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Abstract—We propose railway line planning opti-
mization models that determines the frequency of
each train so that it can meet passenger origin-
destination demands while minimizing the related
costs. Most line planning models assume that all
trains on a supply network stop at all intermediate
stations. However to minimize passenger travelling
time and provide train service to as many stations as
possible, we must consider various halting patterns,
that might be given in advance or be sought. Our
study considers two line planning problems consid-
ering halting patterns, describes the computational
complexities for each problem and present the op-
timization models for both. We also present experi-
mental results obtained for Korean high speed railway
network.
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1 Introduction

Since the advent of KTX(Korea Train eXpress) service in
2004, KORAIL(Korea Railroads, Corp.) has been plan-
ning to extend the railway network serviced by high-speed
trains, and to develop a new high-speed rolling stock, e.g.,
KTX II which is faster but with a smaller number of seats
or HANVIT with tilting function. Presently, KORAIL
runs their high-speed trains partly sharing the railway
network with conventional trains, e.g. Mugunghwa and
Saemaul trains, which are much slower.

In these circumstances, an important issue is how many
trains are needed to satisfy passenger OD demands for
each type of train. This problem is known as line plan-
ning. In line planning one determines the frequencies of
trains on a line to meet the OD demand while minimizing
the related costs [3]. However most railway networks are
too large to solve line planning model including all train
types and such a model would be too complex to reflect
the routes passengers would choose among various possi-
bilities, including transfers between train-types. Hence,
in most related studies[4, 5, 6], line planning is performed
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on the supply network which is a kind of a logical network
comprised of only the links serviced by a single train-type.
The network can be derived from the “system split” pro-
cedure [2] which is a method for distributing passenger
OD demands over an entire network a priori. This dis-
tribution is based on a value assigned to a route which is
primarily determined from the total travelling time and
the number of transfers of a route. Thus, using a sys-
tem split procedure, we can assume that the train-type
demands of a specific supply network are given.

We also assumed that the OD demands are given for a
specific train-type. By train-type, we mean a train ser-
vice that can be classified by travelling time. For ex-
ample, train-types in Korea are high-speed (KTX, KTX
II), middle-speed(HANVIT) and low-speed(Mugunghwa,
Saemaul) trains.

Our contribution in this research is the introduction of
various halting patterns into a line planning model within
a supply network. This allows trains with the same rolling
stock and the same route to have different halting pat-
terns. Presently, the KTXs are operated with various
halting patterns between their two end stations. By con-
sidering various halting patterns, we expect that a line
planning model will provide high-speed train services to
as many stations as possible with faster travel times.

In this paper, we describe the optimization models and
computational complexities of line planning problems
considering various halting patterns. We summarize pre-
vious studies in Section 2, and we define our problems,
the NP-hardness proofs and the optimization models in
Section 3. Our experimental results obtained for the Ko-
rean high-speed railway network are described in Section
4.

2 Previous Studies

From a survey of line planning models, previous studies
can be summarized as shown in Table 1. The second
and third column show the demand type and objective
function used in the models, respectively. The fourth
column, ‘halting patterns’ contains an ‘O’ if the various
halting patterns within a supply network were considered,
and contains an ‘X’, otherwise. The last column, ‘system
split’ indicates whether the model uses the assumption of



Table 1: Previous studies

study input demand type objective halting patterns system split
Bussieck et al. [4] leg load, OD demand direct travellers X O
Claessens et al. [6] leg load operation cost X O
Bussieck et al. [5] leg load operation cost X O
Borndörfer et al.[1] OD demand operation cost + travelling time X X
Goossens et al. [9] leg load operation cost X O
Goossens et al. [8] OD demand operation cost X X

Our study OD demand operation cost + travelling time O O

a system split.

Most of the studies[4, 5, 6, 9] except [1, 8] are based
on demand-covering model[10], which find the optimized
frequencies so that leg traffic load should be covered. Al-
though not shown in Table 1, complexity analyses for var-
ious demand-covering models in path and tree networks
are given in [10].

Borndörfer et al.[1] and Goosesens et al.[8] used OD de-
mand directly to find passenger routes in a heterogeneous
network, i.e., they did not assume a system split. How-
ever, their models have a shortcoming: the systematically
optimized passenger flow differs from passengers’ actual
choices among the routes. The systematically optimized
passenger flow can be unreasonable, especially when var-
ious train-types are run on the same route, as in Korea,
because the optimized flow might result in all or nothing
traffic assignment to each train-type.

Our study is different from the previous ones in that it
assumes both a system split and various halting patterns.
two cases of halting patterns are considered, depending
on whether the halting patterns are given in advance or
whether they are to be found in the model. In next sec-
tion, we define and analyze the models for these two cases.
Our models are, to our knowledge, the first reported ones
generated with such considerations.

3 Problem Definition and Complexity

We assume that OD demands for a specific train-type are
given by a system split, and that there is no passenger
transfer between different lines. In this section, we de-
fine our two line planning models, based on whether the
halting patterns are defined in advance, and prove the
NP-hardness of each problem. Most of the complexity
analysis in previous studies have been based on demand-
covering models. To our knowledge, the following proofs
are the first reported for a line planning model consider-
ing OD demand directly.

From here on, we use the term line as a quadruple(s, e,
H, c) where s, e, H, and c represent the start-station, end-
station, set of stop stations and seating capacity, respec-

tively.

3.1 Not given halting patterns

First we deal with the problem without prescribed halt-
ing patterns(LPWPHP) to find the frequency and halting
pattern simultaneously as the problem is solved.

Definition 3.1 Line planning problem without pre-
scribed halting patterns(LPWPHP) : to find the frequency
and halting pattern of each line simultaneously, minimiz-
ing the sum of the total operation cost and total passenger
travel time

We prove that LPWPHP is NP-hard by reduction from
the PARTITION problem.
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Figure 1: NP-hardness proof of LPWPHP

Theorem 3.2 LPWPHP is NP-hard

Proof. It will be shown that PARTITION problem[7]
can be polynomially reduced to LPWPHP. Let an
instance of PARTITION consist of a set X =
{x1, x2, · · · , xn} with

∑
i xi = A. For the construction

of the LPWPHP instance, we consider a directed graph
where the set of nodes is V = {0, 1, 2, · · · , n, n + 1} and
the set of arcs is {(i, j)| i, j ∈ V } as depicted in Fig-
ure 1. In this graph, the arc (i, j) represents non-stop
travel from i to j. Every train runs from 0 to n + 1
with a sufficient large operation cost M and the seating
capacity A/2. And non-stop travel time from i to j is
n(j − i)− (j − i− 1) which means that whenever a train



does not stop at a station, the travelling time decreases
by 1. The demand Dod from o to d is as follows:

Dod =





xo, o ∈ {1, 2, · · · , n}, d = n + 1
xd, o = 0, d ∈ {1, 2, · · · , n}
0, o/w

We will show that partition (S, S′) exists if and only
if LPWPHP has an optimal solution with the objective
value 2M +n(2n+1)A

2 . First, suppose a partition (S, S′)
exists. From the partition, we can readily construct line
plan with two trains t1, t2, each of which has a halting
pattern such that each train halts only at stations cor-
responding S or S′, respectively. Each train carries xi

from 0 to i and xi from i to n + 1 if the train only stops
at i. Note that the total passenger travelling time of
demand from 0 to i and from i to n + 1 on train tk is
n(n+1)xi− δkxi where δk is the number of non-stop sta-
tions for train tk. Thus, the total passenger travel time
for the two trains is n(n+1)A

2 ×2−nA
2 because the total

number of non-stop stations for trains t1 and t2 is n, i.e.,∑2
k=1 δk = n.
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Figure 2: Halting patterns corresponding to partition
({x1, x4}, {x2, x3})

To prove the converse, suppose that a partition (S, S′)
does not exist. Note that the necessary number of trains
is two so as to meet all OD demands with minimum
operation cost. However, because a partition does not
exist, at least one OD demand must be split between
the two trains. Thus, both trains should stop at a sta-
tion. This results in fewer non-stop stations than n, i.e.,∑2

k=1 δk < n, so that the total passenger travel time is
greater than (n + 1)nA

2 × 2− nA
2 . Here, M can be set to

n(2n + 1)A
2 + 1. This completes the proof. 2

3.2 Given halting patterns

Different from LPWPHP, the following problem assumes
that the halting patterns are given in advance. This prob-
lem appears easier than LPWPHP, but it is still NP-hard.

Definition 3.3 Line planning problem given halting pat-
terns(LPGHP) : Given halting patterns, to find the fre-
quency of each line minimizing the sum of the total op-
eration cost and total passenger travel time

We prove that LPGHP is NP-hard by reduction from the
exact cover by three sets.

Theorem 3.4 LPGHP is NP-hard
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Figure 3: NP-hardness proof of LPGHP

Proof. It will be shown that the exact cover by three
sets(X3C)[7] can be polynomially reduced to LPGHP.
Let an instance of X3C consist of a set X with |X| =
3q and a collection C of three-element subsets of X.
For the reduction, we construct a directed path for
all c = (xi, xj , xk) ∈ C where the set of arcs is
{(s, xi), (xi, xj), (xj , xk), (xk, t)}, as depicted in Figure 3.
Each path corresponds to a line for which the operation
cost is 1. All arcs have capacity 3 and travel time 0. The
demands between two nodes are all 0 except that the de-
mands from s and towards t are all 1. Note that each
line can meet the demand of at most 6 OD pairs among
totally 6q OD pairs with non-zero demand; therefore, the
number of lines satisfying OD demands is at least q. This
means that if there exists an exact cover C ′, LPGHP in-
stance has an optimal solution with objective value q and
vice versa. 2

As described in the above proof, NP-hardness is still valid
when the travelling times are all set to zero.

Corollary 3.5 Even when the objective function of
LPGHP is comprised of only operation cost, LPGHP is
NP-hard.

4 Optimization Models

First, we present an optimization model for LPWPHP.
The model is based on the multi-commodity flow model in
which there are commodities corresponding to the halting
pattern of the kth line and commodities used to find the
passenger route of the od demand pair.

• A : the set of physical links in the supply network

• L = {1, 2, · · · ,K} : the set of lines indexed by num-
ber k. We assume that K is polynomially bounded
in input size

• S : the set of OD pairs indexed by od.

• Ak : the set of arcs representing non-stop travel that
line k can traverse

• ck : operation cost of line k

• tij : non-stop travelling time between i and j.



• tkod : travel time between o and d for line k

• Ck : seating capacity of line k

• Ak(ij) : the set of OD pairs traversing the non-stop
link ij for line k

• Dod : demand between o and d.

• Auv : the set of lines traversing the physical link uv.

• Luv : line capacity of physical link uv.

Decision Variables

• fk : frequency of line k

• xk : xk = 1 if the kth line is used; xk = 0 otherwise

• xk
ij : xk

ij = 1 if the kth line traverses arc ij, xk
ij = 0

otherwise

• λod
ijk : od passenger flow on arc ij of kth line.

• λod
k : od passenger flow on kth line.

Formulation LPWPHP

min
∑

k∈L

ckfk +
∑

k∈L

∑

od∈S

∑

ij∈Ak

tijλ
od
ijk (1)

s.t.
∑

j:ij∈Ak

xk
ij −

∑

j:ji∈Ak

xk
ji =





xk i = s(k)
−xk i = t(k)
0 o/w

∀k ∈ L (2)

∑

j:ij∈Ak

λod
ijk −

∑

j:ji∈Ak

λod
jik =





λod
k i = o
−λod

k i = d
0 o/w

∀od ∈ S, ∀k ∈ L (3)∑

od∈Ak(ij)

λod
ijk ≤ Ckfk, ∀ij ∈ Ak,∀k ∈ L. (4)

fk ≤ Mxk, ∀k ∈ L (5)∑

od∈Ak(ij)

λod
ijk ≤ Mxk

ij , ∀ij ∈ Ak∀k ∈ L (6)

∑

k

λod
k = Dod, ∀od ∈ S (7)

∑

k∈Auv

fk ≤ Luv, ∀uv ∈ A (8)

xk
ij , x

k ∈ {0, 1}, others ≥ 0, integer. (9)

By (1), the model minimizes a combination of total oper-
ating cost and total passenger travel time. This objective
function enables us to minimize the total passenger travel
time among line plans with the minimum total operation
cost by taking the product of a given weight and the first
term in the objective function. In our experiment, a suf-
ficiently large weight was used. Here, (2) and (3) indicate

flow conservation of the train and passenger, respectively
and (4) indicates that the sum of OD demand traversing
ij link within the kth line must be no more than the to-
tal seating capacity of the kth line which is the frequency
times seating capacity. Also, (5) and (6) enable the vari-
ables to be consistent. The sum over all k of od demands
is equal to Dod by (7).

The mathematical formulation for LPGHP can be readily
derived from the above formulation because LPGHP is
the case when xk

ij , x
k are given in the LPWPHP problem.

Hence the formulation is much simpler.

Formulation LPGHP

min
∑

k∈L

ckfk +
∑

k∈L

∑

od∈S

tkodλ
od
k (10)

s.t.
∑

od∈Ak(ij)

λod
k ≤ Ckfk, ∀ij ∈ Ak, ∀k ∈ L (11)

∑

k∈L

λod
k = Dod, ∀od ∈ S (12)

∑

k∈Auv

fk ≤ Luv, ∀uv ∈ A (13)

λod
k , fk ≥ 0, integer (14)

5 Experimental Results

In the section, we give the results obtained for the Korean
high-speed railway network assuming various scenarios
that exist in the actual network.
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Figure 4: Korean railway network expected to be serviced
by high-speed trains in 2011.

Figure 4 shows the railway network expected to be ser-
viced by high-speed trains in 2011. Currently, route 6-
9-10-11 is under construction ; tains will be able to run
faster on this route than on 6-7-8-11 because the tracks
are exclusive for high-speed trains. Route 15-23- · · · -29
is used only by conventional trains, currently not used by
any high-speed train. From 2011, new high-speed rolling



Table 2: Experimental results - Scenario 1

rolling stock line route
LPGHP LPWPHP Current(2007)

# of patterns (# of trains) # of patterns (# of trains) # of patterns (# of trains)

KTX 1-11 (via 7) 8(36) 6(36) 15(47)
KTX 1-6 2(22) 3(22) 2(9)
KTX 1-5 1(2) 1(2) 1(1)
KTX 2-21 2(4) 1(4) 6(8)
KTX 2-22 4(9) 3(8) 9(10)

computation time(s) 5.16∗ 792.75∗∗ n/a

obj. value(106) 2628.6 2593.5 2859.5

travelling time(min) 6,455,776 6,128,284 6,526,909

Total number of patterns 17 14 33

Total number of trains 73 72 75

*,** : the number of branching nodes is restricted to 10,000. * : MIP gap = 1.76%, ** : MIP gap = 47.39%,

stock KTX II will be introduced, which has a lower op-
eration cost than KTX because a KTX II train consists
of 10 cars (seating capacity 544), while a KTX train con-
sists of 20 cars (seating capacity 935). In our experiment,
we assume that the operation cost is proportional to the
driving distance, and the operation cost of KTX II is 0.6
times as large as that of KTX. The number of candidate
patterns used in the LPGHP model is the same as that
of the actual pattern currently serviced by KTX, which
is shown in the last column of Table 2. The maximum
number of generated patterns is restricted to six for the
routes 1 to 11 and to four in the others. To obtain quickly
a feasible solution to LPWPHP, some prominent halting
patterns used to reduce the travelling time were fixed in
advance.

We generate a new optimized line plan for the high-speed
railway network under three scenarios. Table 2∼4 list
the results from these scenarios, which are as follows:
only KTX is used with current high-speed railway net-
work(Scenario 1), only KTX is used with the Figure 4
network(Scenario 2) and both KTX and KTX II are used
with the Figure 4 network(Scenario 3). For Scenario 1,
we compared the solution with the current line plan. The
third and fourth column in each table indicate the num-
ber of generated patterns and the number of trains for
LPGHP and LPWPHP, respectively. The formulations
LPGHP and LPWPHP were implemented on a PC with
an Intel Core Duo 2.20-GHz CPU using CPLEX 10.2.

Table 2 shows how much our line planning model could
improve the current line plan. The total number of trains
was decreased to 73 in the LPGHP and to 72 in the LPW-
PHP case, from 75. Trains with non-stop pattern are rare
in the current line plan. However in the LPWPHP cases,
there were many trains with non-stop pattern which re-
sult in reduced passenger travel time. Although there
were many trains with non-stop patterns, the number of
patterns was much lower than that of the current sched-
ule. Lower number of patterns enables us more easily to

develop train operation plan including timetable. Obvi-
ously a decrease in the total number of trains indicates
lower operation cost.

The objective values of LPWPHP were not much better
than those of the LPGHP case because both models min-
imized the total operation cost first by weighting a large
number to the operation cost. However, in all scenarios,
the total passenger travel time was decreased in LPW-
PHP model because it generated optimized patterns to
do exactly that. We expect that the LPWPHP model
can play an important role in developing an optimized
line plan with various halting patterns when there are
no halting patterns to refer to, such as when new train
service is launched on a new railway network. The total
passenger travel time in the LPWPHP model was signif-
icantly decreased by 4 ∼ 5 % in all scenarios, compared
with the LPGHP model.

6 Concluding Remarks

We present complexity analyses and optimization models
for a railway line planning model considering the halting
patterns of trains. We ran the models on a comparatively
small network, serviced by high-speed trains. Although
the model was implemented for a small network, the com-
putation time and the MIP gap of both LPGHP and LP-
WPHP are tremendous as shown in Table 2∼4. To apply
these models to larger networks, it will be necessary to
develop a more efficient algorithm that can guarantee a
tighter MIP gap and a reduced computation time, such
as a branch-and-cut or column-generation algorithm.

References

[1] R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A
column generation approach to line planning in pub-
lic transport. Transportation Science, 41(1):123–132,
2007.



Table 3: Experimental results- Scenario 2

rolling stock line route
LPGHP LPWPHP

# of patterns (# of trains) # of patterns (# of trains)

KTX 1-11 (via 7) 5(9) 3(9)
KTX 1-11 (via 9) 4(29) 6(29)
KTX 1-6 2(21) 3(21)
KTX 1-5 1(2) 1(2)
KTX 2-21 2(4) 1(4)
KTX 2-22 3(6) 2(6)
KTX 2-29 2(7) 3(7)

computation time(s) 8.81∗ 2991.39∗∗

obj. value(106) 2874.1 2873.8

travelling time(min) 6,410,163 6,058,557

Total number of patterns 19 19

Total number of trains 78 78

*,** : the number of branching nodes is restricted to 10,000. * : MIP gap = 1.16%, ** : MIP gap = 78.83 %

Table 4: Experimental results- Scenario 3

rolling stock line route
LPGHP LPWPHP

# of patterns (# of trains) # of patterns (# of trains)

KTX / KTX II 1-11 (via 7) 6(11) / 0(0) 4(12) / 0(0)
KTX / KTX II 1-11 (via 9) 3(27) / 0(0) 5(26) / 0(0)
KTX / KTX II 1-6 1(20) / 1(1) 4(20) / 1(1)
KTX / KTX II 1-5 1(2) / 1(2) 1(2) / 0(0)
KTX / KTX II 2-21 2(4) / 0(0) 3(4) / (0)
KTX / KTX II 2-22 4(6) / 0(0) 3(6) / 0(0)
KTX / KTX II 2-29 2(4) / 1(4) 2(4) / 2(4)

computation time(s) 9.48∗ 6331.89∗∗

obj. value(106) 2837.0 2836.7

travelling time(min) 6,469,524 6,209,656

Total number of patterns 21 25

Total number of trains 79 79

*,** : the number of branching nodes is restricted to 10,000. * : MIP gap = 0.48%, **: MIP gap = 81.19%

[2] A. Bouma and C. Oltrogge. Linienplanung und
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