
 
 

 

  
Abstract—A novel formulation for two-dimensional 

self-similar anisotropic elastodyamic problems is generalized to 
piezoelectric materials. By making use of the formulation, the 
general solution of the displacements is expressed in terms of 
the eigenvalues and eigenvectors of a related eight-dimensional 
eigenvalue problem. Without the need of performing integral 
transforms as required in the well-known Cagniard-de Hoop 
method, the present formulation can be utilized to obtain 
expressions of analytical solutions directly. In the study, the 
method is applied to derive the explicit dynamic Green’s 
functions in the piezoelectric half-space. Numerical examples 
for the quartz of the semi-infinite region are illustrated. 
 

Index Terms—dynamic Green’s functions, piezoelectric 
half-space.  
 

I. INTRODUCTION 
Because of the intrinsic anisotropic elastic features of 

piezoelectric materials, many analytic methods for 
piezoelectric solids are derived from those for the general 
anisotropic elasticity. The Green’s functions, which relate the 
mechanical displacements and electric potential at a point to 
the concentrated forces or charges applied at another point, 
play an important role in understanding analytically 
mechanical or electrical behavior of loaded piezoelectric 
materials. 

Lothe and Barnett [1] developed an integral formalism 
for surface waves in piezoelectric half-infinite solid. They [2] 
also considered the existence of surface waves in 
piezoelectric half-space subjected to various boundary 
conditions. Taylor and Crampin [3] considered the 
circumstances for the propagation of surface waves in a 
homogeneous anisotropic piezoelectric half-space. Their 
study revealed that the particular form of anisotropic 
symmetry with respect to the direction of propagation 
critically affects the properties of the surface waves. Peach [4] 
extended the results of Lothe and Barnett [1] for the 
anisotropic materials to those for the piezoelectric materials. 
He presented general existence theorems for surface waves 
on piezoelectric substrates. Gao and Noda [5] developed an 
exact solution for the static Green’s functions of a 
half-infinite piezoelectric solid. Their work showed that the 
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normal component of the electric displacement on the solid 
surface is not zero and is dependent on the applied loads and 
the electro-elastic constants of the piezoelectric material and 
air.  

The Stroh formalism is widely recognized as an elegant 
and powerful analytic method in two-dimensional general 
anisotropic elastostatics [6]-[9]. A distinctive feature of the 
Stroh formalism is that the general solution is provided in 
terms of the eigenvalues and eigenvectors of a constant 
six-dimensional matrix. The general solution contains three 
arbitrary complex functions. These functions can often be 
determined by virtue of the orthogonality relations among the 
eigenvectors in conjunction with theories of analytic 
functions. The Stroh’s formalism has been applied to yield 
the static Green’s functions for various configurations (Ting, 
[8]). Generalization of the Stroh’s formalism to piezoelectric 
materials has been given by Ting [8], leading to an 
eigenvalue problem of a constant eight-dimensional matrix. 
Wu [9] extended the Stroh’s formalism to treat the 
self-similar elastodynamic problems for general anisotropic 
elastic material. The formulation is also based on a 
six-dimensional matrix, which, however, is a function of 
position and time. A major advantage of the novel 
formulation of Wu [9] is that solutions can be derived 
directly without the need of performing integral transforms. 
The formulation of Wu has been further extended to 
piezoelectric materials in the context of the quasi-static 
approximation to derive the dynamic Green’s functions for 
an infinite piezoelectric medium (Wu and Chen, [10]). In this 
paper the dynamic surface Green’s functions for a general 
piezoelectric half-space is considered. The surface is 
assumed traction-free mechanically and insulating 
electrically. 

 

II. FORMULATION 
The formulation of Wu and Chen [10] for self-similar 

elastodynamic problems for general piezoelectric materials is 
outlined in this section. For a linear piezoelectric solid, the 
mechanical stress ijσ , the mechanical displacement iu , the 

electric displacement iD  and the electric potential φ  are 
related by 

, ,ij ijks k s sij sC u eσ φ= + ,                          (1) 

, ,i iks k s is sD e u ε φ= − ,                           (2) 

where a subscript comma denotes partial differentiation with 
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respect to spatial coordinates, repeated indices imply 
summation from 1 to 3, ijksC  are the elastic stiffness, and ikse , 

and isε  are, respectively, the piezoelectric stress constants 
and permittivity constants. In the absence of body forces and 
free charges the balance laws under quasi-static 
approximation require 

    ,ij j iuσ ρ= ,                                   (3) 

, 0i iD = ,                                      (4) 

where ρ  is the density and an overhead dot designates 
derivative with respect to time t . 

By virtue of letting 4uφ =  and 4i iD σ= , (1) and (2) can 
be expressed in terms of the generalized stress and 
generalized displacement as 

,Ij IjKs K sE uσ = ,                              (5) 

where the upper case subscripts range from 1 to 4, lower case 
subscripts from 1 to 3 and generalized electric-mechanical 
constants IjKsE  are defined as 

, , 1, 2,3,
, 1, 2,3, 4,
, 4, 1,2,3,

, 4, 4.

ijks

sij
IjKs

iks

is

C I K
e I K

E
e I K

I Kε

=⎧
⎪ = =⎪= ⎨ = =⎪
⎪ − = =⎩

. 

Equations (3) and (4) can also be combined as 
*

,Ij j IK Kuσ ρδ= ,                               (6) 

where *
,   , =1,2,3IK IK I Kδ δ= , IKδ  being the Kronecker’s 

delta and * 0, , 4IK I Kδ = = . Substitution of (5) into (6) 
yields the governing equations in terms of the generalized 
displacement u  as 

*
,IjKs K sj IK KE u uρδ= .                          (7) 

For two-dimensional problems in which the generalized 
displacement [ ]1 2 3, , , Tu u u φ=u  are independent of 3x , (7) 
can be expressed as  

,11 ,12 ,22
ˆ( )T ρ+ + + =Qu R R u Tu Iu ,               (8) 

where Î , Q , R , and T  are 4 4×  matrices given by 

ˆ
0

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

I 0
I

0
, 11

11 11

E

T ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

Q e
Q

e
, 21

12 12

E

T ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

R e
R

e
, 

22

22 22

E

T ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦

T e
T

e
,                         (9) 

in which I  is the 3 3×  identity matrix and the elements of 
3 3×  matrices EQ , ER , ET , and 3 1×  matrices ije  are 

1 1
E
ik i kQ C= , 1 2

E
ik i kR C= , 2 2

E
ik i kT C= , ( )ij s ijse=e . 

Consider the generalized displacement u  in the 
following form 

1 2 4( , , ) ( ) ( )x x t w tψ= +u u e ,                     (10) 

where 1 2( , , )w x x t  is defined implicitly by 

1 2 1 2( , , , ) ( ) 0w x x t wt x p w xΔ = − − = ,             (11) 

with ( )p w  as an analytic function of w , ( )tψ  a function of 

t , and [ ]4 0, 0, 0, 1 T=e . With (10), (8) becomes 

 2 21 1ˆ[ ( )( ) ( ) ] ( )Tw p w p w w
w

ρ∂ ⎧ ⎫′− + + + =⎨ ⎬′ ′Δ ∂ Δ⎩ ⎭
Q I R R T u 0 , (12) 

where ( )w′u  denotes the derivative of ( )wu  with respect to 
w , ′Δ  is given by 

1 2
2

( , , , )
( )

w x x t
t p w x

w
∂Δ′ ′Δ = = −

∂
,            (13) 

and ( )p w′  is the derivative of ( )p w  with respect to w . 
Equation (12) shows that for the generalized displacement u  
given by (10) to be a solution to (8), ( )wu  must satisfy (12) 
and ( )tψ  is arbitrary. 

By letting ( )w′u  have the following form 

( ) ( ) ( )w f w w′ =u a ,                           (14) 

where ( )f w  is an arbitrary scalar function of w . It follows 
that u  is a solution of (8) if 

( , ) ( ) ,p w w =D a 0                             (15) 

where ( , )p wD  is given by 

2 2ˆ( , ) ( )Tp w p p wρ= + + + −D Q R R T I .        (16) 

For non-trivial solutions of ( )wa  we must have 

( , ) 0,p w =D                                (17) 

where D  is the determinant of D . Equation (17) provides 
eight eigenvalues of p  as a function of w , denoted by 

( )p wα , 1, 2,...,8α = . The corresponding function 

1 2( , )w w y yα α= , where 1 1 /y x t= , and 2 2 /y x t= , can be 
determined from (11) with ( )p w  replaced by ( )p wα . 

A graphical way for finding real p s′  can be achieved by 
making use of the slowness surface, 1 2( , )s s  space, where 

1 1/s w=  and 2 /s p w= . No real pα  exists for t → ∞  or 
0w → . In this case pα  appear in four complex conjugated 

pairs. On the other hand as 0t →  or w → ∞ , there are six 
real pα . From (16) the other two complex roots and the 

corresponding *a  may be shown to be 

* * *12
4

22

, ,
i

p p
ε ε

ε
− +

= =a e ,                (18) 

where 2
11 22 12ε ε ε ε= −  and 1i = − . 



 
 

 

   The general solution of the generalized displacement 
satisfying (8) may be represented as 

8

1 2 ,1
1

( )
( , , ) ( )

f w
x x t wα α

α α
α α=

=
′Δ∑u a ,                      (19) 

8

1 2 ,2
1

( )
( , , ) ( ) ( )

p w
x x t f w wα α

α α α α
α α=

=
′Δ∑u a ,          (20) 

8

1 2 4
1

( , , ) ( ) ( ) ( )
w

x x t f w w tα
α α α α

α α

ψ
=

= − +
′Δ∑u a e .   (21) 

By substituting (19) and (20) into the constitutive laws, the 
general solutions of the generalized stress vectors 1t  and 2t  , 

where 1t  and 2t  are given by 1 11 21 31 1( , , , )TDσ σ σ=t  and 

2 12 22 32 2( , , , )TDσ σ σ=t , can be expressed, respectively, as 

8
2

1 1 2
1

1 ˆ( , , ) ( ) ( ) ( ) ( )x x t w w p w w f wα α α α α α α α α
α α

ρ
=

⎡ ⎤= −⎣ ⎦′Δ∑t Ia b , (22) 

8

2 1 2
1

( )
( , , ) ( )

f w
x x t wα α

α α
α α=

=
′Δ∑t b ,                (23) 

where 

( )21 ˆ( ) ( ( ) ) ( ) ( ) ( )Tw p w w w p w w
pα α α α αρ= + = − − +b R T a Q I R a ,   (24) 

The second identity in (24) follows from (15). 

An alternative method for determining 1 2( , )p y yα  is given 
by substituting (11) into (16) and rewrite D  as 

2
1 2

ˆ ˆ ˆ ˆ( , , ) ( )Tp y y p p= + + +D Q R R T ,           (25) 

where 

2
1 11

11 11

ˆ
E

T

yρ
ε

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

Q I e
Q

e
, 1 2 21

12 12

ˆ
E

T

y yρ
ε

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

R I e
R

e
, 

2
2 22

22 22

ˆ
E

T

yρ
ε

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

T I e
T

e
. 

The function 1 2( , )p y yα  can be directly obtained by 

1 2( , , ) 0p y y =D . The corresponding 1 2( , )w y yα  is simply 

given by (11) and the associated eigenvector 1 2( , )y yαa  is 

determined by (15). Introduce the vector 1 2
ˆ ( , )y yαb  given by 

1 2
1 ˆˆ ˆ ˆ ˆ( , ) ( ) ( )Ty y p p
pα α α α α

α

= + = − +b R T a Q R a ,   (26) 

The second line of (26) follows from (15). The vector 

1 2
ˆ ( , )y yαb  is related to ( )wαb  by 

1 2 2
ˆ ˆ( , ) ( ) ( )y y w wy wα α αρ= −b b Ia .            (27) 

Equation (26) can be cast into the following 
eight-dimensional eigenvalue problem 

ˆ ˆˆ p=Nξ ξ ,                                  (28) 

where 

1 2

3 1

ˆ ˆ
ˆ

ˆ ˆ T

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

N N
N

N N
, ˆ

ˆ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

a
ξ

b
, 1

1
ˆ ˆ ˆ T−= −N T R , 1

2
ˆ ˆ −=N T , 

1
3

ˆˆ ˆ ˆ ˆ T−= −N RT R Q . 

The p  and ξ̂  are the eigenvalue and right eigenvector, 

respectively, of N̂ . Since 2N̂  and 3N̂  are symmetric, the left 

eigenvector, η̂ , of N̂  defined by 

ˆ ˆ ˆT p=N η η ,                                  (29) 

is given by 

ˆ
ˆ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

b
a

η . 

If the eigenvalues pα and pβ  are distinct, the corresponding 
left and right eigenvectors satisfy orthogonality relations 

ˆ ˆ ˆˆ 0,T T T
α β α β α β α β= + = ≠a b b aη ξ .           (30) 

 

III. DYNAMIC SURFACE GREEN’S FUNCTION 
Consider a piezoelectric half-space 2 0x ≥ . The surface at 

2 0x =  is assumed traction-free mechanically and insulating 
electrically. A line impulse force ( )tδh  and a line impulse 
charge ( )q tδ , ( )tδ  being the Dirac delta function, are 
applied at the origin. The surface is mechanically 
traction-free ( 2

E =t 0 ) and electrically insulating ( 2 0D = ), 

where 2 12 22 32( )E Tσ σ σ=t . Then the corresponding 
conditions on the boundary 2 0x =  are given by 

2 1 1( , ) ( ) ( )x t x tδ δ= −t F ,                       (31) 

where 1 2 3( , , , )Th h h q= −F . 

As in the case of unbounded media (Wu and Chen, [10]), 
the generalized stresses are homogeneous of degree -2 and 
the generalized displacement u  homogeneous of degree -1. 
Thus the fictitious generalized displacement *u  given by 

*
1 2 1 2( , , ) ( , , )

t
x x t x x dτ τ

−∞
= ∫u u ,                (32) 

is homogeneous of degree 0. The conditions for the 
corresponding fictitious generalized stress *

2t  is 

*
2 1 2 1 1( , ) ( , ) ( ) ( )

t
x t x d x H tτ τ δ

−∞
= = −∫t t F .       (33) 

The general expression for the generalized stress vector *
2t  

as given by (23) can be rewritten in the following matrix 
form: 

*
2 1 2

1( , , ) 2Re ( ) ( )x x t ⎛ ⎞
= ⎜ ⎟′Δ⎝ ⎠

t B w f w ,           (34) 

where [ ]1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )w w w w=B w b b b b , 



 
 

 

1 2 3 4

1 1 1 1 1diag
⎡ ⎤

= ⎢ ⎥′ ′ ′ ′ ′Δ Δ Δ Δ Δ⎣ ⎦
, 

[ ]1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( ) Tf w f w f w f w=f w . For 0t > , (33) 
and (34) yield 

( )1 12Re ( ) ( )y yδ= −q F ,                    (35) 

where 

1 1 1( ) ( ) ( )y y y=q B f .                       (36) 

The analytic function ( )ηq  with 1 2y iyη = +  satisfying (35) 
is given by 

1( )
2 i

η
π η

=q F .                              (37) 

Therefore, 

11( ) ( )
2

w w
iwα α

απ
−=f B F .                 (38) 

Let αe  be the unit vector in α -direction and the matrix 
T

α α α=I e e . The analytic function ( )f w  is obtained as 

4
1

1

1 1( ) ( )
2

w
i w α α

απ
−

=

= ∑f w I B F ,            (39) 

where the 4 4× matrix 
[ ]1 2 3 4( ) ( ) ( ) ( ) ( )w w w w wα α α α α=B b b b b , the vector  

( )( ) ( ) ( )Tw p w wβ α β α β α= +b R T a , ( )p wβ α  and ( )wβ αa  

are the eigenvalues and eigenvectors, respectively, of 
ˆ ˆˆ p=Nξ ξ  with w wα= . Equation (39) can also be expressed 

as the following form: 
4

1 1

1

1 1( ) ( ) ( )
2 2

T T
k k k k k

k k

f w w w
iw iwα α

απ π
− −

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑e I B F e B F .  (40) 

The fictitious generalized velocity *u  is given by 
4 4

* 1 *
1 2 4

1 1

4
1 *

4
1

1 1( , , ) Im ( ) ( ) ( )

1 1Im ( ) ( ) ( )

T
k k k

k k

T
k k k k

k k

x x t w w t

w w t

α α
α

ψ
π

ψ
π

−

= =

−

=

⎧ ⎫⎛ ⎞
= − +⎨ ⎬⎜ ⎟′Δ ⎝ ⎠⎩ ⎭

⎧ ⎫
= − +⎨ ⎬′Δ⎩ ⎭

∑ ∑

∑

u a e I B F e

a e B F e

,  (41) 

The function * ( )tψ  is determined by requiring * 0→u  as 

0t +→  in (41). The result is 

* *4
1 2 4( , , ) ( )

F
x x t t

t
ψ

π ε
⎡ ⎤= − +⎢ ⎥⎣ ⎦

u e ,               (42) 

or 

* *4( ) ( )
F

t t
t

φ ψ
π ε

= − + ,                         (43) 

where * *
1 2w y p y= + .  

If *( )tφ  is required to be bounded at 0t = , the function 
*( )tψ  must be in the following form 

* 4( ) ( )
F

t c t
t

ψ
π ε

= + ,                            (44) 

where ( )c t  is a regular function of t . Since only the spatial 

variation of the electric potential *( )tφ  is of interest, we can 
let ( ) 0c t = (Wu and Chen, [10]). The actual generalized 
displacement u , which is the same as the fictitious 
generalized velocity *u , is obtained as 

*
1 2 1 2 1 2( , , ) ( , , ) ( , , )sfx x t x x t x x t+= =u u G F ,          (45) 

where sf
+G  is the free surface Green’s tensor for 0t >  and 

can be expressed as 
4

1
1 2 4 4

1 1

1
4

1

1 1 1( , , ) Im ( ) ( )

1 1 1Im ( ) ( )

n
T T

sf k k k
k k

n
T

k k k k
k k

x x t w w
t

w w
t

α α
απ π ε

π π ε

+

+

+ −

= =

−

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − +⎨ ⎬⎢ ⎥⎜ ⎟′Δ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫

= − +⎨ ⎬′Δ⎩ ⎭

∑ ∑

∑

G a e I B e e

a e B I

.    (46) 

Since as 0t +→ , the fictitious generalized displacement is 

{ }* *4
1 2 1 2 4( , , ) Re log( )

F
x x t x p x

πε
= +u e ,         (47) 

while *
1 2( , , )x x t =u 0  as 0t −→ . The Green’s function 

1 2( , , )sf x x tG  for 0t −>  is given by 

{ }*
1 2 1 2 1 2 4

( )( , , ) ( , , ) Re log( )sf sf
tx x t x x t x p xδ

πε
+= + +G G I .

(48) 

 

IV. NUMERICAL EXAMPLES 
The Green’s functions given by (48) were computed next 

for quartz, which is a crystal of trigonal 32 symmetry class. 
The Green’s functions may be expressed in the following 
dimensionless form: 

0 0 1 2

0 0 1 2

0 0 1 2

( / ) ( , , ), , 1, 2,3,

( , ) ( / ) ( , , ), 4, 1, 2,3 or 1,2,3 , 4

( / ) ( , , ), 4, 4

ij

ij ij

ij

C r c G x x t i j

G e r c G x x t i j i j

r c G x x t i j

π

ψ τ π

πε

⎧ =
⎪⎪= = = = =⎨
⎪ = =⎪⎩

, (49) 

where 0 0 /c C ρ= , 0 /tc rτ = , 2 2
1 2r x x= + ,  

1
2 1tan ( / )x xψ −= . Here 0C , 0e  and 2

0 0 0/e Cε =  , 
respectively, are certain reference elastic constant, 
piezoelectric stress constant and permittivity. The elastic 
stiffness constants C , the piezoelectric stress constants e , 
and dielectric constants ε  of quartz used for calculations 
were [11]: 

86.74 6.97 11.9 -17.91 0 0
6.97 86.74 11.9 17.91 0 0
11.9 11.9 107.2 0 0 0

GPa
-17.91 17.91 0 57.93 0 0

0 0 0 0 57.93 -17.91
0 0 0 0 -17.91 39.885

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C
, (50) 



 
 

 

2
-0.171 0.171 0 0.0406 0 0

0 0 0 0 -0.0406 0.171 C/m
0 0 0 0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

e , (51) 

and 

12
39.21 0 0

0 39.21 0 10 Farads/m
0 0 41.03

−
⎡ ⎤
⎢ ⎥= ×⎢ ⎥
⎢ ⎥⎣ ⎦

ε .   (52) 

Figure 1 displays the wave surface of quartz in the infinite 
region. The three bulk wavefronts are denoted by L, FT, and 
ST. Some head wavefronts are designated as Hi ( 1 ~ 5i = ). 
Figure 2 shows the components of Green’s functions, 11( )G , 

12( )G , and 13( )G  for the observational angle 0ψ = . In 
figure 2, the surface wave is denoted by SAW and the 
pseudo-surface wave is denoted by PSAW. Figure 3 shows 
the components of Green’s functions ( 1( ) , 1, 2,3jG j = ) for 

the observational angle 36ψ = . 

 

 

 
Figure 1. Wavefronts and the angle of observation for 

quartz. 

 

 

Figure 2. The components of Green’s functions 11( )G , 

12( )G , and 13( )G  for 0ψ = . 

 

 

Figure 3. The components of Green’s functions 11( )G , 

12( )G , and 13( )G  for 36ψ = . 

 

V. CONCLUDING REMARKS 
A novel formulation developed by Wu [9] for 

two-dimensional anisotropic elastodynamics is extended to 
treat general piezoelectric materials. The present formulation 
does not require integral transforms and can be used to 
acquire the general solutions of displacement or stress fields 
in the time domain directly. The formulation is applied to 
derive analytic expressions for dynamic Green’s functions of 
general half-space piezoelectric solids. The Green’s 
functions can be simply calculated using the eigenvalues and 
eigenvectors of a related eight by eight matrix. Numerical 



 
 

 

examples provided for the piezoelectric material-quartz show 
that the dynamic responses can be accurately computed by 
the proposed formulation. 

 

ACKNOWLEDGMENT 
The research was supported by the National Science 

Council of Taiwan under grant NSC 97-2218-E-151-008 and 
NSC 98-2221-E-151-057. 

 

REFERENCES 
[1] J. Lothe, and D. M. Barnett, “On the existence of surface-wave 

solutions for anisotropic half-spaces with free surface.”  J. Appl. Phys. 
47, pp. 428-433, 1976. 

[2] J. Lothe, and D. M. Barnett, “Integral formalism for surface waves in 
piezoelectric crystals. Existence considerations.” J. Appl. Phys. 47, pp. 
1799-1807, 1976. 

[3] D. B. Taylor, and S. Crampin, “Surface waves in anisotropic media: 
propagation in a homogeneous piezoelectric halfspace.” Proc. R. Soc. 
Lond. A 364, pp. 161-179, 1978. 

[4] R. Peach, “On the existence of surface acoustic waves on piezoelectric 
substrates.” IEEE Trans. Ultrason. Ferroelect. Freq. Contr.. Vol 48, 
No. 5, pp. 1308-1320, 2001. 

[5] C. F. Gao, and N. Noda, “Green’s functions of a half-infinite 
piezoelectric body: exact solutions.” Acta Mechanica 172, pp. 169-179, 
2004. 

[6] A. N. Stroh, “Dislocations and cracks in anisotropic elasticity,” Phil. 
Mag. 3, pp. 625-646, 1958. 

[7] A. N. Stroh, “Steady state problems in anisotropic elasticity,” J. Math. 
Phys. 41, pp. 77-103, 1962. 

[8] T. C. T. Ting, ”Anisotropic elasticity: theory and application.” Oxford 
University Press, 1996. 

[9] K.-C. Wu, “Extension of Stroh’s formalism to self-similar problems in 
two-dimensional elastodynamics.” Proc. R. Soc. Lond. A 456, pp. 
869-890, 2000. 

[10] K.-C. Wu, and S.-H. Chen, “Two dimensional dynamic Green’s 
functions for piezoelectric materials,” CMES-Computer modeling in 
engineering & sciences. Vol. 20, No 3, pp. 147-156, 2007. 

[11] B. A. Auld, “Acoustic fields and waves in solids.” John Wiley and Sons, 
1973. 




