzes the existence of the optimal pol-
icy (Qj−1, qj , tj) = (Q∗j−1, q

∗
j , t

∗
j ) for a given n (j =

1, 2, · · · , n), which maximizes Pn in Eq. (8). It is, how-
ever, very difficult to conduct analysis under θ 6= c. For
this reason, we focus on the case where θ = c.

4.1 Optimal Re-order Point

At retail stores, they have a maximum value for the in-
ventory level arrowed for some reasons, which is denoted
by QU . It can easily be shown from Eq. (4) that Qj−1 is
a function of qj (0 ≤ qj < Qj−1 ≤ QU ), and furthermore,
Qj−1 ≤ QU agrees with

qj ≤ e−[G(tj)−G(tj−1)]

×

"
QU −

Z tj

tj−1

eG(u)−G(tj−1)μ(u)du

#
. (9)

Let R(tj−1, tj) express the right-hand-side of Inequal-
ity (9). We obviously have R(tj−1, tj) ≥ 0 for tj−1 ≤
tj < min(t

U
j , tj+1).

By differentiating Pn in Eq. (8) with respect to qj , we

have

∂

∂qj
Pn = (p− c)

h
eG(tj)−G(tj−1) − 1

i
−heG(tj)

Z tj

tj−1

e−G(u)du

> [(p− c)g(tj−1)− h]e
G(tj)

×

Z tj

tj−1

e−G(u)du. (10)

Since v(tj−1) = [(p− c)g(tj−1)− h] > 0 from assumption
(vii), we have ∂

∂qj
Pn > 0, and consequently (Q

∗
j−1, q

∗
j ) =

(QU , R(tj−1, tj)).

By letting (Qj−1, qj) = (QU , R(tj−1, tj)) in Eq. (8), the
total profit on (Qj−1, qj) = (QU , R(tj−1, tj)) becomes

Pn = (p− c)
nX
j=1

(
QU

h
1− e−{G(tj)−G(tj−1)}

i
+e−G(tj)

Z tj

tj−1

eG(u)μ(u)du

¾

−h
nX
j=1

½Z tj

tj−1

μ(u)eG(u)

ÃZ u

tj−1

e−G(t)dt

!
du

+

"
QUe

G(tj−1) −

Z tj

tj−1

eG(u)μ(u)du

#

×

Z tj

tj−1

eG(u)du

¾
− nK. (11)

4.2 Optimal Replenishment Time

The analysis with respect to existence of tj = t
∗
j becomes

considerably complicated under a general form of g(t).
For this reason, we focus on the following two cases with
λ > 0:

Case 1: g(t) = λ,

Case 2: g(t) = λμ(t).

4.2.1 Case 1

This subsection makes an analysis of t∗j that maximizes
Pn, for given tj−1 and tj+1, in the case of g(t) = λ. In
this case, Pn in Eq. (11) can be rewritten as

Pn = ṽ
nX
j=1

n
QU − e

−λ(tj−tj−1) [QU − m̃(tj−1, tj)]
o

+h/λ

Z H

0

μ(u)du− nK, (12)

where

ṽ = (p− c− h/λ), (13)



m̃(tj−1, tj) =

Z tj

tj−1

eλ(u−tj−1)μ(u)du. (14)

By differentiating Pn in Eq. (12) with respect to tj , we
have

∂

∂tj
Pn = ṽ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

−λQUe
−λ(tj+1−tj)

+μ(tj)
h
1− e−λ(tj+1−tj)

i¾
(15)

Let L1(tj) express the terms enclosed in braces { } in
the right-hand-side of Eq. (15). Since it can easily be
proven from assumption (vii) that the sign of ṽ is positive,
∂
∂tj
Pn ≥ 0 agrees with

L1(tj) ≥ 0. (16)

Furthermore, we have

L01(tj) = −λ

½
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

+μ(tj) + e
−λ(tj+1−tj) [λQU + μ(tj)]

¾
+μ0(tj)

h
1− e−λ(tj+1−tj)

i
(< 0), (17)

L1(tj−1) = [λQU + μ(tj−1)]

×
h
1− e−λ(tj+1−tj−1)

i
(> 0), (18)

L1(tj+1) = −λ

½
e−λ(tj+1−tj−1)m̃(tj−1, tj+1)

+QU

h
1− e−λ(tj+1−tj−1)

i¾
(< 0), (19)

L1(t
U
j ) = μ(tUj )

h
1− e−λ(tj+1−t

U
j )
i

−λQUe
−λ(tj+1−tUj ). (20)

In the case of tj+1 ≥ t
U
j , L1(t

U
j ) < 0 coincides with

tj+1 <
1

λ
ln

λQU + μ(tUj )

μ(tUj )
+ tUj . (21)

Let us denote, by ϕ(tUj ), the right-hand-side of Inequal-
ity (21).

On the basis of the above results, for given tj−1 and tj+1,
we show below that an optimal replenishment time t∗j
exists:

(1) tj+1 < ϕ(tUj ):

In this subcase, the sign of ∂
∂tj
Pn changes from pos-

itive to negative only once, and thus there exists a
unique finite t∗j (tj−1 < t

∗
j < min(t

U
j , tj+1)) that max-

imizes Pn.

(2) tj+1 ≥ ϕ(tUj ):

In this subcase, Pn is non-decreasing in tj , and con-
sequently we have t∗j = t

U
j .

If there exists t∗j < t
U
j for all j = 1, 2, · · · , n− 1, the total

profit is given by

Pn = ṽ

½
1

λ

n−1X
j=1

£
λQU + μ(t∗j )

¤ h
1− e−λ(t

∗
j+1−t∗j )

i
m(t∗n−1, H)

¾
+ h/λ

Z H

0

μ(u)du− nK. (22)

4.2.2 Case 2

In this subsection, we examine the existence of t∗j in the
case of g(t) = λμ(t). In this case, Pn in Eq. (11) can be
rewritten as

Pn =
h

λ
H − nK + n(p− c)

µ
QU +

1

λ

¶
−

µ
QU +

1

λ

¶ nX
j=1

½
(p− c)e−{G(tj)−G(tj−1)}

+heG(tj−1)
Z tj

tj−1

e−G(u)du

¾
. (23)

By differentiating Pn in Eq. (23) with respect to tj , we
have

∂

∂tj
Pn =

µ
QU +

1

λ

¶
L2(tj), (24)

where

L2(tj) ≡ (p− c)g(tj)

×

½
e−[G(tj)−G(tj−1)] − e−[G(tj+1)−G(tj)]

¾
+h

½
1− e−[G(tj)−G(tj−1)]

−g(tj)

Z tj+1

tj

e−[G(u)−G(tj)]du

¾
. (25)

Since we have
¡
QU +

1
λ

¢
> 0, ∂

∂tj
Pn ≥ 0 agrees with

L2(tj) ≥ 0. Furthermore, L2(tj) yields

L2(tj−1) = (p− c)g(tj−1)
n
1− e−[G(tj+1)−G(tj−1)]

o
−hg(tj−1)e

G(tj−1)
Z tj+1

tj−1

e−G(u)du, (26)

L2(tj+1) = −v(tj+1)
n
1− e−[G(tj+1)−G(tj−1)]

o
. (27)

It can easily be proven from Eqs. (26) and (27) that
L2(tj+1) < 0 < L2(tj−1).



Figure 2: Sensitivity analysis (Case 1)

Figure 3: Sensitivity analysis (Case 2)

Based on above results, we can show the conditions where
an optimal replenishment time t∗j exists in the case of
L02(tj) < 0:

(1) {tj+1 ≤ tUj } or {L(t
U
j ) < 0}.

In this subcase, the sign of ∂
∂tj
Pn varies from positive

to negative only once, and hence there exists a unique
finite t∗j (tj−1 < t

∗
j < min(t

U
j , tj+1)).

(2) {tj+1 > tUj } and {L(t
U
j ) ≥ 0}.

This subcase provides ∂
∂tj
Pn ≥ 0 and therefore t∗j =

tUj .

5 Numerical Examples

This section presents numerical examples to illustrate the
proposed model for the following two cases:

Case 1: g(t) = λ,

Case 2: g(t) = λμ(t).

Suppose that the demand rate being independent of the
quantity discount is a linear function of time t, which is
given by

μ(t) = β − αt (α > 0, β > 0, μ(t) > 0). (28)

Figure 2 reveals the transition of inventory level along
with behavior of (q∗j , t

∗
j ) in the case of g(t) = λ for

K = 5000, 7500, 1000. In contrast, Figure 3 depicts the
behavior of these values in the case of g(t) = λμ(t) for
K = 7500, 10000, 12500.

5.1 Case 1

Figure 2 illustrates the behavior of I(t), q∗j along with t
∗
j

in the case of g(t) = λ with (H,QU ,λ, p, c, h, θ,α,β) =
(100, 350, 0.01, 600, 300, 1, 300, 0.1, 13). It is observed in
Fig. 2 that the number of replenishment cycles decreases
with increasingK. This is because when the ordering cost
per lot becomes large, the total ordering cost should be
slashed by means of increasing the time interval between
replenishment cycles in order to decrease the number of
its cycles.

It is also seen in Fig. 2 that q∗j is non-decreasing in time
t. This signifies that the cumulative quantity displayed
in the jth replenishment cycle increases with increasing
j. Heaping up the products to a large quantity reflects
the situation where the demand velocity is large. When
the demand rate which is independent of the quantity
displayed becomes small, the retailer can therefore main-
tain her/his profit as large as possible by increasing the
quantity displayed.

5.2 Case 2

Figure 3 shows the behavior of I(t), q∗j as well as t
∗
j in

the case of g(t) = λμ(t) with (H,QU ,λ, p, c, h, θ,α,β) =
(100, 350, 0.0026, 600, 300, 1, 300, 0.05, 10).



It is observed in Fig. 3 that n∗ decreases with increas-
ing K, that is, the time intervals between replenishment
cycles tend to increase with K. This tendency is quite
similar to that in section 5.1.

We can also notice in Fig. 3 that q∗j decreasing with in-
creasing time t, which is significantly different from that
in section 5.1. This is simply due to the effect of a large
quantity on the demand of the product decreases with
increasing time t, which can easily be confirmed by the
form of g(t).

6 Conclusions

In this study, we have proposed an inventory model with
a seasonal demand pattern over a finite time horizon (pe-
riod of a season) to determine the optimal replenishment
policy, which maximizes the retailer’s total profit. We
particularly focus on the case where the retailer is facing
her/his customers’ demand by dealing in a special dis-
play goods. Since the analysis in relation to an optimal
replenishment policy is very complicated under the gen-
eral form of g(t), which expresses the coefficient of the
demand rate depending on the quantity displayed, we fo-
cus on the following two cases for λ > 0: Case 1: g(t) = λ,
Case 2: g(t) = λμ(t). For each case in the above, we have
clarified the existence of the optimal replenishment pol-
icy which maximizes the retailer’s total profit. In the real
circumstances, retailers frequently place a mirror at their
display area, or they display products on a false bottom
to increase their quantity displayed in appearance. Tak-
ing account of such factors is an interesting extension.
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