
Evaluation of Simulation Strategy on
Single-Player Monte-Carlo Tree Search and its
Discussion for a Practical Scheduling Problem

Shimpei Matsumoto∗, Noriaki Hirosue†, Kyohei Itonaga‡,
Kazuma Yokoo‡ and Hisatomo Futahashi‡

Abstract—Monte-Carlo Tree Search (MCTS) is a
best-first search where the pseudorandom simulations
guide the solution of problem. Recent improvements
on MCTS have produced strong computer Go pro-
gram, which has a large search space, and the suc-
cess is a hot topic for selecting the best move. So
far, most of reports about MCTS have been on two-
player game, and MCTS has been applied rarely in
one-player games. MCTS does not need an admis-
sible heuristic, so the application of MCTS for one-
player games might be an interesting alternative. Ad-
ditionally, one-player games changed its situation by
player’s decision like puzzles are describable as net-
work diagrams like PERT with the representation of
interdependences between each operation. Therefore
if MCTS for one-player games is developed as a meta-
heuristic algorithm, we would use this for not only
many practical problems, but also combinatorial op-
timization problems. This paper investigated the ap-
plication of Single Player MCTS (SP-MCTS) intro-
duced by Schadd et al. to a puzzle game called Bubble
Breaker. Next this paper showed the effectiveness of
new simulation strategies on SP-MCTS by numerical
experiments, and found the differences between the
search methods and their parameters. Based on the
results, this paper discussed the application potential-
ity of SP-MCTS for a practical scheduling problem.

Keywords: one-player game, bubble breaker, monte-

carlo tree search, scheduling problem

1 Introduction

Games are separated into several classes mathematically
according to the characteristics such as the number of
players, completeness of information, uncertainty, and

∗Shimpei Matsumoto is with the Department of Computer and
Control Engineering, Oita National College of Technology, 1666
Oaza-Maki, Oita City, Oita 870-0152 Japan; Tel/Fax: +81-97-552-
7421; Email: smatsu@oita-ct.ac.jp

†Noriaki Hirosue is with the Department of Artificial Intelli-
gence, Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-
8502, Japan; Email: i231209n@ai.kyutech.ac.jp

‡Kyohei Itonaga, Kazuma Yokoo, and Hisatomo Futahashi are
with the Department of Computer and Control Engineering, Oita
National College of Technology, 1666 Oaza-Maki, Oita City, Oita
870-0152 Japan; Email: {s0506, s0540, s0528}@cc.oita-ct.ac.jp

the total of benefits (zero/nonzero-sum) [2]. Among
them, perfect-information games do not have accidental
factor, so it is theoretically possible to foresee the moves
to the end. However, the computational effort actually
explodes with following the situations of game, so it is
virtually impossible to calculate optimal moves for most
of games. To solve this problem, positional evaluation
functions are given to decide the moves as criterion to de-
termine the search range and to measure the situations.
As one of the typical search algorithm using an evalua-
tion function to foresee the opponent decision, Mini-Max
method is a powerful tool for the design of game algo-
rithm. Many algorithm refined Mini-Max method such
as αβ method have been proposed. However giving a
proper evaluation function is extremely difficult for prob-
lems with large search space.

Recently in computer Go program, a revolutionary search
algorithm without an evaluation function, Monte-Carlo
Tree Search (MCTS) was proposed by Coulom [5]. MCTS
performs many play-outs (playing until a simulation en-
counters the end of the game) with pseudorandom moves,
and each situation is evaluated based on the results [1]．
Moves are selected in self-play until the end of the game.
It is well-known that the use of an adequate simulation
strategy improves the level of play significantly [6, 4],
and the main idea is to use heuristics. To control sim-
ulations, UCT (Upper bound Confidence for Tree) is
mainly used, which is one of the most effective algo-
rithm and is based on UCB1 (Upper Confidence Bounds)
for multi-armed bandit problem [7]. Schadd et al. pro-
posed a new MCTS variant, called Single-Player Monte-
Carlo Tree-Search (SP-MCTS) for SameGame, a puzzle
game [3]. They mentioned A* and IDA* to compare the
performance of SP-MCTS, and SP-MCTS obtained the
highest score than the others for benchmark problems,
so it turned out that SP-MCTS is able to be consid-
ered as a new method for NP-complete puzzles. Bas-
ing on the results, SP-MCTS is thought to be a meta-
heuristic algorithm, so it might be applied for not only
perfect/imperfect information one-player games but also
other problems, as long as search spaces of the problems
are describable as tree structure, and the problems have

termination of operations.

The purpose of this paper is to evaluate SP-MCTS for
one-player perfect-information games, Bubble Breaker
given similar rules with SameGame, and to examine ap-
plication potentiality of the solution as a meta-heuristic
algorithm. The one-player perfect-information game is
so-called puzzle games, and most of them give closely-
defined rules. Previous researches have shown that most
of puzzle games are equal to optimization problems be-
longing to the class of NP-Complete, which are difficult
to find an optimal solution, and puzzle games are able
to be considered as typical combinatorial optimization
problems. Therefore if we can clarify the effectiveness of
SP-MCTS for such problems, we will open up new possi-
bilities of SP-MCTS for many practical problems that is
able to be described as combinatorial optimization prob-
lems. This paper firstly applies SP-MCTS for Bubble
Breaker already reported NP-Completeness [9], and eval-
uates its effectiveness. This paper develops a softawre
of Bubble Breaker with Action Script 3.0 to present the
sequence of moves visually until a game is solved. This
paper develops SP-MCTS based on concept of Schadd et
al., and proposes new heuristics. This paper shows the
results of numerical experiments, and discusses the char-
acteristic of SP-MCTS. Finally based on the efforts of this
paper, this paper examines the availability of SP-MCTS
for practical problems by generalizing the procedures of
SP-MCTS for one-player games. This paper mentions a
reentrant scheduling problem as an example of practical
problem [8].

2 Problem

There is a rectangular playing screen initially filled with
several, typically 4 or 5, kinds of blocks (colors) at ran-
dom. By selecting one of a group of adjoined blocks, a
player may remove them from the screen. A move con-
sists of removing a group of (at least two) orthogonally
adjacent blocks with the same color. The blocks on top of
the removed group will fall down, and a column without
any blocks will be trimmed away by other columns sliding
to the left. Usually, there will be no time constraints in
the game, however some implementations gradually push
the rows upward or drop blocks from above. The game
is over if no more blocks can be removed.

For each removed group points are rewarded. As the most
versions of the game, the amount of points is dependent
on the number of blocks removed and is given by the for-
mula (n−k)2 for removing n tiles (the size of the removed
group) at once, where k = 1 or 2 depending on the im-
plementation. Some versions also offer a large bonus for
removing all the blocks on the screen. Yet others reduce
the final score based on the number of blocks remaining
at the end of the game. The game is over if either the
player has removed all blocks, or is left with a position

where no adjacent blocks have the same color. In the
first case, some bonus points are usually rewarded, and
in the second case, points are deducted. The formula for
deduction is similar to the formula for rewarding points,
and applied for blocks left on the board. During deduc-
tion it is assumed that all blocks of the same color are
connected.

Bubble Breaker, the problem in this paper, adopts the
following scoring function, which the score Sk of kth turns
is given as

Sk = (n− 2)
2
. (1)

The final score is given as follows.

Ts =

{ ∑kmax

i=1 Sk + 1000 ; if R = 0,∑kmax

i=1 Sk − (R− 2)2 ; otherwise.
(2)

where R is the number of blocks left on the board, and
kmax is the number of turns at the termination of the
problem.

In SameGame given the similar rule with Bubble Breaker,
the number of leaf notes for a random initial position is
estimated to be approximately 1085 in average, and the
total number of possible states is approximately 10159,
which is calculated by the number of combinations for
columns, Ck =

∑r
n=0 c

n where r is the height of the col-
umn, c is the number of colors, and k is the number of
columns. As the similar problems, Clickomania with 5
colors and 2 Columns was proven to be NP-complete by
[9] where no points are rewarded and the only objective
is to clear the board. In SameGame, a variant of Click-
omania, there are two terminal positions with no blocks
or some blocks on the board. SameGame is proven as a
harder problem than Clickomania by Schadd et al. and
shown as NP-complete, too [3]. The problem in this pa-
per, Bubble Breaker adopts the same rule of SameGame
except scoring formula, so we can understand that Bub-
ble Breaker is also NP-complete.

3 Algorithm

3.1 Concept

In MCTS, one new node on search tree is expanded per
iteration. Usually the following four steps are repeated
until the time runs out, but this paper iterates the steps
until the number of expanded nodes reaches the prede-
termined threshold. One-player games do not have the
opponent unlike two-player games, so we do not have to
worry about the opponent’s decision; for example, it is
not needed to wait for an unknown reply of an opponent.
Therefore MCTS can perform the search with wide space
from the initial position at once. Eventually, nodes of the
tree from the root to the leaf (end of the game) with the

highest score are obtained as solution procedures. Details
of each procedure are shown as follows.

Selection Strategy: Selection is the strategic task that
selects one node on the search tree. It controls the bal-
ance between exploitation and exploration [7]. This pro-
cedure selects one child node from root node recursively.
The search tree has only the root node at first simulation,
so the root node is definitely selected. After several simu-
lations, some child nodes are generated on the search tree.
The node with some child nodes is defined as parent node,
and this paper selects one node with the highest value of
UCT including the parent node. Specifically, UCT on the
root node and its child nodes are firstly compared, then
as the result, one node with the highest UCT is selected.
If the root node as parent node has the highest UCT,
it is selected even the parent node, otherwise the child
node is selected. This operation is repeated until the leaf
node appears. It is important that the parent node is
always assumed as leaf node. This paper gives following
exceptions.

• When a node has no pattern to expand new nodes,
the node is removed from consideration even though
the node has the highest UCT.

• This strategy does not surely select the node with
child nodes presenting all patterns to the end of the
problem because simulations will never get new pat-
terns.

This paper uses a modified UCT version for SP-MCTS
introduced by Schadd et al [3]. At the selection of par-
ent node N with child nodes Ni, the selection strategy
chooses the node to move with the value of UCT U(Ni),
which maximizes the following formula.

U(Ni) = X̄Ni + C ·

√
ln t(N)

t(Ni)

+ D ·

√∑t(Ni)
k=1 x(Ni)2k − t(Ni)X̄2

Ni

t(Ni)
, (3)

where C and D are constants, t(N) is the number of
times that the parent node N was visited, t(Ni) is the
number of times that child node Ni was visited, and X̄Ni

is the average score of nodeNi to give an upper confidence
bound. The first two terms constitute the original UCT
formula. The third term is for one-player game, x(Ni)

2
k

is the score obtained by simulation k of node Ni . The
third term is basing on standard deviation, therefore both
the benefit and the risk increases when the value of third
term is large.

Simulation: Starting from a leaf node in the search tree
developed, a pseudorandom simulation with some heuris-
tics is performed until the end of the problem. Each leaf
node memorizes the state of problem, and the simulation
regards the state of the leaf node as initial input. The

search tree has only root node when a experiment starts,
so the root node is necessarily selected as leaf note. The
root node memorizes the state of problem unprocessed,
complete initial input. The selection of leaf node de-
pends on the selection strategy described below steps. In
order to improve the quality of solution, some heuristics
based on knowledge are usually applied for simulations.
For SameGame, a game with similar rules in this paper’s
problem, Schadd proposed two static simulation strate-
gies, Tabu Random, and Tabu Color Random [3] that
are described as solution 2 and 3 in the section of numer-
ical experiments. All selected nodes by a play-out and
the obtained score are memorized each simulation, so the
best score and moves (procedures to remove blocks) are
updated when the simulation exceeds the previous best
score, which are finally obtained as a solution.

Expansion: The expansion procedure decides which
nodes are added to the tree. This paper applies Coulom’s
method that expands one child per simulation [?]. The
new child node is the first encountered position of each
simulation that was not present in the tree.

Backpropagetion: The backpropagation procedure up-
dates UCT for simulated nodes at the leaf to the root in-
cluding expanded node. All selected nodes from the root
to the leaf node are memorized on the selection strat-
egy when one simulation is performed, so the result of
simulation is propagated backward to the root rode from
the expanded child node of selected leaf node. This pro-
cedure updates the average score X̄i of node i used by
simulation, and adds the obtained score xm to the to-
tal

∑m
k=1 xk, where m is the number of simulations per-

formed. each node’s UCT is propagated to the node’s
ancestors up to the root.

3.2 Simulation Knowledge

In the simulation step, moves are randomly or pseudo-
randomly decided, and heuristics generate pseudorandom
moves. The random simulation is described as Solution 1
in the section of Numerical Experiment, and as pseudo-
random methods, this paper mentions Tabu Random and
Tabu Color Random proposed by Schadd et al., which are
described as Solution 2 and Solution 3 in this paper re-
spectively. Bubble Breaker gives greater score according
to the number of blocks to remove that can be under-
stood from the scoring formula (n− 2)

2
, so making large

groups of blocks is advantageous. Both heuristics aim at
making large groups of one color. Tabu Random decides
a color at the start of a simulation randomly. During the
random simulations, it is not allowed to remove blocks
with this color unless there are no other moves possible.
With this strategy, large groups of the chosen color will
be formed automatically. Tabu Color Random chooses
a color with the most frequently occurring at the start
of the simulation, and performs similar operation with
Tabu Random. This may increase the probability of hav-

ing large groups during the random simulation. This pa-
per designs 4 heuristics based on the usual methods as
follows.

Modified Tabu Color Random: At first, moves
are decided with Tabu Color Random. Then Random
method is applied when the number of blocks falls below
a criterion for all colors. This method is based on the as-
sumption that the possibility of removing all the blocks
on the screen might decrease with only Tabu Color Ran-
dom. This method is described as Solution 4.

Probabilistic Tabu Color Random: The percentage
of the number of blocks with every color is calculated,
and each color is given its place accordingly to its per-
centage, like on the roulette wheel. This method decides
a color to choose by giving real value (0-100) randomly,
and performs similar operation with Tabu Random. This
method is described as Solution 5.

Probabilistic Weighted Tabu Color Random: This
method is modified based on the solution 5, and is de-
scribed as Solution 6. Color with high rate is susceptible
to select, and every color’s rate is given by the percentage
of squared value of the number of blocks.

Dynamic Probabilistic Weighted Tabu Color Ran-
dom: This method is modified based on the solution 6,
and is described as Solution 7. Solution 6 does not change
the selected color until blocks with the color cannot be
removed, but the Solution 7 chooses color to remove in
each turn based on the rate determined by the method
in Solution 6.

4 Numerical Experiments

4.1 Performance Evaluation of Solutions

This paper conducted numerical experiments to compare
the performance of simulation strategies based on the
usual methods (solution 1, 2 and 3) with the proposal
methods (solution 4, 5, 6 and 7). Experimental circum-
stance is Windows XP Pro. SP3, AMD Athlon 64 Proces-
sor 3500+ 2.20GHz, 3.00GB RAM, and programs are de-
veloped by JDK 6.0. 20 benchmark problems previously
mentioned were repeatedly-solved 1000 times, and differ-
ences of performance depending on the number of nodes
are examined. This paper verifies the performance of so-
lutions with 6 sizes of nodes 100, 101, · · · , 105, which the
maximum number of nodes 105 was given due to the per-
formance of computer. Concerning constants (C;D) in
UCT, the previous work examined 3 different settings in
order to investigate which balance between exploitation
and exploration gives the best results [3]. Schadd et al.
represented the parameter pair (0.1; 32) as exploitation,
(1; 20, 000) as exploration, and (0.5; 10, 000) as balance
in [3], and based on the simulation results, they showed
that the pair (0.1; 32) obtained the most efficient value

when the number of nodes is 105. Therefore this paper
adopted the pair (0.1; 32).

Experimental results of one benchmark problem are
shown in Fig.1 because the other problems showed simi-
lar results. Fig.1 shows the histogram of solutions, which
the vertical axis is frequency of solutions, and the hori-
zontal axis is score obtained. To clarify the differences,
vertical dotted line is described at 0 point in each graph.
The mode of score was better with increasing of the num-
ber of nodes, so we can understand that the number of
nodes improves the performance of solutions. Fig.1(a) is
the result when the solutions is given 100 = 1 node, and
it denotes that only one simulation is executed. There-
fore the graph (a) shows characteristic of each solution
(heuristic) not depending on UCT. Solutions with some
heuristics (solution 2 to 7) obtained better score than
solution 1 randomly-selecting brocks, so the graph (a)
shows the importance of heuristics. Especially we can
evaluate the performance of each heuristic around 500
points, and in the case of solution with 100 node, solu-
tion 4 was the most effective heuristic on average. Most
of simulation obtained negative value for all solutions,
so the result shows that many indelible blocks left on the
board might incur the large deduction of score as penalty.

From the results of 101−105 nodes shown in Fig.1(b)-(f),
the effects of UCT on simulation strategy were shown.
We can see the affection of bonus or deduction for the
results of score from the graph (b), for example, solution
1 showed a bimodal distribution, but the other solutions
showed monomodal distribution. Solution 1 with random
selection only showed highly variable in score, so appro-
priate heuristic might ensure stable behavior. The graph
(b) shows the differences of mode value depending on the
accuracy of heuristics, which the solutions 2 and 5-7 had
the mode value at 400 points, but the solutions 3 and 4
had the mode value at 800 points. Both solutions 3 and
4 with higher score were based on the heuristic focusing
on the color with the greatest number of blocks on the
board, so this strategy can be said to be effective. In the
case of 102 − 105 nodes shown in graph (c)-(f), all solu-
tions had positive score but solutions 1 and 7 had lower
mode value than the other solutions, which the both so-
lutions changes color to remove every turn on simulation.
This result denotes that the heuristic based on solutions
1 and 7 might not be efficient for this problem. The
graphs (d)-(f) shows bimodal distribution for solution 1
and 7, but the other solutions had monomodal distribu-
tion. This result can be thought that solutions 2-6 were
not given large deduction, and especially almost all sim-
ulations with solutions 2-6 might get bonus points for re-
moving all blocks in the graphs (e) and (f) because they
obtained points much above 1000 points. This paper also
found from the graph (d) that solution with 103 nodes or
above can remove all blocks even with random selection
(without knowledge). The attainment of bonus points

0

100

200

300

400

500

600

700

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000

!

"

#

$

%

&

0

100

200

300

400

500

600

700

-2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000 2400 2800 3000

!

"

#

$

%

&

Number of Nodes = 10
0

Number of Nodes = 10
1

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

!

"

#

$

%

&

Number of Nodes = 10
2

(a)

(b)

(c)

0

100

200

300

400

500

600

700

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 3000

!

"

#

$

%

&

0

100

200

300

400

500

600

700

-2000 -1600 -1200 -800 -400 0 400 800 1200 1600 2000 2400 2800 3000

!

"

#

$

%

&

Number of Nodes = 10
0

Number of Nodes = 10
1

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

!

"

#

$

%

&

Number of Nodes = 10
2

0

100

200

300

400

500

600

700

0 300 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

!

"

#

$

%

&

0

100

200

300

400

500

600

700

0 300 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

!

"

#

$

%

&

0

100

200

300

400

500

600

700

0 300 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

!

"

#

$

%

&

(d)

Number of Nodes = 10
3

Number of Nodes = 10
4

Number of Nodes = 10
5

(e)

(f)

Figure 1: Simulation Results (Variance of Scores)

(removing all blocks) is apparent that the frequency of
results with solution 1 was near zero around 800-1000
points. In the case of 103 nodes shown in the graph (d),
solutions 3 and 4 only showed remarkable results, on the
other hand, in the case of 104 nodes or above shown in the
graphs (e) and (f), there were little differences between
efficient heuristics (solutions 2-6) even thought solutions
with 104 nodes obtained higher scores than 103 nodes.
We can make the most of the effectiveness of knowledge
between 103 and 104 nodes because the solutions with 104

nodes or above require a long computational time. Inter-
estingly, in the case of 104 nodes, solutions 2, 5 and 6 had
the better score around 2000 points than solutions 3 and
4 which is the most efficient solutions for the other nodes.
Solutions 3 and 4 definitely keep the color of blocks with
the greatest numbers intact, but solutions 2, 5 and 6 are
not exactly, which select blocks based on the probabilistic
operation. Increasing of the number of nodes might lead
to solutions to the discovery of unexpected knowledge,
and new heuristics will be obtained by recording solu-
tion procedures. There was no great difference of scores
between efficient solutions when given 105 nodes shown
in the graph (f) except solutions with inefficient heuris-
tics. The difference in outcome shown in the graph (f) is

thought to be within the margin of error.

After reviewing the results obtained by simulations shown
in the graphs (a)-(f), it was found that the average scores
of solutions will definitely get higher with increasing of
the number of nodes. The number of simulations and
the number of nodes are equal, so the increase of nodes
will inevitably enhance the possibility to get an high
score, and in addition, more efficient nodes might be se-
lected by the selection strategy based on UCT. Second,
it was proved to be possible to obtain an extremely effec-
tive score (in this problem, the effective score was from
bonus points) without knowledge when a solution with
103 nodes or above was applied. As further interest, the
graph (d) showed the point of maximum frequency in
the left distribution, but the graph (e) showed it in the
right distribution about solution 1. It denotes that the
number of nodes might be a quantitative criterion for the
difficulty of problem.

4.2 Computational Time

To show the differences of computational time for solu-
tions, the simulation time of all trials was measured as
shown in Fig.2, as the double logarithmic chart, which

 !"#$%&'"(#)*#$)+",

-
)
&
.
%
/01
2

0&
"
3&

,
4

!

"

#

$

%

&

566

565

567

568

569

56:

56;

566 565 567 568 569 56: 56;

Figure 2: Comparison of computational time

the vertical axis is computational time [ms], and the hor-
izontal axis is the number of nodes. Fig.2 plotted the
average time of all solutions for 1000 trials. All solu-
tions increased approximately linearly, and showed simi-
lar changes. The remarkable difference between each so-
lution was confirmed at 100 node, but the difference was
progressively narrower with increasing of nodes. Particu-
larly the computational time of all solutions at 106 nodes
was almost same. Based on the results, variance at 100

node is assumed to be due to the operations of initial-
ization. The interesting thing Fig.2 showing is that the
difference of heuristics did not make a significant influ-
ence for the computational time, so to implement some
knowledge might be considered to be effective.

5 Discussions and Conclusions

The experiments in this paper showed the effectiveness of
heuristics to improve the performance of solution, and the
heuristics had little impact on computational time. So-
lutions with 104 nodes or above needed a lot of computa-
tional time and reduced the efficacy of heuristics because
perfectly-random method could obtain efficient solutions,
so we concluded that it is sufficient to give 104 nodes for
Bubble Breaker. From the results, it is thought that ex-
act number of nodes might depend on the characteristic
of problems. This paper also considers that the combi-
nation with a pruning algorithm like beam search will be
important to obtain more efficient results quickly.

This paper considers that SP-MCTS might be a good
match with practical scheduling problems, especially a
reentrant scheduling problem [8]. We have been focused
on the improvement of a printing process as a practical
scheduling. In the printing process, dial plates used for
car tachometers are printed with various colors and char-
acter plates. At this time, the production lead time can
be shortened by collecting the products printed by the
same type of color or character plate. When the type of
color or character plate is switched to another type, the
process requires “setup operation” with production idle
time. So the problem can be formulated by the mini-

mization of setup operations. In our previous efforts, the
printing process had been improved by only theoretical
discussion, however it could not flexibly respond to the
change of production circumstance in spite of the actual
field can handle these. As this reason, we assumed that
our earlier heuristic solution method had not considered
the expert’s technical knowledge. Therefore we regarded
that the tacit knowledge in the actual printing field is
absolutely necessary corresponding to the change of pro-
duction condition, and then the problem and its solution
were modeled on the basis of expert’s technique. We
described a rule-based solution that can obtain a result
quickly and it is developable by workers themselves. We
think that the motivation using SP-MCTS is not only to
get effective results. SP-MCTS might be of value in ob-
servation of processes of obtaining an efficient result from
probabilistic simulations. The observation will support to
find a new knowledge, and then ambiguities of solution
will be closely described by adding a new knowledge.

References

[1] B. Brügmann, “Monte Carlo Go, Technical report,”
Physics Department, Syracuse University, 1993.

[2] M. Sakuta, “Studies on Imperfect-Information
Games,” Operations Research, Vol.52, No.1, pp.27-
34, 2007 (In Japanese).

[3] M. Schadd, M. Winands, H. van den Herik and
H. Aldewereld, “Addressing NP-Complete Puzzles
with Monte-Carlo Methods.” Proc. of the AISB 2008
Symposium on Logic and the Simulation of Interac-
tion and Reasoning, Vol. 9, pp.55-61, 2008.

[4] M. Winands, Y. Bjornsson and J. Saito, “Monte-
Carlo Tree Search Solver,” Computers and Games,
Vol.5131, pp.25-36, 2008.

[5] R. Coulom, “Efficient selectivity and backup oper-
ators in monte-carlo tree search,” Computers and
Games, Vol.4630, pp.72-83, 2007.

[6] S. Gelly and D. Silver, “Combining online and offline
knowledge in UCT,” Proc. of the International Con-
ference on Machine Learning, No.227, pp.273-280,
2007.

[7] S. Gelly, Y. Wang, R. Munos and O. Teytaud, “Mod-
ification of uct with patterns in monte-carlo go,”
Technical Report RR-6062, INRIA, 2006.

[8] S. Matsumoto et al., “Business Process Analysis to
Obtain Empirical Lot Sizing Rule in Printing Pro-
cess”, Proc. of 2008 IEEE Conference on Automa-
tion Science and Engineering, pp.591-596, 2008.

[9] T. Biedl, E. Demaine, M. Demaine, R. Fleischer, L.
Jacobsen and J Munro, “The Complexity of Clicko-
mania”, Proc. of MSRI Workshop on Combinatorial
Games, pp.389-404, 2002.

